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Multiscale methods for evolution problems

Per Ljung

Division of Applied Mathematics and Statistics
Department of Mathematical Sciences

Chalmers University of Technology and University of Gothenburg

Abstract

In this thesis we develop and analyze generalized finite element methods for
time-dependent partial differential equations (PDEs). The focus lies on equa-
tions with rapidly varying coefficients, for which the classical finite element
method is insufficient, as it requires a mesh fine enough to resolve the data.
The framework for the novel methods are based on the localized orthogonal
decomposition (LOD) technique, introduced in [51]. The main idea of this
method is to construct a modified finite element space whose basis functions
contain information about the variations in the coefficients, hence yielding
better approximation properties.

At first, the localized orthogonal decomposition framework is extended to the
strongly damped wave equation, where two different highly varying coeffi-
cients are present (Paper I). The dependency of the solution on the different
coefficients vary with time, which the proposed method accounts for automat-
ically. Then we consider a parabolic equation where the diffusion is rapidly
varying in both time and space (Paper II). Here, the framework is extended
so that the modified finite element space uses space-time basis functions that
contain the information of the diffusion coefficient. Furthermore, we study
wave propagation problems posed on spatial networks (Paper III). Such sys-
tems are characterized by a matrix with large variations inherited from the
underlying network. For this purpose, an LOD based approach adapted to
general matrix systems is considered. Finally, we analyze the framework for
a parabolic stochastic PDE with multiscale characteristics (Paper IV). In all
papers we prove error estimates for the methods, and confirm the theoretical
findings with numerical examples.

Keywords: Strongly damped wave equation, multiscale, localized orthogonal
decomposition, finite element method, parabolic equations, spatial network
models, stochastic partial differential equations.
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1 Introduction

The modeling of partial differential equations (PDEs) is a major topic in both
science and engineering. Applications range from simulating the aerodynamics
of large aircraft to the modeling of atoms on a quantum mechanic level. In this
thesis, we focus on time-dependent partial differential equations. In particular,
we are interested in simulations of strongly heterogeneous materials, such as,
e.g., composite materials. The modeling of such materials result in PDEs with
highly oscillatory coefficients. This type of problems, where the data is varying
rapidly, is referred to as multiscale problems.

One of the most common numerical approaches to solving PDEs is the finite
element method (FEM). However, for multiscale problems, FEM approxima-
tions are only accurate if the mesh is fine enough to resolve the variations in
the data. This quickly becomes challenging in terms of computational cost and
memory. For the purpose of solving multiscale equations, several so-called
multiscale methods have been developed. Some of these methods are inspired
by analytical homogenization theory, such as the heterogeneous multiscale
method (HMM) [16, 1] and the multiscale finite element method [29]. In order
to prove convergence, these methods require strong assumptions on period-
icity and scale separation. In addition, several multiscale methods have been
developed that circumvent these sorts of requirements. Examples of such
methods include generalized (multiscale) finite element methods [7, 6, 18] and
gamblets [56, 57]. In particular, this thesis is mainly based on the framework of
a generalized finite element method (GFEM) known as the localized orthogonal
decomposition (LOD) method, first introduced in [51].

The LOD method is based on the variational multiscale method (VMS) [30, 41,
48, 40]. The main idea of the method is to construct a modified coarse-scale
finite element space enriched by problem-dependent fine-scale correctors. In
turn, it was proven in [51] (and later improved in [28]) that these correctors
satisfy an exponential decay, making it possible to restrict the computations
to local patches, which is one of the advantages of the LOD method. Another
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2 Introduction

strength is that the correctors are completely independent and can be computed
in parallel. In [51], convergence of optimal order is proven independent of the
variations in the data, with no assumptions made on neither periodicity nor
scale separation. The LOD method was first introduced for elliptic equations,
but has since then been further developed and analyzed for several types of
problems, including time-dependent PDEs such as parabolic ones in [49, 50, 3]
and wave-type equations in [2, 47]. For more results on the LOD method, see,
e.g., [27, 26, 52, 54, 25], and for a general and rigorous introduction to the topic,
we refer to [53].

The purpose of this thesis is to extend the LOD framework to evolution prob-
lems. In a broad sense, this is done in two ways. In Papers I-II, we consider
equations where the time-dependency has to be taken into account in the
construction of the multiscale method, whereas Papers III-IV apply the well-
established stationary LOD method to new types of settings. For all works, we
derive a priori error analysis, and illustrate the results with numerical examples.
In summary, the thesis consists of the following works.

Paper I. We derive an LOD method for the so-called strongly damped wave
equation. This case is unique as the PDE consists of two different multiscale
coefficients, while multiscale methods such as LOD are in general designed to
handle only one coefficient.

Paper II. A parabolic problem where the diffusion varies rapidly in both space
and time is considered. For this, a space-time multiscale method based on the
variational multiscale method and the LOD method is presented and analyzed.

Paper III. We consider wave propagation problems posed on so-called spatial
networks. Such problems are characterized by a symmetric, positive-definite
matrix K, whose data contain high variations inherited from the network
structure. These variations are dealt with by defining an LOD based method
for general matrix systems.

Paper IV. The LOD method is presented and analyzed for a parabolic stochas-
tic partial differential equation. The method shows further promise when
applied together with (multilevel) Monte-Carlo estimation, where an extensive
number of solutions has to be computed.

Outline: In Chapter 2 we present the classical finite element method and
illustrate why it is not sufficient for problems where the data is highly varying.
Chapter 3 introduces the LOD method for elliptic equations, and its extension to
evolution problems. Finally, Chapter 4 presents the methods and summarizes
the main results from Papers I-IV.



2 The finite element method

In this chapter we present the finite element method and discuss why it be-
comes computationally expensive to use for problems with highly oscillatory
data. At first, we define the method for elliptic equations, and illustrate both
theoretically and numerically how the high data variations affect the conver-
gence rate. Subsequently, we present the finite element method in the context of
evolution problems, and discuss the characteristics of the continuous solutions
as well as their approximated counterparts.

2.1 Stationary equations

Consider the elliptic equation

−∇ · (A∇u) = f, in D,
u = 0, on ∂D,

(2.1.1)

where D ⊂ Rd¸ d = 2, 3 is a bounded Lipschitz-domain with polygonal bound-
ary, f ∈ L2(D) is the source function, and A = A(x) ∈ L∞(D,Rd×d

sym) is the
(highly oscillatory) diffusion coefficient that satisfies

0 < α− := ess inf
x∈D

inf
v∈Rd\{0}

A(x)v · v
v · v ≤ ess sup

x∈D
sup

v∈Rd\{0}

A(x)v · v
v · v =: α+ <∞.

We begin by introducing the standard Sobolev spaces used in finite element
theory. Let α = (α1, . . . αd) be a multi-index, and define

Dαφ :=
∂|α|φ

∂xα1
1 · · · ∂xαd

d

,

3



4 The finite element method

where |α| := α1 + . . .+ αd. We say that v is the α’th order weak derivative of u if
for all φ ∈ C

|α|
0 (D) it holds∫

D

uDαφdx = (−1)|α|
∫
D

vφdx,

where C |α|
0 (D) is the space of |α| times continuously differentiable functions

with compact support in D. If the linear functional Dαφ is bounded in L2(D),
we identify it with an element Dαv ∈ L2(D) using the same notation. With the
weak derivative defined, we may construct the Sobolev space Hk(D) for k ≥ 0
as the space of all functions whose weak derivatives of order smaller than or
equal to k belong to L2(D), i.e.,

Hk(D) := {v ∈ L2(D) : Dαv ∈ L2(D) for |α| ≤ k},

equipped with inner product and corresponding norm

(v, w)Hk :=
∑
|α|≤k

∫
D

DαvDαw dx,

∥v∥2k := (v, v)Hk =
∑
|α|≤k

∫
D

(Dαv)2 dx.

We moreover define the corresponding seminorm on Hk(D) as

|v|2k :=
∑
|α|=k

∫
D

(Dαv)2 dx.

In particular, we introduce H1
0 (D) as the classical Sobolev space with norm

∥v∥2H1(D) := ∥v∥2L2(D) + ∥∇v∥2L2(D)

with functions vanishing on ∂D in the sense of traces. In the following, we
abbreviate the L2(D)-norm as ∥ · ∥ := ∥ · ∥L2(D).

We derive the weak formulation corresponding to (2.1.1), on which we base
our finite element method. By standard procedure we multiply the equation
by a test function v ∈ H1

0 (D) and integrate by parts over the domain D. The
weak formulation becomes: find u ∈ H1

0 (D) such that

a(u, v) = (f, v), (2.1.2)

for all v ∈ H1
0 (D), where (·, ·) is the standard L2(D)-scalar product and

a(·, ·) := (A∇·,∇·). We wish to define a FEM for the problem by constructing
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a discretized version of the weak formulation (2.1.2). To this end, let {Th}h>0

denote a family of shape regular triangulations that form a partition of the
domain D. For an element T ∈ Th we define the corresponding mesh size as
hT := diam(T ), and denote the largest diameter by h := maxT∈Th

hT . Next, we
construct the classical finite element space using continuous piecewise linear
polynomials

Sh :=
{
v ∈ C(D̄) : v

∣∣
T

is a polynomial of partial degree ≤ 1,∀T ∈ Th
}
,

and let Vh := Sh ∩H1
0 . The finite element formulation now follows by consid-

ering a Galerkin ansatz based on the discretized space Vh. More precisely: find
uh ∈ Vh such that

a(uh, v) = (f, v), (2.1.3)

holds for all v ∈ Vh.

From a computational point of view, the system (2.1.3) is regarded as a linear
matrix system. To be precise, denote by Nh the set of interior nodes in Th with
cardinality |Nh| = Nh, and {φi}Nh

i=1 the set of piecewise linear basis functions
that spans Vh. Then, we can express uh =

∑Nh

i=1 αiφi, insert this into (2.1.3)
and test with basis functions v = φj , j = 1, . . . , Nh. This results in an Nh ×Nh

matrix system

Kû =Mf̂, (2.1.4)

where Kij = a(φj , φi), (Mf̂)j = (f, φj), and ûi = αi. In Section 3.1, we return
to a discussion on general matrix systems of the kind (2.1.4), where K contains
high data variations. This topic is central in the work of Paper III.

From standard a priori error analysis (see, e.g., [42, Theorem 5.1]), the following
error bound is derived for the finite element approximations in (2.1.3)

∥uh − u∥H1(D) ≤ Ch∥u∥H2(D).

This convergence result is valid for u ∈ H2(D), which is satisfied under the
assumption A ∈ C1(D) for a convex domain D. Assume for the moment that
A is a scalar valued coefficient. The H2-seminorm can further be bounded as

|u|2 ≤ C∥∆u∥ ≤ C∥A∇ · (∇u)∥ = C∥∇ · (A∇u)−∇A∇u∥
≤ C∥∇ · (A∇u)∥+ ∥∇A∥L∞∥∇u∥ ≤ C(1 + ∥∇A∥L∞)∥f∥

where the first inequality follows from elliptic regularity and the last inequality
from ∥u∥H1(D) ≤ C∥f∥, which can be derived from the weak formulation. Note



6 The finite element method

here that the error is bounded by the derivative of the diffusion A. Hence, if A
is rapidly varying with frequency ε−1, then ∥∇A∥L∞ = O(ε−1). Consequently,
the error of the FEM approximation has the upper bound

∥uh − u∥H1(D) ≤ Cmin{h+ hε−1, 1}∥f∥.

In practice, this means that the sought convergence rate may not be achieved
unless h < ε. As ε gets smaller, i.e., the diffusion varies more rapidly, this con-
dition quickly becomes difficult to satisfy in terms of computational complexity
and memory.

To demonstrate this phenomenon, we present a numerical example. We set
the domain to be the unit square, i.e., D = [0, 1]× [0, 1], and let the diffusion
coefficient be given by

A(x1, x2) = 102 + 100 sin

(
2πx1
ε

)
sin

(
2πx2
ε

)
, (2.1.5)

where ε denotes the scale at which the diffusion varies. An example of this
coefficient when ε = 2−4 is seen in Figure 2.1b. We compute a reference
solution, denoted uref , on a fine mesh with mesh size h = 2−8, and compute the
error between the reference solution uref and finite element approximation uh
for h = 2−1, 2−2, . . . , 2−7. The error is measured in the energy norm, defined
by

|||·||| :=
√
a(·, ·).

This is done for different choices of ε = 2−1, 2−2, . . . , 2−5. The convergence
plots are seen in Figure 2.1a. Here we can see how the error remains on a
constant level until the mesh is able to resolve the variations defined by ε, at
which point we start to see the linear convergence rate.

2.2 Evolution problems

We continue the discussion on the finite element method by introducing some
common time-dependent equations, and present their main characteristics and
approximation results. At first, we consider parabolic-type equations, which is
the particular focus in Paper II and Paper IV. Subsequently, we introduce the
wave-type equations which are examined in Paper I and Paper III, respectively.
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1/H
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2−11
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ǫ = 2−1
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ǫ = 2−3

ǫ = 2−4

ǫ = 2−5

(a) Energy error. (b) A(x1, x2).

Figure 2.1: The left image shows the energy error |||uh − uref ||| as function of mesh
size for different choices of scale ε. The right image is the coefficient used in the case
ε = 2−4.

Parabolic equation

Consider the parabolic equation

u̇−∇ · (A∇u) = f, in D × (0, T ],

u = 0, on ∂D × (0, T ],

u(0) = u0, in D,
(2.2.1)

where the domainD and the diffusionA are defined as in Section 2.1, f = f(t, x)
is a time-dependent source function, u0 ∈ L2(D) is the initial value of the
system, and T > 0 is the final time. For now, we still assume A = A(x) to be
independent of time. Later, in Paper II, the system (2.2.1) is considered with
A = A(t, x) rapidly varying in both space and time.

Following the standard procedure applied in the previous section, the vari-
ational formulation corresponding to (2.2.1) reads: find u(t, ·) ∈ H1

0 (D) with
u(0, ·) = u0, such that for all v ∈ H1

0 (D), it holds

(u̇, v) + a(u, v) = (f, v). (2.2.2)

We proceed by stating some important characteristics of the solution to (2.2.2).
At first, we recall Duhamel’s principle (see, e.g., [64, Chapter 1]), stating that the
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solution to (2.2.2) is given by

u(t) = E(t)u0 +

∫ t

0

E(t− s)f(s) ds,

where E(t) is the solution operator to the homogeneous case, i.e., when f ≡ 0.
The operator E(t) can also be seen as the semigroup generated by the diffusion
operator −∇ · A∇, and is commonly used in a priori analysis for parabolic
equations. In particular, Duhamel’s principle and properties of the solution
operator E(t) are both central in the error analysis presented in Paper IV.

For evolution equations, the total energy of the solution is bounded by the
source and initial data. More precisely, by Duhamel’s principle and the stability
of E(t) in L2(D)-norm (see, e.g., [42, 64]), it follows immediately that

∥u(t)∥ ≤ ∥u0∥+
∫ t

0

∥f(s)∥ ds.

We note that in the homogeneous case, the total energy of the system is bounded
by the size of the initial value. In fact, if we let λ1 be the first eigenvalue of the
diffusion operator −∇ ·A∇, one can further show that the solution u satisfies
the exponential decay

∥u(t)∥ ≤ e−λ1t∥u0∥, t ≥ 0, (2.2.3)

in the absence of a source function. This exponential decay is a natural property
for parabolic problems. In both Paper I and Paper II, the decay property is
exploited in order to improve the computational efficiency of the corresponding
presented numerical methods.

We continue by deriving the finite element method for (2.2.2). In similarity to
the previous section, we replace the solution space H1

0 (D) by the finite element
space Vh. This yields a spatially discretized version of (2.2.2), referred to as the
semi-discrete Galerkin method. It reads: find uh(t) ∈ Vh such that

(u̇h, v) + a(uh, v) = (f, v), (2.2.4)

for all v ∈ Vh with initial value uh(0) = u0,h, where u0,h ∈ Vh is some conve-
nient approximation of u0, e.g., the L2(D)-projection onto Vh.

In contrast to the stationary equations, evolution problems are moreover de-
fined on the temporal domain [0, T ], for which we require further discretization.
For this purpose, let 0 =: t0 < t1 < . . . < tN := T be a uniform partition with
time step τ = tn − tn−1. Here, we have chosen a uniform time step to simplify
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the presentation, but remark that the results are easily extended to the case
of varying time step. Now, let unh = uh(tn), and denote by ∂̄t the (backwards)
discrete time derivative defined as ∂̄tunh = (unh − un−1

h )/τ . The backward Euler–
Galerkin scheme becomes: find unh ∈ Vh for n = 1, . . . , N , with initial value
u0h = u0,h, such that

(∂̄tu
n
h, v) + a(unh, v) = (fn, v), (2.2.5)

holds for all v ∈ Vh.

From standard a priori analysis, it is well-known that the scheme (2.2.5) con-
verges in L2(D)-norm with second order in space, and first order in time (see,
e.g., [42, Theorem 10.5]). However, in analogy with Section 2.1, the constant in
the error bound depends on the scale ε on which the diffusion A varies. More
precisely, the error estimate becomes

∥unh − u(tn)∥ ≤ C(τ + h2/ε).

That is, the sought convergence rate (in spatial sense) is not reached unless the
mesh size satisfies h < ε. In Chapter 3, we discuss how to circumvent this issue
by introducing multiscale approximation techniques.

Remark 2.2.1 (Choice of temporal scheme). In (2.2.5), the temporal scheme
is represented by the backward Euler scheme. This choice is well-suited for
parabolic equations, as it is unconditionally stable, i.e., it attains stable solutions
regardless of the relation between mesh size h and time step τ . Another
possibility is to apply a symmetric scheme to (2.2.4) known as the Crank–
Nicolson scheme. Like backward Euler, Crank–Nicolson is an unconditionally
stable time stepping scheme, but attains second order convergence rate in time
due to its symmetry. In Paper I and Paper IV, the temporal discretizations are
based on backward Euler, while Crank–Nicolson is applied in Paper II.

Wave equation

Consider the linear wave equation

ü−∇ · (A∇u) = f, in D × (0, T ],

u = 0, on ∂D × (0, T ],

u(0) = u0, u̇(0) = v0, in D,
(2.2.6)

where D,A, f, u0 are defined as in the parabolic equation (2.2.1), and v0 is an
additional initial value. Our goal is to derive characteristics of the solution
to (2.2.6), and mention important differences from the previously considered



10 The finite element method

parabolic case.

Straight-forwardly, we have the semi-discrete Galerkin formulation to find
uh(t) ∈ Vh such that

(üh, v) + a(uh, v) = (f, v), (2.2.7)

holds for all v ∈ Vh, where the initial values uh(0) = u0,h and u̇(0) = v0,h
are suitable approximations of u0, v0. An important property for the linear
wave equation is its conservation of energy. Indeed, we have the following
well-known result (see, e.g., [42, Lemma 13.1]).

Proposition 2.2.2 (Energy conservation). Let uh be the solution to (2.2.7) with
f ≡ 0. Then

∥u̇h(t)∥2 + |||uh(t)|||2 = ∥v0,h∥2 + |||u0,h|||2, t ≥ 0. (2.2.8)

The result states that (in the absence of external source) the total energy at time
t remains the same as the initial energy. Note that this strictly differs from
the parabolic case, in which the energy decays exponentially with time in the
absence of source function f . We remark that the energy conservation is of
importance when considering the choice of temporal discretization scheme for
the wave equation. This is mainly due to some schemes, such as the backward
Euler, causes so-called artificial numerical damping, and consequently yields
inaccurate approximations for systems where the energy is conserved. For
more details on the effect of artificial damping, we refer to the work in [10, 11].

For the temporal discretization of the wave equation, we deploy the scheme
used in [42, Chapter 13]. That is, we seek unh ∈ Vh for n = 2, . . . , N , with initial
values u0h, u

1
h ∈ Vh, such that

(∂t∂̄tu
n
h, v) + a( 12 (u

n+1/2
h + u

n−1/2
h ), v) = (fn, v), (2.2.9)

for all v ∈ Vh, where ∂t and ∂̄t denote the discrete forward and backward
derivatives, respectively, and u

n+1/2
h = (un+1

h + unh)/2. For this scheme, an
analogous version of the stability estimate (2.2.8) is derived in [42, Lemma
13.2]. More precisely, when fn = 0, it holds that

∥∂tunh∥2 + |||un+1/2
h |||

2
= ∥∂tu0h∥2 + |||u1/2h |||

2
, n ≥ 0.

Following the standard a priori analysis for wave equations (see, e.g., [42,
Theorem 13.2]), it holds that the approximation from (2.2.9) converges with
optimal order in space, i.e., linearly in H1

0 (D)-norm and quadratically in L2(D).
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Moreover, by the symmetrical scheme made in time, we get second order
convergence in time as well. To be exact, the error satisfies

∥un+1/2
h − u(tn + τ/2)∥ ≤ C(τ2 + h2/ε),

|||un+1/2
h − u(tn + τ/2)||| ≤ C(τ2 + h/ε).

Once again, we have included the effect of ε, the scale at which the diffusion A
oscillates, to emphasize the drawback of the standard finite element method in
multiscale applications.

Strongly damped wave equation

We conclude the part on evolution problems by introducing the so-called
strongly damped wave equation, which is central in Paper I. Consider the equation

ü−∇ · (A∇u̇+B∇u) = f, in D × (0, T ],

u = 0, on ∂D × (0, T ],

u(0) = u0, u̇(0) = v0, in D.
(2.2.10)

Here, D,A, f, u0, v0 are defined as for the standard wave equation, and B =
B(x) is another (possibly rapidly oscillating) coefficient independent of time.
For the system (2.2.10), the coefficients A and B represents the damping and
wave propagation of the solution, respectively. Note that the main difference
between the standard wave equation and its strongly damped counterpart
is the damping term −∇ · A∇u̇. Consequently, the system (2.2.10) is not en-
ergy conserving. Instead, as the authors in [43] show, the solution satisfies a
parabolic decay in similarity to that of (2.2.3).

By standard procedure, the backward Euler FEM for (2.2.10) becomes: find
unh ∈ Vh for n = 2, . . . , N , with initial values u0h, u

1
h ∈ Vh, such that

(∂̄t∂̄tu
n
h, v) + a(∂̄tu

n
h, v) + b(unh, v) = (fn, v), (2.2.11)

holds for all v ∈ Vh, where b(·, ·) := (B∇·,∇·). Here, the temporal scheme
corresponds to the backward Euler discretization, which can be seen by substi-
tuting wn

h = ∂̄tu
n
h and writing (2.2.11) as a system of first order equations. The

error satisfies the estimate

∥unh − u(tn)∥ ≤ C(τ + h2/min{εA, εB}).

Here, we have denoted by εA and εB the scales at which the damping A and
the wave propagation B vary at, respectively. For the strongly damped wave
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equation, we therefore require an approach which takes the oscillations of two
different multiscale coefficients into account. This topic is dealt with in Paper I.

2.3 Stochastic PDEs

We conclude the chapter by demonstrating how the finite element method
can be applied to stochastic partial differential equations (SPDEs). As model
problem, we will consider a parabolic equation similar to (2.2.1), where the
right-hand side data is driven by noise. Due to the randomness, the solution is
generally characterized by its moments, rather than considering one distinct
realization of the equation. First, we introduce the necessary preliminaries and
notation for the stochastic setting. Then, we derive the fully discretized finite
element method for the SPDE. Finally, we discuss Monte-Carlo simulations,
applied to approximate the expectation of (some function of) the solution.

Notation and preliminaries

Prior to introducing the SPDE used as model problem, we require some basic
preliminaries and notations. For further details on each concept, the reader
is referred to the introductory chapter in [15]. Let Ω be a non-empty set, F a
σ-algebra on Ω, P : F → [0, 1] a probability measure, and {Ft}t≥0 a filtration.
The quadruple (Ω,F ,P, {Ft}t≥0) is a called a filtered probability space.

Let L(U ;V ) denote the space of linear bounded operators between two separa-
ble Hilbert spaces U and V , with the short-hand notation L(V ) := L(V ;V ) in
the case U = V . Furthermore, denote by L+

N (U) the space of all non-negative,
symmetric, nuclear operators on U . We assume W to be a Q-Wiener process
with covariance operator Q ∈ L+

N (U). For details on covariance operators,
we refer to [15, Chapter 2]. The covariance operator Q ∈ L+

N (U) satisfies the
Hilbert–Schmidt theorem (see, e.g., [61, Theorem VI.16]), i.e., there is an or-
thonormal basis {ei}∞i=1 of U such that Qei = λiei, where λi → 0 as i → ∞.
Consequently, the process W can be expressed (see [15, Proposition 4.3]) by its
Karhunen–Loève expansion

W (t) =

∞∑
i=1

√
λiβi(t)ei, (2.3.1)

where {βi(t)}∞i=1 are mutually independent, real-valued Brownian motions.
We are now well-equipped to introduce the model problem.
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Parabolic SPDE

We consider the parabolic SPDE

dX + ΛX dt = GdW, in D × (0, T ], (2.3.2)
X = 0, on ∂D × (0, T ],

X(0) = X0, in D.

where the solution X is a V -valued random process for some Hilbert space
V . The diffusion operator Λ := −∇ · A∇ and the domain D are defined as
in Section 2.1 and X0 is the (possibly stochastic) initial value. The noise W
is an U -valued Q-Wiener process defined on the filtered probability space
(Ω,F ,P, {Ft}t≥0), and G ∈ L(U ;V ) is an operator that maps the noise between
the Hilbert spaces U and V .

Let E be the semigroup from Section 2.2. In line with Duhamel’s principle for
standard parabolic equations, the so-called mild solution to (2.3.2) is given by
(see [15, Chapter 7])

X(t) = E(t)X0 +

∫ t

0

E(t− s)GdW (s), (2.3.3)

where the stochastic integral is defined in the sense of Itô. In the finite element
analysis of SPDEs (see, e.g., [67]), the error of the mild solution is in focus,
instead of the weak solution. However, in [58], it is shown that under certain
assumptions the weak and mild solution are equivalent. We quickly mention
that in Paper IV, where the SPDE (2.3.2) is in focus, such assumptions hold.

For the spatial discretization of 2.3.2, let Vh be defined as in prior sections. The
semi-discrete Galerkin method states: find Xh(t) ∈ Vh such that

dXh + ΛhXh dt = PhGdW, (2.3.4)

with initial value X0
h = PhX0. Here, Λh : Vh → Vh is the discrete version of the

operator Λ, defined by the relation

(Λhv, w) = a(v, w),

for all v, w ∈ Vh, and Ph : L2(D) → Vh denotes the standard L2(D)-projection
onto Vh, i.e., for any function v ∈ V , Phv ∈ Vh satisfies

(Phv, w) = (v, w), (2.3.5)

for every w ∈ Vh.
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Let the temporal domain [0, T ] be discretized as in Section 2.2, and denote
Xn

h := Xh(tn). The backward Euler–Galerkin scheme of (2.3.4) is defined as

Xn
h −Xn−1

h + τΛhX
n
h =

∫ tn

tn−1

PhGdW (s). (2.3.6)

Alternatively, define Eτ,h := (I + τΛh)
−1, and (2.3.6) can be written as

Xn
h = Eτ,hX

n−1
h +

∫ tn

tn−1

Eτ,hPhGdW (s). (2.3.7)

By further iterating this expression, we yield a discrete version of (2.3.3), i.e.,

Xn
h = En

τ,hPhX0 +

n∑
j=1

∫ tj

tj−1

En−j+1
τ,h PhGdW (s).

If sufficient regularity is assumed on the initial value X0 and the covariance
operator Q, it holds that the finite element approximation Xn

h from (2.3.7)
converges to the exact solution of (2.3.2) quadratically in space and linearly in
time. In fact, by following the proof of [38, Theorem 3.14] and adjusting the
calculations to our model problem, it is shown that the strong error satisfies
the bound

∥Xn
h −X(tn)∥L2(Ω;L2(D)) ≤ C(kµ/2 + hµ/ε), (2.3.8)

where µ ∈ [1, 2] depends on the regularity of X0 and Q. The norm used for
the strong error is defined as ∥ · ∥L2(Ω;L2(D)) := (E[∥ · ∥2])1/2, where E denotes
the standard expectation. In (2.3.8), we once again note that the finite element
method requires a mesh size h < ε to compute accurate approximations. In
Paper IV, we introduce a method for which we derive an a priori result in
similarity to (2.3.8), but independent of the scale ε.

Monte-Carlo simulation

In the previous section, we presented the error estimate in a strong sense, i.e.,
measured in mean-square. However, in many cases it is preferable to analyze
the expectation of the solution, or more generally some function of the solution.
For this purpose, let g : L2(D) → B be a Lipschitz continuous function with
values in a separable Hilbert space B. In this section, we focus on the error
between E[g(X(tn))] and its finite element approximation E[g(Xn

h )], referred
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to as the weak error, given by

∥E[g(X(tn))]− E[g(Xn
h )]∥B.

To measure this error, we are thus required to compute the expectation of the
finite element approximation. However, since the solution Xn

h depends on
the realization of the noise W , it is not obvious how the expectation behaves
from one single simulation. Instead, an approximation of the expectation
is computed by averaging over a large number of random samples, known
as Monte-Carlo simulation. The expectation E[g(Xn

h )] is approximated by its
Monte-Carlo estimator EM [g(Xn

h )] as

E[g(Xn
h )] ≈ EM [g(Xn

h )] :=
1

M

M∑
m=1

g(Xn,m
h ), (2.3.9)

where {Xn,m
h }Mm=1 are independent and identically distributed random vari-

ables with the same distribution as Xn
h .

The total weak error is now given by comparing E[g(X(tn))] with the Monte-
Carlo estimator EM [g(Xn

h )]. We note that the error can be decomposed as

∥E[g(X(tn))]− EM [g(Xn
h )]∥L2(Ω;B)

≤ ∥E[g(X(tn))]− E[g(Xn
h )]∥B + ∥E[g(Xn

h )]− EM [g(Xn
h )]∥L2(Ω;B).

That is, one part that depends on the discretization error from the finite element
scheme, and a second part, which is the statistical error from the Monte-Carlo
estimation. For the discretization part, it follows that the weak error is bounded
by the strong error, since

∥E[g(X(tn))]− E[g(Xn
h )]∥2B ≤ E[∥g(X(tn))− g(Xn

h )∥2B]
≤ L2

gE[∥X(tn)−Xn
h ∥2]

= L2
g∥X(tn)−Xn

h ∥2L2(Ω;L2)

≤ C(τ + h2/ε),

(2.3.10)

where we first used Jensen’s inequality, followed by the fact that g is Lipschitz
continuous with constant Lg, and finally used the strong convergence bound
from (2.3.8).

Remark 2.3.1. In (2.3.10) we used the strong convergence bound with µ = 2,
i.e., in the case of sufficient regularity on X0 and Q, which corresponds to
the optimal rate for piecewise linear polynomials. This choice was done to
simplify the presentation of the weak error estimate. However, it is a well-
established fact that the discretization error for SPDEs generally achieves twice
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the order of weak convergence in comparison to the corresponding order of
strong convergence (see, e.g., [9, 39, 37]). That is, the weak error generally
achieves optimal order convergence in the case of lower regularity as well, i.e.,
when µ ∈ [1, 2).

The statistical error from the Monte-Carlo estimation depends on the variance
in the solution Xn

h , as well as the number of samples M . Indeed, for the error,
we note that

∥E[g(Xn
h )]− EM [g(Xn

h )]∥2L2(Ω;B)

= E[∥E[Xn
h ]− EM [Xn

h ]∥2B]

= E
[∥∥∥ 1

M

M∑
m=1

(E[g(Xn
h )]− g(Xn,m

h ))
∥∥∥2
B

]

=
1

M2

M∑
m=1

E[∥E[g(Xn
h )]− g(Xn,m

h )]∥2B]

=
1

M
E[∥E[g(Xn

h )]− g(Xn
h )]∥2B]

=
Var{g(Xn

h )}
M

,

(2.3.11)

where, since E[E[g(Xn
h )]− g(Xn,m

h )] = 0 and {Xn,m
h }Mm=1 are all independent,

the mixed term vanishes in the third equality.

In total, combining the discretization error bounded by (2.3.10) with the statis-
tical error (2.3.11), the weak error satisfies the error estimate

∥E[g(X(tn))]− EM [g(Xn
h )]∥L2(Ω;B) ≤ C

(
τ + h2/ε+

1√
M

)
. (2.3.12)

At this point, we notice that in order to maintain the convergence rate, the num-
ber of Monte-Carlo simulations M needs to be proportional to the mesh size h
as M ∼ h−4. However, recall that the scale ε adds the additional requirement
that h < ε for the convergence rate to be valid. In principle, this does not nec-
essarily put an extra requirement on the number of Monte-Carlo simulations,
but we remark that each simulation Xn,m

h requires ε-dependent computations.
That is, when multiscale features appear in SPDEs, the computational effort
is even more negatively affected than the deterministic setting. In Paper IV, a
multiscale method for SPDEs is used that circumvents the requirement h < ε,
and consequently improves the computational efficiency significantly.
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Multilevel Monte-Carlo

As previously stated, the Monte-Carlo estimator requires the number of sam-
ples to be to proportional to the mesh size as M ∼ h−4, where each sample
is computed on the grid Th. An alternative approach is to consider the mul-
tilevel Monte-Carlo estimator, which reduces the computational complexity by
allocating a large proportion of the samples to the coarser levels. In this way,
the coarser grids can be used to cheaply compute the majority of the samples,
which reduces the statistical error, while the finer levels are used to improve
the deterministic accuracy.

The idea of the multilevel Monte-Carlo estimator for stochastic differential
equations was first presented in [21], and is based on writing the expectation as
a telescopic sum over the nested discretization levels. For this purpose, let hj
denote the mesh size corresponding to the discretization Thj . Then, we write

E[g(Xn
hJ

)] = E[g(Xn
h0
)] +

J∑
j=1

E[g(Xn
hj
)− g(Xn

hj−1
)].

In this way, we can estimate each term by a Monte-Carlo estimator with differ-
ent sample size depending on the grid level. That is, the multilevel Monte-Carlo
estimator is given by

EJ [g(Xn
hJ

)] := EM0
[g(Xn

h0
)] +

J∑
j=1

EMj
[g(Xn

hj
)− g(Xn

hj−1
)]

=
1

M0

M0∑
m=1

g(Xn,m
h0

) +

J∑
j=1

1

Mj

Mj∑
m=1

g(Xn,m
hj

)− g(Xn,m
hj−1

).

(2.3.13)

where Mj denotes the number of samples used on the discretization level Thj

and EMj
[·] is defined as in (2.3.9).

The advantage of the multilevel approach is that we can choose {Mj}Jj=0 such
that the majority of the samples are allocated to the coarser levels, while the
weak convergence rate from the Monte-Carlo estimator is maintained. Indeed,
if we repeat the calculations in [8, Corollary 3.8], it is shown that the multilevel
estimator satisfies

∥E[g(X(tn))]− EJ [g(Xn
hJ

)]∥L2(Ω;B) ≤ C
(
τ +

h2J
ε

+
1√
M0

+
1

ε

J∑
j=1

h2j√
Mj

)
.
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We want to choose the number of samples {Mj}Jj=0 such that the convergence
rate from (2.3.12) is retrieved. For instance, one choice that works is to set
M0 = γh−4

J , where γ is some proportionality constant, and Mj = M0h
4
j · 22δj

for some δ > 0. Then, the final sum satisfies

J∑
j=1

h2j√
Mj

=

J∑
j=1

1√
M0 · 22δj

=
1√
M0

J∑
j=1

2−δj ≤ γ−1/2h2J
1

2δ − 1
,

where the final inequality bounds the geometric sum by its limit as J → ∞. We
remark that a large δ implies a better constant in the error estimate, but yields
a slower decay in the number of samples {Mj}Jj=0, and vice-versa for a small δ.
In this way, the parameter δ controls the trade-off between the constant in the
error estimate and the computational complexity of the method.

While the multilevel Monte-Carlo estimator reduces the overall complexity, it
still holds that the high variations in the diffusion brings the scale ε into the
estimate, such that the requirement hJ < ε must hold for the convergence rate
to be valid. In Paper IV, the multilevel estimator is combined with a multiscale
approach that removes this requirement, which results in an efficient method
that instantly achieves the sought convergence rate.

We have so far considered several different equations of both stationary, evo-
lution and stochastic type, and discussed the main results from their corre-
sponding well-established finite element methods. As repeatedly pointed out,
in neither case, the spatial convergence satisfies optimal rate unless the mesh
size is sufficiently refined. In subsequent chapter, we introduce the multiscale
method known as the localized orthogonal decomposition method, developed
to circumvent the difficulty of varying data.



3 Localized orthogonal decom-
position (LOD)

For the purpose of solving PDEs with rapidly varying data, several multiscale
methods have been developed. In this thesis the focus lies on the localized
orthogonal decomposition (LOD) method, first introduced in [51]. Widely
speaking, the LOD method is based on a decomposition of the solution space
into a coarse and a fine part. The fine part is assumed to be refined enough to
be able to resolve the variations in the data, while the coarse part is used for
the main (cheap) computations. In short, the goal is to enrich the coarse-scale
space by problem-dependent data computed on the fine scale. This yields a
coarse-scale modification of the original problem that efficiently approximate
solutions with accuracy independent of the data variations.

This chapter is divided into two parts. Firstly, we derive and illustrate the
performance of the LOD method in the elliptic setting, and compare it to the
finite element method presented in Section 2.1. Moreover, we demonstrate
how the LOD technique is applied to general matrix systems. Secondly, we
extend the LOD framework to the time-dependent setting, and discuss its
computational benefits.

3.1 LOD in the elliptic setting

We begin by introducing the method corresponding to the elliptic case, using
the equation defined in (2.1.1) as model problem. At first, we derive the method
in its ideal case. However, there are computational difficulties arising in this
method due to the resulting matrix systems not being sparse, but dense. For
this purpose, a localized version that is computationally feasible is presented.
We continue by revisiting the numerical example from Section 2.1. Finally, we

19
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consider general matrix systems of the form (2.1.4) and show how the LOD
method can be applied to efficiently approximate solutions to such equations.

3.1.1 Ideal method

At first, assume the mesh size h to be fixed and sufficiently small, i.e., h < ε,
so that the FE-space Vh can approximate the solution accurately. We define
the space VH similarly to Vh but with a larger mesh size H > h. Moreover, let
N denote the set of interior nodes of TH , and {λx}x∈N be the set of standard
piecewise linear basis functions such that

VH = span({λx}x∈N ).

Recall that computing a solution in VH is cheap, but inaccurate as described
in Section 2.1. The goal of LOD is to incorporate the finescale behavior of the
diffusion into VH to define a new so-called multiscale space Vms, which has the
property that dim(Vms) = dim(VH), so that the computations are cheap, but
with an error bound independent of ε.

For the construction of the multiscale space we require an interpolant IH :
Vh → VH with the projection property IH ◦ IH = IH that for all T ∈ TH and
any function v ∈ Vh satisfies

H−1
T ∥v − IHv∥L2(T ) + ∥∇IHv∥L2(T ) ≤ CI∥∇v∥L2(N(T )), (3.1.1)

whereN(T ) := {T ′ ∈ TH : T ′∩T ̸= ∅} andHT := diam(T ). Furthermore, for a
shape-regular and quasi-uniform partition, the estimate (3.1.1) can be summed
into the global estimate

H−1∥v − IHv∥+ ∥∇IHv∥ ≤ Cγ∥∇v∥, (3.1.2)

where Cγ depends on the interpolation constant CI and the shape regularity
parameter defined as

γ := max
T∈TH

γT , where γT :=
diam(BT )

HT
.

Here BT denotes the largest ball inside of T . There are several choices of
interpolants that can be used for the construction. A commonly used example,
used for the numerical examples in Papers I, II and IV, is IH = EH ◦ΠH , where
ΠH is the piecewise L2-projection onto P1(TH), the space of affine functions on
each triangle T ∈ TH , and EH : P1(TH) → VH is an averaging operator that, to
each free node x ∈ N , assigns the arithmetic mean of corresponding function
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values on intersecting elements, i.e.,

(EH(v))(x) =
1

card{T ∈ TH : x ∈ T}
∑

T∈TH : x∈T

v
∣∣
T
(x).

For a more detailed discussion regarding possible choices of the interpolant,
see, e.g., [19] or [59].

For any function v ∈ H1
0 , IHv describes the coarse part of the solution in the

space VH . The remainder part (1− IH)v contains fine-scale features of v that
are not captured by the coarse space. These fine-scale functions configure the
so-called fine-scale space, defined by the kernel of the interpolant, i.e.,

Vf := ker(IH) = {v ∈ Vh : IHv = 0}.

That is, Vf consists of the fine-scale features of the solution which the finite
elment space is unable to capture. Consequently, this leads to the solution
space being decomposed as

Vh = VH ⊕ Vf ,

so that every function v ∈ Vh can be uniquely written as v = vH + vf where
vH ∈ VH and vf ∈ Vf .

The LOD method is characterized by correcting coarse functions by an appro-
priate projection into Vf . Thus, let Qf : Vh → Vf be the Ritz-projection onto Vf ,
i.e., Qfv ∈ Vf satisfies the relation

a(Qfv, w) = a(v, w),

for all w ∈ Vf . Using this Ritz-projection we create our multiscale space as

Vms := VH −QfVH .

Note that for all vms ∈ Vms and vf ∈ Vf it holds that

a(vms, vf) = a(vH −QfvH , vf) = a(vH , vf)− a(QfvH , vf) = 0.

Hence, the Ritz-projection Qf yields an orthogonal splitting with respect to the
bilinear form a(·, ·) as

Vh = Vms ⊕ Vf .

Since Vms is the orthogonal complement to Vf it holds that dim(Vms) =
dim(VH), but unlike VH it moreover contains fine-scale features of the dif-
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(a) ϕx. (b) λx − ϕx.

Figure 3.1: The basis correction ϕx (left) and corresponding modified basis function
λx − ϕx (right) for a coarse node x ∈ N positioned at (0.375, 0.500) in the unit square.

fusion due to the Ritz-projection.

For the construction of the multiscale space, we want to compute the projection
for a fixed set of functions. Hence, we use the Ritz-projection to define the basis
corrector ϕx := Qfλx ∈ Vf for each coarse node x ∈ N as the solution to the
(global) corrector problem

a(ϕx, w) = a(λx, w), (3.1.3)

for all w ∈ Vf . The basis for Vms is then given by {λx − ϕx}x∈N , which can be
viewed as a modified basis that incorporates fine-scale features of the diffusion
coefficient. An example of a computed basis corrector ϕx and its corresponding
modified basis function λx − ϕx is illustrated in Figure 3.1.

Given the multiscale space, the ideal LOD method reads: find ums ∈ Vms such
that

a(ums, v) = (f, v), (3.1.4)

holds for all v ∈ Vms. In [51], the following theorem on an a priori error bound
is derived for the method.

Theorem 3.1.1. Let uh be the solution to (2.1.3) and ums the solution to (3.1.4). Then
the error is bounded by

∥ums − uh∥H1 ≤ CH∥f∥,

where C is independent of the variations in A, but depends on the upper and lower
bound of A.



3.1. LOD in the elliptic setting 23

Proof. Let e := ums − uh and note that e ∈ Vf due to the orthogonal splitting.
Hence it holds that IHe = 0. Moreover, recall the Galerkin orthogonality
a(e, vms) = 0 for vms ∈ Vms. We get

a(e, e) = −a(uh, e) = −(f, e) ≤ ∥f∥∥e∥ = ∥f∥∥e− IHe∥ ≤ CH∥f∥∥e∥H1 ,

where the final inequality follows from the interpolation estimate (3.1.2). The
desired estimate now follows from the equivalence of norms between the
H1-norm and the norm induced by a(·, ·).

The theorem states that the ideal LOD method achieves convergence of opti-
mal order, but unlike the standard FEM, with a constant independent of the
variations in A. Although the method seems promising, it is in its current state
based on the global projection (3.1.3) onto the fine-scale space Vf . That is, it
is as expensive to solve for one basis corrector as solving the finite element
problem (2.1.3) on the fine scale. Moreover, by definition, each basis corrector
ϕx has a global support which consequently makes the linear system corre-
sponding to (3.1.4) dense. To circumvent these issues, we wish to localize the
computations onto coarse patches in order to obtain a sparse matrix system.
This act of localization is justified by the fact that each basis correction ϕx
decays exponentially fast away from its corresponding node x ∈ N , as proven
in [51].

3.1.2 Localized method

To localize the corrector problem, we begin by defining the patches to which
the support of each basis function is to be restricted. For ω ⊂ D, let N(ω) :=
{T ∈ TH : T ∩ ω ̸= ∅}, and define a patch Nk(ω) of size k as

N1(ω) := N(ω),

Nk(ω) := N(Nk−1(ω)), for k ≥ 2.

Given a coarse grid patch, we may restrict the finescale space Vf to it by defining

V ω
f,k := {v ∈ Vf : supp(v) ⊆ Nk(ω)}.

In particular, we will commonly use ω = T ∈ TH and ω = x ∈ N as subdo-
mains. An example of how the patches spread across the grid with increasing
k is illustrated in Figure 3.2.

We aim to localize the computation and support of the basis corrector ϕx by
utilizing the newly defined coarse patches. For this purpose, define the element
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N2(T )

N(T )

T ∈ TH

TH

Figure 3.2: Illustration of patches based on an element T ∈ TH .

restricted Ritz-projection QT
f such that QT

f v ∈ Vf is the solution to the system

a(QT
f v, w) =

∫
T

A∇v · ∇w dx,

for all w ∈ Vf . Note here that if we sum over all elements T ∈ TH we get

a
(∑

T

QT
f v, w

)
=
∑
T

a(QT
f v, w) =

∑
T

∫
T

A∇v · ∇w dx = a(v, w),

for any function w ∈ Vf . That is, the global Ritz-projection is constructed by
the summation

Qfv =
∑

T∈TH

QT
f v.

For k ∈ N, we may restrict the projection to a patch by letting QT
f,k : VH → V T

f,k

be such that QT
f,kv ∈ V T

f,k solves

a(QT
f,kv, w) =

∫
T

A∇v · ∇w dx,

for all w ∈ V T
f,k. By summation this yields the corresponding global version as

Qf,kv =
∑

T∈TH

QT
f,kv.

Finally, we may construct a localized multiscale space as Vms,k := VH −Qf,kVH ,
spanned by {λx −Qf,kλx}x∈N .

We replace the multiscale space Vms by its localized version Vms,k and obtain
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the localized LOD method that reads: find ums,k ∈ Vms,k such that

a(ums,k, v) = (f, v), (3.1.5)

holds for all v ∈ Vms,k. For a given element T ∈ TH , the dimension of V T
f,k is

significantly smaller than that of Vf . Hence, the problem of finding Qf,kλx is
computationally cheaper than finding Qfλx. Moreover, due to the restricted
support of the basis correctors, the resulting linear system is also sparse (where
the sparsity is determined by the size of the corresponding grid patches). An-
other computational benefit is that the corrector problems are all independent
and can be solved in parallel.

In [26], the following theorem is proved for the error bound.

Theorem 3.1.2. Let uh be the solution to (2.1.3) and ums,k the solution to (3.1.5).
Then there exists ξ ∈ (0, 1) such that

∥ums,k − uh∥H1 ≤ C(H + kd/2ξk)∥f∥,

where C is independent of the variations in A, but depends on the upper and lower
bound of A.

The convergence is thus dependent on the choice of k. To achieve linear
convergence for the method, k should be chosen proportional to log(1/H).

3.1.3 Numerical example

To demonstrate the performance of the LOD method we revisit the example
from Section 2.1. Once again the domain is set to the unit square, and the same
coefficient as defined in (2.1.5) is used, where the scale at which the values
vary is set to ε = 2−6. The fine mesh is once again set to h = 2−8 so that it
resolves the fine variations of the coefficient. We compute the localized solution
ums,k, where k = log2(1/H), for H = 2−2, . . . , 2−6 and plot the energy error
|||ums,k − uref ||| where the reference solution uref is obtained using the finite
element method on the fine mesh. For comparison, we also plot the error of
the finite element solution based on the same mesh sizes. The error plot can be
seen in Figure 3.3 and shows how the FEM-error remains on a constant level
throughout all mesh sizes, while the LOD-error instantly decays according to
the established theory.
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Figure 3.3: The energy error |||ums,k − uref ||| (blue) for different coarse mesh sizes H .
For comparison, the FEM-error |||uH − uref ||| (orange) is also plotted. The dashed line is
an O(H)-reference line.

3.1.4 Discrete setting

We conclude the section on stationary problems by illustrating how the LOD
method can be extended to general discrete systems characterized by a sym-
metric, positive definite matrix K. The matrix K can for instance represent,
but is not limited to, a finite difference stencil or the graph Laplacian. This
particular extension of the LOD method was first introduced in [35], and was
further justified theoretically in [17]. As model problem, we consider a weak
formulation of the system (2.1.4). That is, we seek u ∈ V such that for all v ∈ V
it holds

(Ku, v) = (f, v). (3.1.6)

Here, V is a discrete solution space, e.g., some subset of Rn with some Dirichlet
nodes fixed where the solution is equal to zero, f the right-hand side data, and
(·, ·) the Euclidean scalar product.

Whenever the matrixK contains high variations in its data, the system becomes
ill-conditioned and only direct solvers are applicable. As this becomes highly
inefficient as the system grows larger, we apply the LOD method to efficiently
find an approximate solution to (3.1.6). In similarity to the continuous LOD
setting, we introduce an interpolation matrix I : V → V . For now, we mention
that the matrix could, for instance, represent a discrete version of the Clément-
type interpolant. In Section 4.3, the construction and main properties of I are
discussed in more detail.



3.2. LOD for time-dependent problems 27

With the interpolant I , we are able to capture the coarse behavior of any
function in V . The remaining part is recovered in the fine-scale space W :=
ker(I) ⊂ V . In this way, we define the multiscale space Vms as the functions in
V that are orthogonal to W with respect to the matrix K, i.e.,

Vms := {v ∈ V : (Kv,w) = 0, ∀w ∈W}.

Similarly to the continuous LOD setting, the computation of Vms is based on
a corrector-type problem as in that of (3.1.3), but with respect to the scalar
product (K·, ·). In [17], the authors show that under the right assumptions, the
correctors can be computed on local patches without losing essential informa-
tion. Thus, by applying a localization procedure similar to that of the standard
LOD method, one yields the localized space Vms,k. We arrive at the method to
find ums,k ∈ Vms,k such that

(Kums,k, v) = (f, v), (3.1.7)

holds for all v ∈ Vms,k. With this method, we are able to efficiently compute
accurate approximations to (3.1.6) independent of potential data variations in
K. Indeed, in [17, Theorem 4.8], an a priori error estimate analogous to that
of Theorem 3.1.1 is derived for the method (3.1.7). In Section 4.3, we discuss
the discrete LOD method in detail and demonstrate how it is applicable to
time-dependent settings. This extension to time-dependent matrix equations,
with particular focus on the application to fiber networks, is the central topic
of Paper III.

3.2 LOD for time-dependent problems

In this section, we discuss the LOD method in the time-dependent setting. In
particular, we seek to highlight the additional computational efficiency that
is gained in contrast to the stationary cases. For this purpose, we revisit the
parabolic equation (2.2.1) as model problem. Similarly to the elliptic case, the
LOD method follows by replacing the finite element space Vh by the localized
multiscale space Vms,k. This yields the LOD method: find unms,k ∈ Vms,k for
n ≥ 1, with initial value u0ms,k ∈ Vms,k, such that

(∂̄tu
n
ms,k, v) + a(unms,k) = (fn, v), (3.2.1)

holds for all v ∈ Vms,k. The LOD method for parabolic equations (and its semi-
linear counterpart) have been studied in detail in [50]. In particular, the authors
derive the following bound for the error between the LOD approximation and
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the standard finite element approximation computed on the fine scale.

Theorem 3.2.1. Let unms,k ∈ Vms,k be the solution to (3.2.1), and unh ∈ Vh the solution
to (2.2.5). Then, there exists ξ ∈ (0, 1) such that the error satisfies

∥unms,k − unh∥ ≤ C(H + kd/2ξk)2,

where C is independent of the variations in the diffusion A, but depends on, e.g., the
contrast in A.

Note that Theorem 3.2.1 implicitly yields optimal convergence between the
LOD approximation and the analytical solution, since

∥unms,k − unh∥ ≤ ∥unms,k − u(tn)∥+ ∥u(tn)− unh∥,

where the bound on the second term follows by standard finite element theory.

We have illustrated how the multiscale space Vms,k is used to achieve optimal
order convergence independently of the variations in the diffusion, for both
elliptic and parabolic equations. From a computational point of view, we
remark that the computation of Vms,k is not cheap, as it involves solving several
corrector problems on the fine scale. However, as previously emphasized,
the corrector problems are all independent, and can therefore be solved in
parallel, reducing the computational effort. Moreover, the LOD method gains
an additional advantage in the time-dependent setting, since it is sufficient
to compute Vms,k once, and then re-use it in each time step. This property
is also taken advantage of when applying LOD to the linear wave equation,
which has been thoroughly studied in [2]. In Paper IV, where a stochastic PDE
is considered, the re-usability is of even further interest, as the Monte-Carlo
approximation requires us to solve the equation an extensive number of times,
as pointed out in Section 2.3.

So far we have seen that, even for time-dependent equations, it suffices to
replace the finite element space by the multiscale space to define an efficient
method that yields convergence of optimal order. However, this is not always
the case. For instance, in the case of time-dependent diffusion A = A(t, x), the
multiscale space changes over time as well, and needs to be reconstructed for
each time step. Such a case, when the changes over time moreover contain
rapid oscillations, is considered in Paper II. We also note the space Vms,k only
needs to take one coefficient into account in its construction. In the strongly
damped wave equation, defined in (2.2.10), there are two multiscale coefficients
that vary independently from each other. The corresponding LOD method
must therefore take the behavior of both coefficients into account. An extensive
study of this case is done in Paper I.



4 LOD for evolution problems

The LOD method as presented so far is well-established for various types of
equations. In the previous chapter, its effectiveness for basic stationary and
time-dependent equations was demonstrated. This chapter further extends the
LOD approach and applies it to more complicated evolution problems.

As a first example, we consider the strongly damped wave equation that
consists of two different multiscale coefficients. Here, the way the solution
depends on the different coefficients is strongly affected by what phase of the
time interval we consider. Hence the multiscale space must be constructed so
that it is automatically adjusted for this effect over time. In Paper I, a GFEM
that achieves this is derived and analyzed. The second case we consider is a
parabolic equation, where we let the diffusion be time-dependent with rapid
variations in both time and space. The LOD method for parabolic equations
was rigorously analyzed in [50], but is only applicable for high oscillations in
the spatial sense. An extension of the LOD method to the space- and time-
dependent case is developed in Paper II. In [35, 17], the LOD framework
was applied to general matrix systems in the stationary setting. Continuing
their work, Paper III extends the technique to the time-dependent case by
considering a discretized version of the linear wave equation, characterized
by a symmetric, positive-definite matrix K. Finally, Paper IV presents a priori
analysis for the LOD technique for stochastic partial differential equations, for
which the reduced computational complexity is even more advantageous due
to the Monte-Carlo sampling.

29
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4.1 Strongly damped wave equation

Consider the strongly damped wave equation

ü−∇ · (A∇u̇+B∇u) = f, in D × (0, T ],

u = 0, on ∂D × (0, T ],

u(0) = u0, in D,
u̇(0) = v0, in D,

(4.1.1)

where T > 0 and D is a polygonal (or polyhedral) domain in Rd, d = 2, 3.
Here A = A(x) represents the damping coefficient, B = B(x) represents the
wave propagation speed, f = f(t, x) denotes the source function of the system,
and the solution u is a displacement function. This equation is common in
the modeling of viscoelastic materials, where the strong damping −∇ ·A∇u̇
appears when representing the stress as the sum of an elastic part and a viscous
part [12, 22]. Viscoelastic materials have several applications in engineering,
including noise dampening, vibration isolation, and shock absorption (see [34]
for more applications). In multiscale applications, both A and B are rapidly
varying. It is noteworthy that the solution is highly dependent on the damping
A in the transient phase due to the time derivative, and that in the steady state
phase it solely depends on the wave propagation speed B.

Recent years have seen extensive analysis on the strongly damped wave equa-
tion. For instance, well-posedness of the equation is discussed in [13, 33, 36],
asymptotic behavior in [14, 5, 55], solution blowup in [20, 4], and decay esti-
mates in [32]. In particular, the FEM for the strongly damped wave equation
has been analyzed in [44] using the Ritz–Volterra projection, and [43] uses the
classical Ritz-projection in the homogeneous case with Rayleigh damping.

Standard finite elements

We begin by considering the finite element method that corresponds to the
system (4.1.1). For the spatial discretization of the problem, let Vh be defined
as in Section 2.1. The semi-discrete FEM becomes: find uh(t) ∈ Vh such that for
all v ∈ Vh, it holds

(üh, v) + a(u̇h, v) + b(uh, v) = (f, v), t > 0,

with initial values uh(0) = uh,0 and u̇h = vh,0, where uh,0, vh,0 ∈ Vh are
appropriate approximations of u0 and v0 respectively. Here, the bilinear forms
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are defined as a(·, ·) := (A∇·,∇·) and b(·, ·) := (B∇·,∇·).

For the temporal discretization, let 0 =: t0 < t1 < ... < tN := T be a partition
with uniform time step τ := tn − tn−1. By applying a backward Euler scheme,
the fully discrete system reads: find unh ∈ Vh for n ≥ 2 such that

(∂̄2t u
n
h, v) + a(∂̄tu

n
h, v) + b(unh, v) = (fn, v), (4.1.2)

for all v ∈ Vh. The first initial value is given by u0h ∈ Vh. The second initial
value u1h should be an approximation of u(t1) and can, e.g., be chosen as
u1h = u0h + τv0h. For results on regularity and error estimates, we refer to [43].
However, although convergence of optimal order is proven here, the involved
constants are dependent on the variations in the coefficients A and B, and
hence not applicable in the multiscale case.

Ideal GFEM

For the development of our GFEM for the strongly damped wave equation,
we begin by defining the coarse FE-space VH and the fine-scale space Vf :=
ker(IH) in complete analogy to Section 3.1. For the standard LOD method
(as used in the elliptic case [51, 28, 26], parabolic case [50, 49], and for the
wave equation [2, 47]), the definition of the Ritz-projection is based on solely
the diffusion coefficient. However, since we have two different multiscale
coefficients to incorporate in this case, we define the Ritz-projection Rf : VH →
Vf such that Rfv ∈ Vf satisfies

a(Rfv, w) + τb(Rfv, w) = a(v, w) + τb(v, w), (4.1.3)

for all w ∈ Vf . Here, the operator Rf takes the role of Qf from Section 3.1, but
considers both coefficients A and B in the projection. The particular choice of
scalar product, a(·, ·) + τb(·, ·), comes from the backward Euler scheme. Using
this projection, we may define the multiscale space Vms := VH − RfVH such
that

Vh = Vms ⊕ Vf , and a(vms, vf) + τb(vms, vf) = 0.

The basis functions for this multiscale space is, similarly to the standard LOD
method, defined by applying the Ritz-projection to the finite element basis
function. That is, Rfλx ∈ Vf solves the global corrector problem

a(Rfλx, w) + τb(Rfλx, w) = a(λx, w) + τb(λx, w), (4.1.4)

for all w ∈ Vf . The basis for Vms can now be constructed as {λx − Rfλx}x∈N ,
where Rfλx contains fine-scale information on both of the multiscale coeffi-
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cients.

We may now formulate our ideal method. Since the solution space can be
decomposed as Vh = Vms ⊕ Vf , the idea is to solve a coarse-scale problem in
Vms, and then add additional fine-scale corrections to account for the time-
dependency of the problem. Note that this differs from the standard LOD
method, where solving a system in Vms suffices. By incorporating the cor-
rection, the solution can adapt so that its dependency on the coefficients A
and B changes over time. In Remark 4.1.1, it is demonstrated how the added
correction changes the solution from being orthogonal with respect to A in the
transient phase to its B-orthogonality in the steady state phase.

The method reads: find unlod = vn + wn for n ≥ 2, where vn ∈ Vms satisfies

τ(∂̄2t v
n, z) + a(vn, z) + τb(vn, z) = τ(fn, z) + a(un−1

lod , z), (4.1.5)

for all z ∈ Vms, and wn ∈ Vf satisfies

a(wn, z) + τb(wn, z) = a(un−1
lod , z), (4.1.6)

for all z ∈ Vf , with initial data u0lod = u0h ∈ Vms and u1lod = u1h ∈ Vms. The initial
data is chosen in Vms to simplify the implementation of the fine-scale correctors.
This choice does not affect the performance of the proposed method, as shown
in Paper I.

Remark 4.1.1. As earlier mentioned, the behavior of the damping A typically
dominates the solution to (4.1.1) in the transient phase, while the solution
depends more heavily on B if it reaches a steady state. Indeed, we note that the
multiscale space Vms is based on the correction (4.1.3) with small time step τ .
That is, the correction in Vms is initially dominated by A. However, in a steady
state, it holds that unlod ≈ un−1

lod . Therefore, we note that by (4.1.6) it holds that
for any z ∈ Vf

a(wn, z) + τb(wn, z) = a(un−1
lod , z) ≈ a(unlod, z)

= a(vn, z) + a(wn, z)

= −τb(vn, z) + a(wn, z),

due to the orthogonality between Vms and Vf . Rearranging the terms, we have

b(vn, z) + b(wn, z) = b(unlod, z) ≈ 0.

That is, in the steady state phase, the solution becomes orthogonal with respect
to B instead of A.
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Localized version

The ideal method as currently stated is defined on the entire fine grid which
is not computationally feasible. For this purpose we construct a localized
multiscale space Vms,k := VH −Rf,kVH in complete analogy to the localization
procedure in Section 3.1. For this localization to be valid it is required that
each basis corrector Rfλx satisfies the same exponential decay as Qfλx from
Section 3.1. However, we quickly note that Rfλx solves the same type of
problem as Qfλx but with diffusion A+ τB, and hence satisfies the required
decay property by classical LOD theory.

With the space Vms,k defined, we are able to localize the computations corre-
sponding to the system (4.1.5) by replacing the multiscale space by its localized
counterpart. It remains to localize the computations of the fine-scale system
in (4.1.6), which equivalently can be written as

a(∂̄tw
n, z) + b(wn, z) =

1

τ
a(vn−1, z).

We replace the right-hand side by its localized version vn−1
k ∈ Vms,k and note

that vn−1
k =

∑
x∈N αn−1

x (λx −Rf,kλx). Thus, we seek our localized fine-scale
solution as wn

k =
∑

x∈N wn
k,x, where wn

k,x ∈ V x
f,k solves

a(∂̄tw
n
k,x, z) + b(wn

k,x, z) =
1

τ
a(αn−1

x (λx −Rf,kλx), z), (4.1.7)

for all z ∈ V x
f,k, so that the computation of this equation is localized to a patch

surrounding the node x ∈ N . We introduce the functions ξℓk,x ∈ V x
f,k as solution

to the parabolic equation

a(∂̄tξ
ℓ
k,x, z) + b(ξℓk,x, z) =

1

τ
a(χ1(ℓ)(λx −Rf,kλx), z), (4.1.8)

for all z ∈ V x
f,k and ℓ = 1, 2, . . . , N with initial value ξ0k,x = 0. Here χ1(ℓ)

denotes an indicator function that equals 1 when ℓ = 1 and 0 otherwise. In
Figure 4.1, the function ξℓk,x for a fixed node x ∈ N is plotted. It holds that
wn

k,x =
∑n

ℓ=1 α
n−ℓ
x ξℓk,x is the solution to (4.1.7), which can be shown by simply

inserting it and canceling terms (see Paper I for the details).

With the localization procedure established, we are set to define the proposed
GFEM. It reads: find unlod,k = vnk + wn

k , where vnk =
∑

x∈N αn
x(λx − Rf,kλx)

satisfies

τ(∂̄2t v
n
k , z) + a(vnk , z) + τb(vnk , z) = τ(fn, z) + a(un−1

lod,k, z), (4.1.9)
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for all z ∈ Vms,k, and wn
k =

∑
x∈N

∑n
ℓ=1 α

n−ℓ
x ξℓk,x, where ξℓk,x ∈ V x

f,k

solves (4.1.8). The method can be summarized as follows:

1. Construct the multiscale space Vms,k := Vh − Rf,kVH . This includes
solving a localized version of the (stationary) corrector problem (4.1.4)
for each basis function {λx}x∈N .

2. Solve for the fine-scale correctors {ξℓk,x}Nℓ=1. For this purpose, the local-
ized (parabolic) problem (4.1.8) is solved for each coarse node x ∈ N . For
a fixed node, this corresponds to solving a localized problem on the fine
scale in each time step.

3. Compute the solution by solving (4.1.9). Note that in each time step,
we must construct wn−1

k =
∑

x∈N
∑n−1

ℓ=1 α
n−1−ℓ
x ξℓk,x and add it to the

right-hand side.

To justify the fact that we localize the fine-scale equation, we furthermore
require that the functions {ξℓx}Nℓ=1 satisfy an exponential decay as well. The
following theorem, proven in Paper I, provides this requirement.

Theorem 4.1.2. For any node x ∈ N , let ξℓx ∈ Vf be the solution to

a(∂̄tξ
ℓ
x, z) + b(ξℓx, z) =

1

τ
a(χ1(ℓ)(λx −Rfλx), z),

for all z ∈ Vf , with initial value ξ0x = 0. Then there exist constants c > 0 and C > 0
such that for any k ≥ 1

∥ξℓx∥H1(D\Nk(x)) ≤ Ce−ck∥λx∥H1 ,

for sufficiently small time step τ .

Error analysis

For the error analysis of this method the solution is first decomposed as unlod =
unlod,1 + unlod,2, where unlod,1 has zero initial data and unlod,2 has zero source data.
The error of each decomposed part is then analyzed separately. We state the
final result here and refer to Paper I where the full analysis is thoroughly
investigated.

Theorem 4.1.3. Let unh and unlod be the solutions to (4.1.2) and (4.1.5)-(4.1.6), respec-
tively. The solutions can be split into unh = unh,1 + unh,2 and unlod = unlod,1 + unlod,2,
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where the first part has vanishing initial data, and the second part a vanishing right
hand side. The errors are bounded by

n∑
j=2

τ∥ujh,1 − ujlod,1∥2H1(D) ≤ CH2

(
n∑

j=1

τ(∥f j∥2 + ∥∂̄tf j∥2) + max
j=1,...,n

∥f j∥2
)
,

n∑
j=2

τt2j∥ujh,2 − ujlod,2∥2H1(D) ≤ CH2(∥∂̄tu1h∥2H1(D) + ∥u1h∥2H1(D) + ∥u0h∥2H1(D)),

for n ≥ 2, where the constants are independent of variations in A and B, but depend
on the upper and lower bounds of A and B.

Remark 4.1.4. The theorem states optimal order convergence for the ideal
method, stated in (4.1.5)-(4.1.6). In the localized method (4.1.9), an additional
error will appear due to the localization procedure. However, due to the
exponential decay of the basis correctors Rfλx (see [53, Theorem 4.1]) and the
fine-scale functions ξℓx (by Theorem 4.1.2), it holds for k ∼ log(1/H) that the
difference between the ideal and localized method converges with higher order
than the error in Theorem 4.1.3. For details on the localization error, we refer
to [51].

Reduced basis approach

The proposed method as stated so far is promising, but it requires us to solve
the fine-scale system (4.1.8) for each coarse node x ∈ N and for each time step.
This quickly becomes computationally challenging as the final time T increases.
We reduce the complexity of the method by applying a so-called reduced basis
method. By doing so, it will suffice to find solutions for M < N time steps,
and use the computed information to approximate the remaining ones in a
significantly cheaper and more efficient way.

As motivation for the reduced basis approach, we first note that the sys-
tem (4.1.8) which ξnk,x satisfies is a parabolic-type problem with zero source. As
discussed in Section 2.2, the solutions to such a system decay exponentially
from their initial data, until they have completely vanished. To illustrate this
effect, we fix x ∈ N and compute {ξnk,x} for n = 1, 2, . . . , 200. The functions are
computed on the unit interval with time step τ = 0.01 and coefficients

A(x) =
(
2− sin

(
2πx
εA

))−1

and B(x) =
(
2− cos

(
2πx
εB

))−1

,

with εA = 2−4 and εB = 2−6, where k is chosen so that the support covers the
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Figure 4.1: Illustration of a fine-scale corrector function ξnk,x vanishing with increasing
time step n.

whole interval. Figure 4.1 displays the function ξnk,x for the selected time steps
n = 1, 25, 50, 100, 150, 200.

While Figure 4.1 illustrates the rapid decay well, it is moreover important to
note that the function ξnk,x maintains a similar shape through all time steps.
This suggests that it is possible to evaluate the solutions for only a few time
steps, and utilize their information to determine the remaining functions. To
further investigate this idea, we analyze the singular values of the computed
solutions {ξnk,x}Nn=1. The singular values are plotted in Figure 4.2 in the case
N = 100. Here, we observe that the values decrease rapidly, with most of
them falling within the machine precision level. In practice, this means that
it is possible to compute the information for all of {ξnk,x}Nn=1 from just a few
ξnk,x. This property can be exploited to lower the computational complexity by
employing a reduced basis method.

The idea behind reduced basis methods is to use the information from M
number of pre-computed solutions to construct a low-dimensional space V RB

M,k,x,
in which approximate solutions can be computed efficiently. The approach
applied to compute an approximation of the set {ξnk,x}Nn=1 is as follows.

1. Pick M ≪ N , and compute {ξnk,x}Mn=1 by (4.1.8).

2. Orthonormalize {ξnk,x}Mn=1 using, e.g., Gram–Schmidt orthonormalization.
This yields a set of orthonormal vectors {ζnk,x}Mn=1, called the reduced basis.
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Figure 4.2: The singular values computed by singular value decomposition of the matrix
composed by {ξnk,x}100n=1. Note that after the first ∼10 singular values, the remaining
ones lie on the machine precision level.

3. Construct the reduced basis space V RB
M,k,x := span({ζnk,x}Mn=1).

4. Compute the approximate solutions {ξn,rbk,x }Nn=M+1 using (4.1.8), with the
full space V x

f,k replaced by the low-rank space V RB
M,k,x.

Note that computing an approximate solution ξn,rbk,x ∈ V RB
M,k,x is reduced to

solving anM×M matrix system. That is, while computing theM first solutions
can be challenging, solving for the N −M remaining functions is significantly
cheaper. Moreover, we remark that the analysis in Paper I does not include the
error from the reduced basis approximations. However, the theory on reduced
basis techniques is well-established, and the reader is referred to [60] for an
introduction to the field.

We conclude the section by providing numerical examples illustrating the
convergence rate of the proposed method, as well as the error introduced by
the reduced basis approach. Before this, we quickly summarize the method
and remark on the computational complexity. At first, the proposed method
constructs Vms,k by solving linear systems on the localized fine scale for each
coarse basis function. In turn, we compute {ξnk,x}Mn=1 by solving a localized
fine-scale system NH times for M time steps. This yields the space V RB

M,k,x for
each node x ∈ N . The remaining approximations {ξn,rbk,x }Nn=M+1 are found
by solving N −M number of M ×M matrix systems. Finally, the solution,
denoted uN,rb

lod,k, is computed on the coarse grid with multiscale space Vms,k.



38 LOD for evolution problems

Numerical examples

Consider a unit square domain D = [0, 1] × [0, 1], and coefficients A and B
with randomly generated values in the interval [10−1, 103] varying on the scale
ε = 2−6. For the system data, the initial values are set to zero and the source
to f ≡ 1. The final time is set to T = 1 and the temporal domain is discretized
with τ = 0.02.

First, we compute the error between the localized method (without the reduced
basis approach) and a reference solution computed on the fine grid. This is
done for coarse mesh sizes H = 2−i, i = 1, . . . , 5 with localization parameter
k = log2(1/H). The relative error in H1(D)-norm is plotted, and displayed in
Figure 4.3. For comparison, the error for the standard FEM is also included,
as well as the standard LOD method when correcting the basis functions only
using A or B, respectively. Here, we see how neither FEM nor the standard
LOD method suffices, while the proposed method achieves optimal order
convergence instantly.

As a second example, we analyze the error that arise from the reduced basis
approach. We fix the coarse mesh size to H = 2−5, and plot the error as
functions of the number of pre-computed solutions M used to construct the
reduced basis. This is illustrated in Figure 4.4. Note that approximatelyM = 10
pre-computed solutions suffices in the case H = 2−5 for the reduced basis
approach to not perturb the convergence rate of the method.

4.2 Parabolic equation with time-dependent diffu-
sion

The second case we consider for the extension of the LOD framework is the
parabolic equation of the form

u̇−∇ · (A∇u) = f, in D × (0, T ],

u = 0, on ∂D × (0, T ],

u(0) = 0, in D,
(4.2.1)

where T > 0 and D is a polygonal (or polyhedral) domain in Rd, d = 2, 3. In
contrast to the parabolic case dealt with in [50], we have A = A(t, x) with rapid
oscillations in both time and space. We remark that the choice of zero initial
data is made to simplify the presentation of our proposed method, and that
nonzero data can be considered with just a few alterations. The parabolic equa-
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tion (4.2.1) appears in several real life applications, where common examples
include heat transfer and modeling of pressure in compressible flow [62, 45, 31].
In particular, the time-dependency in the diffusion is highly relevant when
considering a heat conductor undertaking radioactive decay [68]. Furthermore,
a parabolic problem posed on a time-dependent domain can be mapped to a
problem posed on a fixed domain with time-dependent coefficients.

Weak form and finite elements

We begin by deriving the weak formulation of (4.2.1), and its corresponding
finite element formulation. Let L2(0, T ;B) and H1(0, T ;B) be the standard
Bochner spaces with norm

∥v∥L2(0,T ;B) =

(∫ T

0

∥v∥2B dt

)1/2

,

∥v∥H1(0,T ;B) =

(∫ T

0

∥v∥2B + ∥v̇∥2B dt

)1/2

,

where B is a Banach space with norm ∥ · ∥B. Throughout this section, we
abbreviate the Bochner spaces by omitting the interval and the domain and
write, e.g., L2(H1

0 ) := L2(0, T ;H1
0 (D)). We consider the following weak space-

time formulation: find u ∈ Vtr := L2(H1
0 ) ∩H1(H−1) such that∫ T

0

⟨u̇, v⟩+ a(t;u, v) dt =

∫ T

0

⟨f, v⟩dt (4.2.2)

for all v ∈ Vte := L2(H1
0 ). Here, we have denoted by ⟨·, ·⟩ the dual pairing of

H−1(D) andH1
0 (D). Moreover, the bilinear form a(t; ·, ·) : H1

0 (D)×H1
0 (D) → R

is defined by

a(t; v, w) :=

∫
D

A(t, ·)∇v · ∇w dx

for almost all t ∈ (0, T ). From here on, we omit the t-dependence and abbrevi-
ate a(·, ·) := a(t; ·, ·).

We begin by introducing the space-time discretization on the fine scale. Let Vh
be defined as in Section 2.1 for the spatial part. For the temporal discretiza-
tion, we introduce the fine time step τ and set ti = iτ , i = 1, . . . , Nτ as the
uniform partition with tNτ

= T . Denote by Iτ the decomposition of [0, T ] into
sub-intervals [ti−1, ti], i = 1, . . . , Nτ . With respect to this discretization, we
introduce two discrete spaces V̂τ and Vτ as the temporal trial and test space
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respectively, defined by

V̂τ := {v ∈ H1(0, T ) : v|I , I ∈ Iτ , is a polynomial of degree ≤ 1, v(0) = 0},
Vτ := {v ∈ L2(0, T ) : v|I , I ∈ Iτ , is constant}.

Based on the above definitions of spatial and temporal spaces, we introduce
corresponding tensor-product space-time finite element spaces with respect to
the full domain [0, T ]×D. We set

V̂h,τ := V̂τ × Vh, Vh,τ := Vτ × Vh

as trial and test space, respectively. The finite element formulation of (4.2.2)
now states: find uh,τ ∈ V̂h,τ such that∫ T

0

⟨u̇h,τ , vh,τ ⟩+ a(uh,τ , vh,τ ) dt =

∫ T

0

⟨f, vh,τ ⟩dt

for all vh,τ ∈ Vh,τ . Note that, for the parabolic problem, we base our finite
element problem on a Petrov–Galerkin ansatz, i.e., the trial and test spaces do
not coincide.

Space-time multiscale method

For our space-time multiscale method we will, in similarity to previous LOD
based methods, introduce corresponding coarse spaces. For the spatial dis-
cretization, define VH and the interpolant IH = EH ◦ΠH as in Section 3.1, and
let {φx}x∈NH

denote the standard finite element basis functions for VH . For
the temporal discretization, let T > 0 be a coarse time step, and let Ti = iT ,
i = 0, 1, . . . , N . Denote by IT the decomposition of the time interval [0, T ] into
sub-intervals [Ti−1, Ti], i = 1, . . . , N of uniform size with TN = T . Then, in anal-
ogy with the fine temporal spaces, we define V̂T and VT as coarse temporal trial
and test spaces based on the decomposition IT . Moreover, let {ζi}Ni=1 denote
the piecewise linear basis functions that span V̂T , and {χi}Ni=1 the piecewise
constant basis functions that span VT , where χi = 1[Ti−1,Ti]. The coarse space-
time spaces are then set as V̂H, T := V̂T × VH as trial space, and VH, T := VT × VH
as test space.
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Next, use the spatial interpolant to define the remainder spaces

Ŵh,τ :=
{
w ∈ V̂h,τ : IHw(Ti, ·) = 0 for all i = 0, . . . , N

}
,

Wh,τ :=
{
w ∈ Vh,τ : T −1

∫ Ti

Ti−1

IHw dt = 0 for all i = 1, . . . , N
}
,

which we will use as our fine trial and test spaces respectively. Note that, by
construction, V̂h,τ = V̂H, T ⊕ Ŵh,τ and Vh,τ = VH, T ⊕Wh,τ .

Our proposed space-time multiscale method is based on the variational multi-
scale method, first introduced in [30], and aims to extend the LOD framework
to space- and time-dependent coefficients. The main idea is to decompose
the solution into a coarse part in V̂H, T and a remainder part in Ŵh,τ and then
consider (4.2.2) for test functions in the coarse test space VH, T and the fine test
space Wh,τ separately. In turn, this yields a coarse-scale and a fine-scale equa-
tion respectively. The main purpose of the fine-scale equation is to compute
certain correctors, which we utilize to enrich the coarse-scale equation with
the fine-scale behavior of the diffusion. The proposed method reads: find
ũH, T = uH, T +QuH, T ∈ (1 +Q)V̂H, T such that uH, T ∈ V̂H, T solves∫ T

0

⟨ d
dt (1 +Q)uH, T , vH, T ⟩+ a((1 +Q)uH, T , vH, T ) dt =

∫ T

0

⟨f, vH, T ⟩dt,(4.2.3)

for all vH, T ∈ VH, T and QuH, T ∈ Ŵh,τ solves∫ T

0

⟨ d
dtQuH, T , wh,τ ⟩+ a(QuH, T , wh,τ ) dt = −

∫ T

0

⟨u̇H, T , wh,τ ⟩+ a(uH, T , wh,τ ) dt

(4.2.4)

for allwh,τ ∈Wh,τ . Due to linearity, we may take (4.2.4) and further decompose
it into corrector problems with local space-time basis functions Λj

x := ζjφx ∈
V̂H, T as source, where j ∈ {1, . . . , N} denotes the temporal node and x ∈ N
the spatial node that the basis function corresponds to. That is, we define a
corrector QΛj

x ∈ Ŵh,τ as the solution to∫ T

0

⟨ d
dtQΛj

x, wh,τ ⟩+a(QΛj
x, wh,τ ) dt = −

∫ T

0

⟨Λ̇j
x, wh,τ ⟩+a(Λj

x, wh,τ ) dt (4.2.5)

for all wh,τ ∈ Wh,τ , with initial condition QΛj
x(0, ·) = 0. Note that, due to

supp(Λj
x) = [Tj−1, Tj+1]×N(x) and the initial condition in (4.2.5), the integrals

are immediately reduced from [0, T ] to [Tj−1, T ]. Without loss of generality,
we will therefore restrict the presentation to the case j = 1 and abbreviate
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(a) QΛ(τ, ·) (b) QΛ(T1 + τ, ·)

(c) QΛ(T2 + τ, ·) (d) QΛ(T3 + τ, ·)

Figure 4.5: Space-time decay of a basis corrector QΛ in logarithmic scale.

Λ := Λ1
x, ζ := ζ1, and φ := φx. We emphasize that (4.2.5) is a corrector problem

which can be compared to that of (3.1.3) for the standard LOD, but posed on
the space-time domain. In a similar fashion, the correction QΛ decays rapidly
outside of the support of Λ, which is restricted in both space and time. This
property is later exploited to localize the computations in both space and time.
For an illustration of the function QΛ and its decay, see Figure 4.5.

We wish to solve the system (4.2.5) without explicitly computing the fine-scale
spaces Ŵh,τ and Wh,τ . Hence, we reformulate (4.2.5) as a constraint problem
posed in the full discrete space V̂h,τ and with test functions in Vh,τ . That is, let
ψ ∈ V̂h,τ be the solution of∫ T

0

⟨ψ̇, v⟩+ a(ψ, v) dt+

N∑
i=1

∫ Ti

Ti−1

⟨λi, IHv⟩dt = −
∫ T

0

⟨Λ̇, v⟩+ a(Λ, v) dt

N∑
j=1

⟨IHψ(Tj), µj⟩ = 0,

(4.2.6)
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for all v ∈ Vh,τ , µj ∈ VH , j = 1, . . . , N , where (λ1, . . . , λN ) ∈ VH × . . . × VH
are the associated Lagrange multipliers. Note that, by construction, (4.2.5)
and (4.2.6) are equivalent, i.e., QΛ = ψ.

Error of the ideal method

The method presented in (4.2.3)-(4.2.4) is referred to as our ideal method. For
the corresponding error estimate, we introduce the norms for the trial and test
space respectively as

∥v∥2Vtr
:=

∫ T

0

∥∇v(t, ·)∥2L2(Ω) + ∥v̇(t, ·)∥2H−1(D) dt+ ∥v(T )∥2L2(D),

∥v∥2Vte
:=

∫ T

0

∥∇v(t, ·)∥2L2(Ω) dt,

where v :=
∑Nτ

i=1

(
τ−1

∫ ti
ti−1

v(s, ·) ds
)
χi is the mean with respect to the fine

temporal discretization. These norms are essential for the analysis of certain
space-time Petrov–Galerkin discretizations as in [65] on which our approach
relies. The error for the proposed ideal method is then quantified by following
theorem, which is proven in Paper II.

Theorem 4.2.1 (Error of the ideal method). Assume that the right-hand side fulfills
f ∈ L2(L2) ∩H1(H−1). Then the error between the solutions uh,τ and ũH, T satisfies

∥ũH, T − uh,τ∥Vtr
≤ C (H + T ) ∥f∥L2(L2)∩H1(H−1).

Localization in time and space

Theorem 4.2.1 states that our novel method converges with optimal order.
However, similarly to earlier LOD based methods, the formulation as currently
stated is ideal, but impractical. The method is based on auxiliary corrector
problems defined on the entire fine space-time grid, which is not computation-
ally feasible, as earlier discussed. To circumvent this issue, one observes that a
corrector function ψ decays exponentially fast away from the support of the
underlying basis function Λ. Without a great impact on the approximation
property, it is therefore possible to restrict the fine-scale computations to local
spatial patches as for the standard LOD, and to a limited number of coarse time
steps, yielding a localized method in both space and time. For the temporal
localization, we begin by demonstrating how the basis corrector ψ is computed
by a sequential approach. This turns into an efficient scheme whose computa-
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tions easily can be restricted in time. We emphasize that the basis correctors
are independent, which makes parallelization possible in both space and time.

To define the sequential approach, we begin by dividing the integral in (4.2.6)
into local integrals over [Tj−1, Tj ], j = 1, . . . , N and define for given j the local
version of V̂h,τ by

V̂ j
h,τ := {v|[Tj−1,Tj ]×D : v ∈ Vh,τ}.

Further, we denote with ξj ∈ V̂ j
h,τ , ξj(Tj−1) = 0 the solution of∫ Tj

Tj−1

⟨ξ̇j , v⟩+ a(ξj , v) + ⟨λj , IHv⟩dt = −
∫ Tj

Tj−1

⟨Λ̇, v⟩+ a(Λ, v) (4.2.7)

− ⟨ 1
T ξj−1(Tj−1), v⟩

+ a(
Tj−t

T ξj−1(Tj−1), v) dt,

⟨IHξj(Tj), µ⟩ = 0,

for all v ∈ Vh,τ , µ ∈ VH , where λj ∈ VH is the associated Lagrange multiplier.
For j = 1, we explicitly set ξ0(T0) = 0 such that the third and the fourth term
on the right-hand side of (4.2.7) vanish. Note that the functions {ξj}Nj=1 are
constructed in a way such that

ψ =

N∑
j=1

(
ξj +

Tj−t

T ξj−1(Tj−1)
)
1[Tj−1,Tj ].

We emphasize that the basis function Λ only has support on the first two coarse
intervals. That is, for j > 2 the first two terms in (4.2.7) (and also in (4.2.6))
disappear and, consequently, ψ will begin to decay due to the parabolic nature
of the problem.

Due to the decay property of ψ, there will be an ℓ ∈ N such that for j > ℓ,
the sequential functions ξj will be of negligible size compared to the error of
the ideal method. Hence, it suffices to restrict the computations to {ξj}ℓj=1.
That is, we define our temporally localized corrector function by ψℓ = ψ 1[0,Tℓ],
where we refer to ℓ as the temporal localization parameter. We remark that simply
restricting the computations will make ψℓ discontinuous, and thus it will no
longer be a function in V̂h,τ . However, this can easily be circumvented by
choosing

ψℓ = ψ 1[0,Tℓ] +
Tℓ+1−t

T ξℓ(Tℓ)1[Tℓ,Tℓ+1].

It remains to apply the spatial localization procedure, which follows in similar-
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Figure 4.6: The (relative) localization errors for a basis function Λ.

ity to Section 3.1. In total, this yields space-time localized basis functions, which
we denote by Qk,ℓ. The details of its specific construction is left to Paper II.

We conclude the discussion by numerically illustrating the space-time decay
of a basis function Λ, which justifies the localization procedure. In Figure 4.5,
the decay of a basis corrector in both space and time is depicted. Moreover,
Figure 4.6 displays the error between an ideal basis function and its localized
counterpart (in space and time, respectively) as a function of each respective
localization parameter.

Final method

By applying the localization, we yield an efficient space-time multiscale
method for which the convergence rate from Theorem 4.2.1 remains valid.
The proposed localized method reads: find ũH, T ,k,ℓ = uH, T ,k,ℓ + Qk,ℓuH, T ,k,ℓ ∈
(1 +Qk,ℓ)V̂H, T such that∫ T

0

⟨ d
dt (1+Qk,ℓ)uH, T ,k,ℓ, vH, T ⟩+a((1+Qk,ℓ)uH, T ,k,ℓ, vH, T ) dt =

∫ T

0

⟨f, vH, T ⟩dt

for all vH, T ∈ VH, T . For this method, an a posteriori error has been derived with
the same order of convergence as for the a priori error of the ideal method. We
leave the details of the analysis to Paper II, and conclude with a numerical
example illustrating the convergence of the error.

For the example, the diffusion A consists of randomly generated values in the
interval [0.01, 0.1] which are piecewise constant, varying with scales εx = εt =
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Figure 4.7: Relative error with respect to different space-time grid sizes H = T .

2−5 in space and time. The fine mesh is defined by the parameters h = τ = 2−7

such that the variations in the coefficient are resolved. For the remaining
problem data, we set the source to f ≡ 1 and the final time to T = 1.25.
Localization in space is set to k = log2(1/H), and in time we use ℓ = 4 for
all computations. The relative error is evaluated for the coarse parameters
H = T = 2−i, i = 2, . . . , 6. In Figure 4.7, the convergence rate for the problem
is illustrated. It is seen how the proposed method satisfies linear convergence
with respect to H = T , which confirms the theoretical findings.

4.3 Wave equation on spatial networks

In this part, we model the propagation of elastic waves in fiber-based materials.
Due to its intricate model, computations on the exact fiber network can be
difficult. A so-called spatial network model simplifies the fiber network structure,
thus lowering computational complexity and facilitating modeling challenges.
More specifically, the network model approximates the three dimensional fiber
cylinders by a web-like network, defined by nodes, edges, and edge weights,
which together represent a discretized 1-D structure in Rd. See Figure 4.8 for an
illustrative example. This approach yields a discrete system, characterized by a
symmetric, positive-definite matrix K whose data may inherit high variations
from the network model. In [24], it was shown that model we analyze produce
representable results in comparison to real-life paper simulations.
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As model problem, we consider the discrete linear wave equation

MD2
t u+Ku =Mf,

u(·, 0) = g,

Dtu(·, 0) = h,

with corresponding weak form to find u ∈ V such that

(MD2
t u, v) + (Ku, v) = (Mf, v), (4.3.1)

for all v ∈ V , where K is related to a weighted graph Laplacian, M is a
diagonal mass matrix, f the right-hand side data and (·, ·) the Euclidean scalar
product. The discrete solution space V is defined in detail below. The goal is
to efficiently compute an accurate coarse-scale approximation of the solution
to (4.3.1). However, due to the network structure, the matrix K may inherit
high variations in its data, which in turn affect the solution on the coarse scale.
Moreover, unlike the the continuous PDE setting, the network does not have a
natural coarse scale. To overcome these computational difficulties, we present
a similar LOD approach to the one introduced for stationary equations in
Section 3.1. We start by presenting the spatial network model and outlining
the operators crucial to the approach.

Network definition and operators

The spatial network considered is represented by the connected graph G =
(N , E). Here, N ⊂ Rd is a finite set of nodes, and

E :=
{
{x, y} : x and y are connected by an edge

}
,

is an edge set consisting of unordered pairs of edges. In the following, if
{x, y} ∈ E , we refer to x and y as adjacent nodes, and denote this by x ∼ y.
The network is embedded into a spatial domain D ⊂ Rd. For simplicity,
we consider a hypercube domain, i.e., D = [0, 1]d, and remark that more
complicated domains can be considered with just a few alterations. Moreover,
let Γ ⊆ ∂D denote the (non-empty) set of nodes on the boundary to which a
Dirichlet-type boundary condition is applied.

Let V̂ be the space of real-valued functions defined on the node set N , and let
V be the corresponding space with imposed homogeneous boundary condition.
That is,

V := {v ∈ V̂ : v(x) = 0, x ∈ Γ}.



4.3. Wave equation on spatial networks 49

For any subset ω ∈ D, the set of nodes contained in ω is defined by N (ω) :=

N ∩ ω. We further define the scalar product on V̂ over the subset ω as

(u, v)ω :=
∑

x∈N (ω)

u(x)v(x),

with (·, ·) := (·, ·)D.

We are now set to define the operators used in the model problem (4.3.1). Given
a node x ∈ N , define the diagonal linear operator Mx : V̂ → V̂ by

(Mxv, v) :=
1

2

∑
y∼x

|x− y|v(x)2.

For any subdomain ω, we define Mω :=
∑

x∈N (ω)Mx, and we frequently
abbreviate M := MD. Note that (Mω1, 1) can be interpreted as the mass of
the network contained in ω. The operator M further defines a norm, namely∣∣v∣∣

M
:= (Mv, v)1/2.

Let Lx : V̂ → V̂ be the reciprocal edge-length weighted graph Laplacian
defined by

(Lxv, v) :=
1

2

∑
y∼x

(
v(x)− v(y)

)2
|x− y| ,

and similarly define Lω :=
∑

x∈N (ω), with L := LD. Note that this scaling
corresponds to a 1D FEM stiffness matrix. The operator L is symmetric and
positive semi-definite, and therefore defines a semi-norm

∣∣v∣∣
L
:= (Lv, v)1/2.

Moreover, for the model problem (4.3.1), we use the symmetric and positive
semi-definite linear operator K : V → V . The operator K is assumed to be
bounded and coercive with respect to the weighted graph Laplacian L. That is,
it holds that

α(Lv, v) ≤ (Kv, v) ≤ β(Lv, v), (4.3.2)

where 0 < α ≤ β < ∞. At last, K is assumed to be local, in the sense
that K =

∑
x∈N Kx, where each Kx : V̂ → V̂ is symmetric and positive

semi-definite, with support on nodes adjacent to x. Note that since Γ is non-
empty, and G is connected, it holds that L (and consequently K) is invertible.
Furthermore, the operatorK induces the norm

∣∣v∣∣
K

:= (Kv, v)1/2. An example
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of an operator K that fulfills above assumptions is K =
∑

x∈N Kx, where

(Kxv, v) :=
1

2

∑
y∼x

γxy

(
v(x)− v(y)

)2
|x− y| , (4.3.3)

and γxy ∈ (0,∞) is a material parameter for the edge connecting x and y,
e.g., heat conductivity. For this operator, the relation (4.3.2) holds with α :=
minx,y∈N γxy and β := maxx,y∈N γxy. For more examples of operators K that
satisfy the assumptions above, we refer to the work in [17, 23], as well as
Paper III.

Network assumptions

Before defining the LOD extension, we require certain assumptions on the
network. For this purpose, we begin by introducing boxesBR(x) ⊂ D of length
2R, centered at x = (x1, . . . , xd). These boxes will later be of importantance for
the coarse-scale discretization of our method as well. To construct the boxes,
we first let

B̃R(x) := [x1 −R, x1 +R)× · · · × [xd −R, xd +R),

and further define

BR(x) := B̃R(x) ∪
(
B̃R(x) ∪ ∂D

)
. (4.3.4)

Note that, by construction, BR(x) does not contain its upper boundary in either
dimension, unless it is a part of the global boundary ∂D. We are now prepared
to state necessary properties for the network.

Assumptions 4.3.1 (Network properties). Let R0 be a homogeneity parameter on
the coarse-length scale. Then, the network satisfies following assumptions.

1. (Homogeneity). There is a uniformity parameter σ and a density parameter ρ
such that

ρ ≤ (2R)−d
∣∣1∣∣2

M,BR(x)
≤ σρ

holds, for all R ≥ R0 and all x ∈ D.

2. (Connectivity). For all R ≥ R0, and all x ∈ D, there is a connected subgraph
Ḡ = {N̄ , Ē} that contains

(a) all edges with at least one endpoint in BR(x), and
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(b) no edges with at least one endpoint not in BR+R0
(x).

3. (Locality). It holds that

max
{x,y}∈E

|x− y| < R0,

i.e., all edge lengths are smaller than R0.

4. (Boundary density). For any boundary node y ∈ Γ, there exists x ∈ Γ such that
|x− y| < R0.

All together, the assumptions ensure that the considered network follows some
basic guidelines. For instance, under the assumption of homogeneity, the
density of a small part of the network (on the R0-scale) must be comparable to
the density of the network across the entire domainD. Furthermore, the locality
assumption prevents edges from connecting over distances greater than R0

within the network. At last, the connectivity property implies that the network,
on the R0-scale, is sufficiently connected. The connectivity assumption can also
be used to derive certain inequalities valid on the network, such as analogous
counterparts of Friedrichs and Poincaré inequalities. These inequalities are
useful in the derivation of stability of interpolation onto the network, which is
crucial for the LOD method. For more discussion on the assumptions, and in
particular the connectivity, we refer to [17, Section 3].

Coarse-scale definition

The foundation of the LOD method is based on the decomposition of the solu-
tion space into a coarse-scale and a fine-scale part, respectively. In the standard
PDE setting (see Section 3.1), the coarse and fine scales appear naturally from
nested finite element spaces. For the spatial network setting, the definition
of a coarse scale is less straight-forward. In [17, 23], the authors tackle this
challenge by proposing an artificial coarse scale with minimal constraints on
its relationship to the network.

Following the approach of [17, 23], we introduce a coarse finite element mesh
of square shaped elements. More precisely, we begin by considering the boxes
BR(x), defined in (4.3.4). Then, we define TH as the family of partitions of D
into hypercubes of length H = 2−j , j ∈ N, i.e.,

TH := {BH/2(x) : x = (x1, . . . , xd) ∈ D and H−1xi + 1/2 ∈ N, i = 1, . . . , d}.

Next, we introduce a first-order finite element space on the mesh TH . Let Q̂H be
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the space of continuous functions on D which, restricted to T ∈ TH , are linear
combinations of the polynomials z = (z1, . . . , zd) 7→ zα for the multi-index
α = (α1, . . . , αd), with αi ∈ {0, 1}. For instance, in the case d = 2, the space Q̂H

corresponds to the space of bilinear functions on TH . Furthermore, we define

QH := {q ∈ Q̂H : q
∣∣
Γ
= 0}

as the associated finite element space fulfilling the Dirichlet boundary condition.
Furthermore, we wish to restrict these spaces to nodes in D. Therefore, define
V̂H as the space of functions in Q̂H restricted to N , and similarly for VH .

We conclude the part on the spatial discretization by defining a basis for the
above constructed spaces. Denote by {yi}mi=1 the nodes in TH , and let {λ̂i}mi=1

be the standard Lagrange finite element basis functions that span Q̂H . Further-
more, by {λi}mi=1 we denote the restrictions of {λ̂i}mi=1 to the network nodes,
such that V̂H = span({λi}mi=1). Without loss of generality, we assume the space
QH to be spanned by the m0 < m first basis functions, {λ̂i}m0

i=1. In Figure 4.8, a
summary of the discretization process from initial network to final mesh TH is
illustrated.

Network interpolant

With the coarse finite element space VH defined over the spatial network, we
are now set to introduce the interpolant required for the decomposition of
spaces. We define the following discrete interpolant inspired by the Scott–
Zhang interpolant, initially presented in [63].

Definition 4.3.2. Given a basis function λj , let Tj denote the (unique) corresponding
element containing yj , and define ψj ∈ V̂H by the relation (MTj

ψj , λi) = δij . The
interpolant IH : V → VH is then defined as

IHv :=

m0∑
j=1

(MTj
ψj , v)φj .

For this interpolant, one can show an interpolation estimate similar to (3.1.2).
Indeed, in [17], it is shown that if Assumptions 4.3.1 are fulfilled, then IH
satisfies the estimate

H−1
∣∣v − IHv

∣∣
M

+
∣∣IHv∣∣L ≤ C

∣∣v∣∣
L
,

for any function v ∈ V .
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(a) Initial network. (b) Network embedded into D.

(c) Boxes introduced. (d) Final mesh.

Figure 4.8: Depiction of the discretization workflow from the initial network structure
to a coarse- and fine-scale. In (a), the initial network is displayed. The network is then
embedded into the spatial domain D, here set to a unit square. This is illustrated in (b),
where the red nodes represent the node set N of the graph. In (c), the boxes BR(x)
are introduced. Here, it is moreover shown how boundary nodes belong to a specific
element. The final mesh TH with coarse grid nodes {yi}mi=1 (blue) is shown in (d), with
the fine scale nodes (red) included.
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Figure 4.9: A modified basis function Qλi and its decay illustrated in logarithmic scale.

The LOD method on spatial networks

We are now set to construct an LOD based approach applicable to spatial
network models. The interpolant IH captures the coarse-scale behavior of
functions, while the fine-scale features are recovered in the space Vf := ker(IH).
On this space, we can define a corrector problem in similarity to the standard
LOD method, but replacing the bilinear form a(·, ·) with the scalar-product
(K·, ·). That is, we define Q : V → Vf such that

(KQv, w) = (Kv,w), (4.3.5)

holds for all v ∈ Vf . The multiscale space is then constructed by subtracting the
corrected space QVH from VH , i.e., Vms := VH −QVH . The solution space has
thus been decomposed as V = Vms ⊕ Vf , where the elements of Vms and Vf are
orthogonal with respect to (K·, ·). In similarity to the standard LOD method,
the space V ms can be used to compute coarse-scale approximations to (4.3.1)
that remain accurate. However, creating Vms necessitates solving the global
corrector system (4.3.5) for each basis function λi, i = 1, . . . ,m0, which quickly
becomes computationally demanding for large systems. Fortunately, in [17],
it was proven that a corrected basis function, just like for the standard LOD,
satisfies an exponential decay away from its corresponding support. For an
illustration of a modified basis function, and its decay, see Figure 4.9. Due to
the decay, the localization procedure from Section 2.1 can be repeated to define
the localized counterpart to Vms, denoted Vms,k, where k is the localization
parameter determining the size of the grid patches (recall Figure 3.2).

Before stating the final method, the wave equation (4.3.1) further requires a
discretization of the temporal domain, which follows in a more traditional
fashion. In similarity to Section 2.2, we consider the uniform partition 0 =:
t0 < t1 < . . . < tN := T of [0, T ] with time step τ = tn − tn−1. We deploy
the scheme used for the standard wave equation in (2.2.9). In total, the fully
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discretized LOD based method becomes: find unms,k ∈ Vms,k for n = 2, . . . , N
such that

(M∂t∂̄tu
n
ms,k, v) + (K 1

2 (u
n+1/2
ms,k + u

n−1/2
ms,k ), v) = (fn, v), (4.3.6)

for all v ∈ Vms,k with initial values u0ms,k, u
1
ms,k ∈ Vms,k.

Theoretical results

For the method (4.3.6), it holds that the energy is conserved through all time
steps. Indeed, if f ≡ 0, then∣∣∂tunms,k

∣∣2
M

+
∣∣un+1/2

ms,k

∣∣2
K

=
∣∣∂tu0ms,k

∣∣2
M

+
∣∣u1/2ms,k

∣∣2
K
,

holds for all n ≥ 0, which can be shown by following the proof of [42,
Lemma 13.2] with Vms,k as the test function space. In Paper III, an a priori
error analysis is presented for the scheme (4.3.6), where convergence of optimal
order is shown. The analysis borrows elements from the LOD theory for the
continuous wave equation (see [2]), the discrete LOD theory for stationary
matrix systems (see [17]), and standard finite elements results for hyperbolic
equations (see, e.g., [42]). One part is also dedicated to stability analysis of
operators in the norms based on the matrices M and K.

We state the main result for the proposed method (4.3.6), and refer to Paper III
for the details on the full analysis. In the theorem statement, we use the
operator Rms

k , which denotes the Ritz-projection with respect to (K·, ·) onto
V ms, i.e., for any v ∈ V it holds that (KRms

k v, w) = (Kv,w) for all w ∈ V ms. We
moreover state a requirement of so-called well-prepared data. This assumption
deals with the high order derivatives on the initial values which appear in a
priori analysis of wave equations. See, e.g., [2] or Paper III for further discussion
on well-prepared data.

Theorem 4.3.3. Let the localization parameter be chosen such that k ∼ log(1/H),
and assume the initial values, u0ms,k, u

1
ms,k, satisfy∣∣∂tu0ms,k −Rms

k u(t0)
∣∣
M

+
∣∣u1/2ms,k −Rms

k u(t1/2)
∣∣
K

≤ C(H + τ2).

Moreover, the data is assumed to be well-prepared and compatible of order 3. Then, the
error between the multiscale approximation and the reference solution satisfies∣∣∂tunms,k −Dtu(tn+1/2)

∣∣
M

+
∣∣un+1/2

ms,k − u(tn+1/2)
∣∣
K

≤ C(H + τ2),

where the constant C is independent of the complex features inherited by the network.
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Figure 4.10: The reference solution un of (4.3.7) plotted at time steps t = 0, 2/3, 4/3, 2.

Numerical example

We conclude the section on wave propagation on spatial networks by a numer-
ical example. For the model problem, we use the matrix K defined in (4.3.3),
and consider the scalar valued problem

MD2
t u+Ku =M (sin(2πt) · 1) , t ∈ [0, 2]

u = 0, x ∈ ∂D,

u(0) = 0, Dtu(0) = 0,

(4.3.7)

where 1 ∈ V . We measure the error by comparing with a reference solution un

computed on the full network discretization. For both the reference solution
and the LOD approximation, the temporal domain is discretized with a time
step τ = 2 · 10−3. The LOD approximation unms,k is computed with coarse
mesh sizes H−i, i = 2, . . . , 5 with localization parameter k = log2(1/H). In
Figure 4.10, the reference solution is displayed at four different points on time,
and Figure 4.11 shows the optimal order convergence in both M -norm and
K-norm.

Remark 4.3.4. The numerical example is set in a scalar-valued setting. In
practice, it is more interesting to consider the modeling of elastic waves, which
corresponds to the vector-valued case. However, as thoroughly done in [17, 23],
and remarked in Paper III, it is possible to extend the theory to the vector-
valued setting. In Paper III, a final numerical example is provided where an
elastic wave equation is considered, for which it is numerically verified that
the optimal order convergence is achieved for such cases as well.

4.4 Parabolic SPDE with additive noise

The final part of this thesis considers the LOD framework applied to stochastic
partial differential equations. As model problem, we use the parabolic SPDE
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Figure 4.11: Convergence of the LOD approximation un
ms,k in M -norm and K-norm.

with additive noise

dX + ΛX dt = GdW, in D × (0, T ],

X = 0, on ∂D × (0, T ],

X(·, 0) = X0, in D.
(4.4.1)

where X is a V -valued random process for some separable Hilbert space V ,
D is a polygonal (or polyhedral) domain in Rd, d = 2, 3, Λ := −∇ · A∇ is an
operator with (rapidly oscillating) diffusion A = A(x), and X0 is the (possibly
stochastic) initial value. The noise W is an U -valued Q-Wiener process defined
on the filtered probability space (Ω,F ,P, {Ft}t≥0), and G ∈ L(U ;V ) maps the
noise between the separable Hilbert spaces U and V .

Simulation of SPDEs is of importance to a wide range of real-life applications.
This includes models in physics, chemistry, biology and mathematical finance
(see, e.g., [46] for more applications). In particular, the system (4.4.1) with
multiscale effects appears, for instance, when modeling heat flow in an inho-
mogeneous (e.g., composite) material with uncertainties in measurements of
the source term. The theory on parabolic SPDEs is by now well-established.
For results on existence and uniqueness, regularity, asymptotic behavior, and
further properties of the solution, we refer to [15, 38].
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Notes on the FEM approach

From a computational perspective, strong convergence has been derived for the
finite element method in [66, 67] (with extension to the semi-linear case in [38]).
However, as remarked in Section 2.3, the mesh size must be small enough to
resolve the oscillations in the diffusion in order to achieve the derived order
of convergence. To avoid this requirement, we apply the LOD framework
to (4.4.1) and derive a priori optimal order convergence rate independent of the
variations in A. For the details of the method and the corresponding analysis,
we refer to the work in Paper IV.

From Section 2.3, we recall the backward Euler–Galerkin scheme (2.3.6), for
which the solution can be expressed by

Xn
h = En

τ,hPhX0 +

n∑
j=1

∫ tj

tj−1

En−j+1
τ,h PhGdW (s). (4.4.2)

In [38], the author derives an a priori error bound for the strong error of the
form (2.3.8). However, the analysis makes use of elliptic regularity estimates,
both in terms of estimating ∥X∥H2(D), as well as implicitly by properties of
the heat semigroup E(t) generated by the Laplacian. In our case, where Λ =
−∇ ·A∇ and A contains rapid variations, such estimates are prohibited in the
analysis since the constant depends on the variations in A.

The LOD method

We consider the LOD method corresponding to (4.4.1). For this purpose, let
Vms,k be the localized multiscale space constructed in complete analogy with
Section 3.1. The goal is to express a similar backward Euler–Galerkin scheme
as (2.3.6), but posed on Vms,k. For this purpose, let Pms

k : Vh → Vms,k be the
L2(D)-projection onto Vms,k, i.e., for any v ∈ Vh, it holds that

(Pms
k v, w) = (v, w),

for all w ∈ Vh, and define the composed operator Pms
k,h = Pms

k ◦ Ph, where
Ph is the standard L2(D)-projection onto Vh defined in (2.3.5). It holds that
such a projection is well-defined, since one can expand the functions in the
basis {λx − Qf,kλx}x∈N that spans Vms,k, which in turn yields a symmetric
positive-definite matrix system. On Vms,k, we moreover define the localized
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diffusion operator Λms
k : Vms,k → Vms,k by the relation

(Λms
k v, w) = a(v, w),

for all v, w ∈ Vms,k. The proposed method states: find Xn
ms,k ∈ Vms,k for

n = 1, . . . , N with initial value Pms
k,hX0, such that

Xn
ms,k −Xn−1

ms,k + τΛms
k Xn

ms,k =

∫ tn

tn−1

Pms
k,hGdW (s). (4.4.3)

In similarity to how the solution to the standard backward Euler–Galerkin
scheme can be written on the form (4.4.2), we have that (4.4.3) satisfies

Xn
ms,k = Ems

τ,k,nP
ms
k,hX0 +

n∑
j=1

∫ tj

tj−1

Ems
τ,k,n−j+1P

ms
k,hGdW (s), (4.4.4)

where we have defined Ems
τ,k,n := ((I + τΛms

k )−1)n.

Error analysis

The goal of Paper IV is to derive an a priori error bound for the strong error,
in similarity to (2.3.8), but independent of the scale ε at which the diffusion
oscillates. The analysis is mainly based on a combination of the LOD theory
for deterministic parabolic problems (see [50]), with modified results from
finite element theory for SPDEs. The modifications include, in particular, error
bounds between the operators En

τ,h and Ems
τ,k,n independent of the scale ε. In

total, we find the following theorem for the strong error between the mild
reference solution Xn

h from (4.4.2) computed on the fine scale and the LOD
approximation Xn

ms,k. For the specific details of the analysis, we refer to the
work in Paper IV.

Theorem 4.4.1. Let Xn
h be the finite element reference solution of (4.4.1), given by

the formula (4.4.2), and let Xn
ms,k be the LOD approximation from (4.4.4). Then, for

µ ∈ [1, 2], the error satisfies

∥Xn
h −Xn

ms,k∥L2(Ω;L2(D)) ≤ CHµ,

where the constant is independent of the variations in the diffusion A.

The convergence order µ in the theorem statement is a parameter that depends
on the regularity of the initial value and the covariance operator Q. We em-
phasize that under sufficient regularity, it holds that the solution converges
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strongly with optimal order, and refer to the analysis in Paper IV for the details.

Monte-Carlo estimation

As remarked in Section 2.3, it is often interesting to analyze the expectation
of the solution to (4.4.1), or more generally the expectation of some Lipschitz
function g : L2(D) → B. We seek to approximate the quantity E[g(X(tn))] by
combining the LOD method with the Monte-Carlo approach from Section 2.3.
That is, the full LOD Monte-Carlo estimator is given by

E[g(Xn
ms,k)] ≈ EM [g(Xn

ms,k)] :=
1

M

M∑
m=1

g(Xn,m
ms,k),

where {Xn,m
ms,k}Mm=1 are independent and identically distributed random sam-

ples with the same distribution as Xn
ms,k. By repeating the arguments from

Section 2.3, and applying the strong convergence rate from Theorem 4.4.1, the
full weak error satisfies

∥E[g(X(tn))]− EM [g(Xn
ms,k)]∥L2(Ω;L2(D)) ≤ C

(
τ +H2 +

1√
M

)
, (4.4.5)

where the constant is independent of the variations in the diffusion A.

We quickly note the computational benefits that the LOD method brings to the
table. The key difference between this estimate and the estimate (2.3.12) for
the finite element approach, is the absence of the ε-dependence in the spatial
term. That is, we achieve convergence immediately without the requirement to
resolve ε. For the Monte-Carlo estimation, this is implies that each simulation
Xn,m

ms,k is computed on a coarse grid of mesh size H , in contrast to the finite
element case (see Section 2.3), where the simulations require a mesh size h < ε.

Multilevel Monte-Carlo

The LOD Monte-Carlo estimator manages to achieve quadratic convergence
rate for the weak error, independent of ε. However, this follows under the
assumption that the number of samples is proportional to the coarse mesh size
as M ∼ H−4, which in turn is computationally demanding. In order to reduce
the complexity, we combine the LOD method with the multilevel Monte-Carlo
method, presented in Section 2.3. For this purpose, let Xn

ms,k,j denote the LOD
approximation from the multiscale space Vms,k based on the discretization THj

.
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By replacing the standard finite element solution by the LOD approximation
in (2.3.13), we have the LOD multilevel Monte-Carlo estimator

EJ [g(Xn,m
ms,k,J)] := EM0 [g(X

n,m
ms,k,0)] +

J∑
j=1

EMj [g(X
n,m
ms,k,j)− g(Xn,m

ms,k,j−1)].

We combine the arguments from Section 2.3, with the convergence results for
the LOD approximation. This yields the error estimate

∥E[g(X(tn))]− EJ [g(Xn
ms,k,J)]∥L2(Ω;B) ≤ C

(
τ +H2

J +
1√
M0

+

J∑
j=1

H2
j√
Mj

)
.

That is, the similar estimate as for the finite element holds, but independent
of the scale ε. If we furthermore choose the sample sizes as M0 = γH−4

J and
Mj =M0H

4
j · 22δj for some proportionality constant γ and δ > 0, we get

∥E[g(X(tn))]− EJ [g(Xn
ms,k,J)]∥L2(Ω;B) ≤ C(τ +H2

J), (4.4.6)

where the constant depends on, e.g., the contrast in the diffusion A and the
parameters γ and δ, but is independent of the variations in A.

Numerical examples

We conclude the section on SPDEs with two numerical examples. At first,
we illustrate the strong convergence stated in Theorem 4.4.1. The second
example shows the weak convergence, where the expectation of the LOD
approximation is computed using a standard Monte-Carlo estimator and a
multilevel Monte-Carlo estimator, respectively. Furthermore, an illustration of
the computational time required for the different methods is included, which
highlights the efficiency of the LOD method in the context of SPDEs.

As model problem for the numerical examples, we consider the system (4.4.1)
with an additional source term f added in the right-hand side, i.e.,

dX(t) + ΛX(t) dt = f(t) dt+GdW (t). (4.4.7)

By adding extra source data to the system, the amplitude of the solution will
not vanish as rapidly. Consequently, we can include higher contrast in the
diffusion, which in turn yields a more interesting solution.

Remark 4.4.2. Throughout this section, we have considered the equation (4.4.7)
with f ≡ 0. However, by linearity, one can decompose the solution as X =
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X1 +X2, where X1 satisfies (4.4.7) with f ≡ 0, and X2 is the solution with zero
noise, i.e., the deterministic case where W ≡ 0. Therefore, the error can be split
as

∥Xn
h −Xn

ms,ℓ∥L2(Ω;L2) ≤ ∥Xn
h,1 −Xn

ms,ℓ,1∥L2(Ω;L2) + ∥Xn
h,2 −Xn

ms,ℓ,2∥L2(Ω;L2),

where the analysis for the second term follows immediately from the determin-
istic analysis, made in [50].

For the examples, we use the unit square domain D = [0, 1] × [0, 1]. The
diffusion is generated as a piecewise constant function whose values vary in
the interval [0.01, 10] at the scale ε = 2−6. The fine discretization is performed
with fine mesh width h = 2−8, such that it resolves the variations in the
diffusion. The temporal domain is discretized with time step τ = 0.01, as initial
data we set X0(x, y) = sin(πx) sin(πy) and the source is chosen as f ≡ 5.

For the noise, recall the Karhunen–Loève expansion of W from (2.3.1). In
numerical simulations, this expansion is truncated up to a parameter κ (set to
κ ∼ h−1 in our examples). That is, we use the noise approximation

Wκ(x, y, t) =

κ∑
m=1

κ∑
n=1

√
λm,nβm,n(t)em,n(x, y),

where {βm,n(t)}m,n are mutually independent, real-valued Brownian motions,
and em,n are the eigenvalues to the covariance operator Q with corresponding
eigenvalues {λm,n}. The operator Q in the numerical examples is defined
through the choice of em,n and λm,n, where λm,n determines the amplitude of
the noise, and consequently the variance of the solution. The eigenfunctions
are set to em,n = sin(nπx) sin(mπy), and we let λm,n = Θ(m2.01 + n2.01)−1,
where Θ determines the amplitude of the noise, and consequently the variance
and smoothness of the solution.

The strong error between the reference solution Xn
h and the LOD approxi-

mation Xn
ms,k is computed for coarse grid sizes H = 2−i, i = 1, . . . , 6, with

localization parameter k = log2(1/H) and noise parameter Θ = 1. The error is
compared in L2(Ω;L2(D))-norm at the final time T = 0.5. In Figure 4.12, the
reference solution and the corresponding noise at the final time is shown. Since
the norm is a random variable, we estimate it by a Monte-Carlo estimator with
100 samples, i.e., ∥ · ∥L2(Ω;L2(D)) ≈ E100[∥ · ∥]. We also include the FEM approx-
imation for coarse grid sizes as comparison, as well as an O(H2)-reference line
indicating the convergence rate from Theorem 4.4.1. The convergence is dis-
played in Figure 4.13, where it is seen how the LOD approximation converges
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Figure 4.12: The reference solution XN
h and the truncated noise Wκ(x, y, tN ), plotted at

final time tN = 0.5.

with second order, while the FEM error remains constant for all grid sizes.

For the weak error, we analyze the convergence of the expectation of the solu-
tion, i.e., the error between E[Xn

h ] and its corresponding LOD approximation.
In order to compare the performance between the standard Monte-Carlo and
the multilevel Monte-Carlo estimators, we fix H = HJ for the standard Monte-
Carlo estimation and denote by Xn

ms,k,J the LOD approximation on the coarse
grid with mesh sizeHJ . We decrease the noise amplitude parameter to Θ = 5−2

such that the variance is reduced. This is done to lower the requirement on the
number of samples necessary for the Monte-Carlo estimation. Moreover, note
that the expectation of the solution to (4.4.7) satisfies a deterministic equation
(since the noise has zero mean). Consequently, the reference solution E[Xn

h ]
can be computed without any Monte-Carlo estimation.

It was previously shown that the weak error consists of a deterministic part
and a statistical part, respectively. As an example, the estimator EM [XN

ms,ℓ,J ]

is computed for HJ = 2−(J+1), J = 0, . . . , 5, with M = 10000 samples on each
mesh size, and the total error is plotted as a function ofM . The result is depicted
in Figure 4.14, where horizontal lines are included that indicate the size of the
deterministic error for each coarse mesh size. In the figure, we see that after
10000 samples the statistical error has vanished for HJ = 2−1, . . . , 2−4, while
it still remains for HJ = 2−5, 2−6. As earlier pointed out, the deterministic
and statistical errors are balanced by choosing the samples of the Monte-Carlo
estimator proportional to the mesh size as MJ ∼ H−4

J .

Next, we compute an estimation of E[XN
ms,k,J ] using standard Monte-Carlo

estimation (LOD-MC) and multilevel Monte-Carlo estimation (LOD-MLMC),
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Figure 4.13: The strong error at final time tN = 0.5 between the multiscale approxi-
mation XN

ms,k and the reference solution XN
h computed on the fine grid. The norm is

estimated as ∥·∥L2(Ω;L2(D)) ≈ E100[∥·∥], i.e., by a Monte-Carlo estimator with M = 100
samples.

respectively. For all estimators, we set γ = 0.01 as a scaling parameter for
the number of samples. The standard Monte-Carlo estimator EMJ

[Xn
ms,k,J ] is

evaluated with MJ = γH−4
J number of samples. This is done for coarse mesh

sizes HJ = 2−(J+1), J = 0, . . . , 4. For the multilevel Monte-Carlo estimator
EJ [Xn

ms,k,J ] we setM0 = γH−4
J and letMj =M0H

4
j ·22δj for j = 1, . . . , J , with

δ = 1. The estimator is evaluated for mesh sizes HJ = 2−(J+1), J = 0, . . . , 5.
In Figure 4.15, the convergence of the weak error for both estimators is il-
lustrated. For comparison, the Monte-Carlo estimation of the finite element
solution based on the coarse grid (FEM-MC) is included, i.e., EMJ

[XN
HJ

] with
MJ = γH−4

J . We note that both the standard and multilevel Monte-Carlo esti-
mators of the LOD solution converge with quadratic rate, as predicted in (4.4.5)
and (4.4.6). In contrast, we see that the finite element solution evaluated on the
coarse mesh does not reach the region of convergence, since the mesh is unable
to resolve the variations in the diffusion.

We conclude with a note on the computational complexity of computing
E[XN

ms,k,J ] using the LOD-MC and LOD-MLMC estimators, respectively. We
compare these methods with the Monte-Carlo estimation of a finite element
solution computed on the fine grid with mesh size h. Note that, although the
LOD-MC and FEM-MC methods require the same number of samples, i.e.,
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J , and for the LOD-MLMC estimator the samples are set to M0 = γH−4
J and

Mj = M0H
4
j · 22δj , with parameters γ = 0.01 and δ = 1.

MJ ∼ H−4
J , the LOD-MC computes the samples on a coarse grid of mesh size

HJ , while the FEM-MC samples are evaluated on a fine mesh. An additional
advantage is gained by applying the LOD-MLMC estimator, since the number
of samples on the finest coarse grid is always limited to MJ ∼ 22δJ , indepen-
dent of the total number of samples. To emphasize the computational gain, we
compare the total time required for the weak error simulations in each case. The
times are logged for the coarse mesh sizes HJ = 2−1, . . . , 2−6, where the num-
ber of samples for the standard Monte-Carlo estimation is MJ = γH−4

J with
γ = 0.01 and in the multilevel case we set M0 = γH−4

J and Mj =M0H
4
j · 22δj ,

j = 1, . . . , J , with δ = 1. The total computational time as a function of the
coarse mesh size HJ is plotted for each method, and illustrated in Figure 4.16.
We note that the computational time for FEM-MC is magnitudes larger than
each LOD-based method. The contrast between LOD-MC and LOD-MLMC
is small for coarse mesh sizes, but as HJ decreases the LOD-MLMC method
shows significant advantage.



5 Summary of papers

Paper I. In Paper I we propose and analyze the GFEM in (4.1.5)-(4.1.6), based
on the LOD method, for strongly damped wave equations with rapidly varying
data. The method is designed to handle independent variations in both the
damping coefficient and wave propagation speed respectively. It does so by
correcting for the damping in the transient phase, where it is as most effective,
and automatically transitions into correcting for the wave propagation speed
in the steady state phase, where the damping has vanished. Convergence of
optimal order is proven for the ideal method, as well as the exponential decay
of the basis corrector functions to justify the localization. Numerical examples
are presented that confirm the theoretical findings.

Paper II. In Paper II we present the GFEM (4.2.3)-(4.2.4) extending the LOD
framework to parabolic equations where the diffusion is highly oscillating in
both time and space. The method computes a coarse-scale representation of
the differential operator that contains information on the space-time variations
in the diffusion. Once the coarse-scale representation is constructed, it can
furthermore be reused to solve the system for multiple right-hand sides. Con-
vergence of optimal order is proven for the ideal method. We illustrate the
space-time decay of the basis correctors, which is necessary for the localized
scheme. Numerical examples that illustrate the error convergence and the
performance of the localized method are presented.

Paper III. In Paper III, the LOD method extended to spatial network models
is applied to a discrete version of the linear wave equation, characterized by a
symmetric positive-definite matrix K with high data variations. The method
produces coarse-scale approximations by introducing an artificial grid and
enrich it by K-dependent information computed on the high dimensional
network model. The spatial discretization is combined with an energy con-
serving temporal scheme to compose the proposed method. A priori optimal
order convergence is derived under the assumption of well-prepared initial
data. The theoretical findings are confirmed by numerical examples for both
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scalar-valued and elastic wave propagation.

Paper IV. In Paper IV, the LOD method is applied to a multiscale-type
parabolic stochastic partial differential equation with additive noise. Opti-
mal order convergence is derived for the strong error, which depends on the
regularity of the data. Convergence of the weak error is analyzed by means
of (multilevel) Monte-Carlo estimation. The theoretical results are verified by
numerical examples and the computational efficiency of the LOD method is
highlighted.



Bibliography

[1] A. Abdulle, W. E, B. Engquist, and E. Vanden-Eijnden. The heterogeneous
multiscale method. Acta Numer., 21:1–87, 2012.

[2] A. Abdulle and P. Henning. Localized orthogonal decomposition
method for the wave equation with a continuum of scales. Math. Comp.,
86(304):549–587, 2017.

[3] R. Altmann, E. Chung, R. Maier, D. Peterseim, and S.-M. Pun. Compu-
tational multiscale methods for linear heterogeneous poroelasticity. J.
Comput. Math., 38(1):41–57, 2020.

[4] G. Avalos and I. Lasiecka. Optimal blowup rates for the minimal energy
null control of the strongly damped abstract wave equation. Ann. Sc.
Norm. Super. Pisa Cl. Sci. (5), 2(3):601–616, 2003.

[5] J. Azevedo, C. Cuevas, and H. Soto. Qualitative theory for strongly
damped wave equations. Math. Method Appl. Sci., 40, 08 2017.

[6] I. Babuška, G. Caloz, and J. E. Osborn. Special finite element methods for
a class of second order elliptic problems with rough coefficients. SIAM J.
Numer. Anal., 31(4):945–981, 1994.

[7] I. Babuška and J. E. Osborn. Generalized finite element methods: their
performance and their relation to mixed methods. SIAM J. Numer. Anal.,
20(3):510–536, 1983.

[8] A. Barth and A. Lang. Multilevel Monte Carlo method with applications
to stochastic partial differential equations. Int. J. Comput. Math, 89:2479 –
2498, 2012.

[9] A. Barth and T. Stüwe. Weak convergence of Galerkin approximations
of stochastic partial differential equations driven by additive Lévy noise.
Math. Comput. Simul., 143:215–225, 2018. 10th IMACS Seminar on Monte
Carlo Methods.

69



70 BIBLIOGRAPHY

[10] K.-J. Bathe and M. M. I. Baig. On a composite implicit time integration
procedure for nonlinear dynamics. Comput. Struct., 83(31):2513–2524, 2005.

[11] K.-J. Bathe and G. Noh. Insight into an implicit time integration scheme
for structural dynamics. Comput. Struct., 98-99:1–6, 2012.

[12] E. Bonetti, E. Rocca, R. Scala, and G. Schimperna. On the strongly damped
wave equation with constraint. Commun. Partial Differ. Equ., 42(7):1042–
1064, 2017.

[13] A. Carvalho and J. Cholewa. Local well posedness for strongly damped
wave equations with critical nonlinearities. Bull. Aust. Math. Soc., 66, 12
2002.

[14] C. Cuevas, C. Lizama, and H. Soto. Asymptotic periodicity for strongly
damped wave equations. Abstr. Appl. Anal., 2013, 09 2013.

[15] G. Da Prato and J. Zabczyk. Stochastic Equations in Infinite Dimensions.
Encyclopedia of Mathematics and its Applications. Cambridge University
Press, 2 edition, 2014.

[16] W. E and B. Engquist. The heterogeneous multiscale methods. Commun.
Math. Sci., 1(1):87–132, 2003.

[17] F. Edelvik, M. Görtz, F. Hellman, G. Kettil, and A. Målqvist. Numerical
homogenization of spatial network models. Preprint, arXiv:2209.05808,
2022.

[18] Y. Efendiev, J. Galvis, and T. Y. Hou. Generalized multiscale finite element
methods (GMsFEM). J. Comput. Phys., 251:116–135, 2013.

[19] C. Engwer, P. Henning, A. Målqvist, and D. Peterseim. Efficient imple-
mentation of the localized orthogonal decomposition method. Comput.
Methods Appl. Mech. Eng., 350:123–153, 06 2019.

[20] F. Gazzola and M. Squassina. Global solutions and finite time blow up
for damped semilinear wave equations. Ann. Inst. H. Poincaré Anal. Non
Linéaire, 23(2):185–207, 2006.

[21] M. B. Giles. Multilevel Monte Carlo path simulation. Oper. Res., 56(3):607–
617, 2008.

[22] P. J. Graber and J. L. Shomberg. Attractors for strongly damped wave
equations with nonlinear hyperbolic dynamic boundary conditions. Non-
linearity, 29(4):1171, 2016.



BIBLIOGRAPHY 71

[23] M. Görtz, F. Hellman, and A. Målqvist. Iterative solution of spatial net-
work models by subspace decomposition. Preprint, arXiv:2207.07488,
2022.

[24] M. Görtz, G. Kettil, A. Målqvist, M. Fredlund, K. Wester, and F. Edelvik.
Network model for predicting structural properties of paper. Nord. Pulp
Pap. Res. J., 37(4):712–724, 2022.

[25] F. Hellman and A. Målqvist. Contrast independent localization of multi-
scale problems. Multiscale Model. Simul., 15(4):1325–1355, 2017.

[26] P. Henning and A. Målqvist. Localized orthogonal decomposition tech-
niques for boundary value problems. SIAM J. Sci. Comput., 36(4):A1609–
A1634, 2014.

[27] P. Henning, A. Målqvist, and D. Peterseim. A localized orthogonal decom-
position method for semi-linear elliptic problems. ESAIM Math. Model.
Numer. Anal., 48(5):1331–1349, 2014.

[28] P. Henning and D. Peterseim. Oversampling for the multiscale finite
element method. Multiscale Model. Simul., 11(4):1149–1175, 2013.

[29] T. Y. Hou and X.-H. Wu. A multiscale finite element method for elliptic
problems in composite materials and porous media. J. Comput. Phys.,
134(1):169–189, 1997.

[30] T. J. Hughes, G. R. Feijóo, L. Mazzei, and J.-B. Quincy. The variational
multiscale method—a paradigm for computational mechanics. Comput.
Methods Appl. Mech. Eng., 166(1-2):3–24, 1998.

[31] D. Hào, N. Duc, and N. Thang. Backward semi-linear parabolic equa-
tions with time-dependent coefficients and local Lipschitz source. Inverse
Problems, 34:055010, 05 2018.

[32] R. Ikehata. Decay estimates of solutions for the wave equations with
strong damping terms in unbounded domains. Math. Methods Appl. Sci.,
24:659 – 670, 06 2001.

[33] V. Kalantarov and S. Zelik. A note on a strongly damped wave equation
with fast growing nonlinearities. J. Math. Phys., 01 2015.

[34] P. Kelly. Solid Mechanics Part I: An Introduction to Solid Mechanics. University
of Auckland, 2019.

[35] G. Kettil, A. Målqvist, A. Mark, M. Fredlund, K. Wester, and F. Edelvik.
Numerical upscaling of discrete network models. BIT Numer. Math., 60:67–
92, 03 2020.



72 BIBLIOGRAPHY

[36] A. Khanmamedov. Strongly damped wave equation with exponential
nonlinearities. J. Math. Anal. Appl., 419(2):663 – 687, 2014.

[37] M. Kovács, S. Larsson, and F. Lindgren. Weak convergence of finite
element approximations of linear stochastic evolution equations with
additive noise. BIT Numer. Math., 52:85–108, 2012.

[38] R. Kruse. Strong and Weak Approximation of Semilinear Stochastic Evolution
Equations, volume 2093 of Lecture Notes in Mathematics. Springer Cham, 01
2014.

[39] A. Lang. A note on the importance of weak convergence rates for SPDE
approximations in multilevel Monte Carlo schemes. In R. Cools and
D. Nuyens, editors, Monte Carlo and Quasi-Monte Carlo Methods, pages
489–505, Cham, 2016. Springer International Publishing.

[40] M. G. Larson and A. Målqvist. Adaptive variational multiscale methods
based on a posteriori error estimation: Duality techniques for elliptic
problems. In Multiscale Methods in Science and Engineering, pages 181–193.
Springer, 2005.

[41] M. G. Larson and A. Målqvist. Adaptive variational multiscale methods
based on a posteriori error estimation: Energy norm estimates for elliptic
problems. Comput. Methods Appl. Mech. Eng., 196:2313–2324, 04 2007.

[42] S. Larsson and V. Thomée. Partial Differential Equations with Numerical
Methods, volume 45. Springer-Verlag Berlin Heidelberg, 2003.

[43] S. Larsson, V. Thomée, and L. B. Wahlbin. Finite-element methods for a
strongly damped wave equation. IMA J. Numer. Anal., 11(1):115–142, 1991.

[44] Y. Lin, V. Thomée, and L. Wahlbin. Ritz-Volterra projections to finite element
spaces and applications to integro-differential and related equations. Technical
report (Cornell University. Mathematical Sciences Institute). Mathematical
Sciences Institute, Cornell University, 1989.

[45] K. Lipnikov, G. Manzini, J. D. Moulton, and M. Shashkov. The mimetic
finite difference method for elliptic and parabolic problems with a stag-
gered discretization of diffusion coefficient. J. Comput. Phys., 305:111–126,
2016.

[46] G. Lord, C. Powell, and T. Shardlow. An Introduction to Computational
Stochastic PDEs. Cambridge Texts in Applied Mathematics. Cambridge
University Press, 08 2014.

[47] R. Maier and D. Peterseim. Explicit computational wave propagation in
micro-heterogeneous media. BIT Numer. Math., 59(2):443–462, 2019.



BIBLIOGRAPHY 73

[48] A. Målqvist. Multiscale methods for elliptic problems. Multiscale Model.
Simul., 9(3):1064–1086, 2011.

[49] A. Målqvist and A. Persson. A generalized finite element method for
linear thermoelasticity. ESAIM Math. Model. Numer. Anal., 51(4):1145–1171,
2017.

[50] A. Målqvist and A. Persson. Multiscale techniques for parabolic equations.
Numer. Math., 138(1):191–217, 2018.

[51] A. Målqvist and D. Peterseim. Localization of elliptic multiscale problems.
Math. Comp., 83(290):2583–2603, 2014.

[52] A. Målqvist and D. Peterseim. Generalized finite element methods
for quadratic eigenvalue problems. ESAIM Math. Model. Numer. Anal.,
51(1):147–163, 2017.

[53] A. Målqvist and D. Peterseim. Numerical homogenization by localized orthog-
onal decomposition, volume 5 of SIAM Spotlights. Society for Industrial and
Applied Mathematics (SIAM), Philadelphia, PA, 2020.

[54] A. Målqvist and B. Verfürth. An offline-online strategy for multiscale prob-
lems with random defects. ESAIM Math. Model. Numer. Anal., 56(1):237–
260, 2022.

[55] P. Massatt. Limiting behavior of strongly damped nonlinear wave equa-
tions. J. Differ. Equ., 48:334–349, 06 1983.

[56] H. Owhadi. Multigrid with rough coefficients and multiresolution op-
erator decomposition from hierarchical information games. SIAM Rev.,
59(1):99–149, 2017.

[57] H. Owhadi and C. Scovel. Operator-adapted wavelets, fast solvers, and nu-
merical homogenization, volume 35 of Cambridge Monographs on Applied and
Computational Mathematics. Cambridge University Press, Cambridge, 2019.

[58] S. Peszat and J. Zabczyk. Stochastic Partial Differential Equations with Lévy
Noise: An Evolution Equation Approach. Encyclopedia of Mathematics and
its Applications. Cambridge University Press, 2007.

[59] D. Peterseim. Variational multiscale stabilization and the exponential de-
cay of fine-scale correctors. In Building Bridges: Connections and Challenges
in Modern Approaches to Numerical Partial Differential Equations, volume 114
of Lect. Notes Comput. Sci. Eng., pages 341–367. Springer, Cham, 2016.

[60] A. Quarteroni, A. Manzoni, and F. Negri. Reduced Basis Methods for Partial
Differential Equations: An Introduction, volume 92 of UNITEXT. Springer
Cham, 2015.



74 BIBLIOGRAPHY

[61] M. Reed and B. Simon. I: Functional Analysis. Methods of Modern Mathe-
matical Physics. Elsevier Science, 1981.

[62] H. Rui and H. Pan. Block-centered finite difference methods for parabolic
equation with time-dependent coefficient. Jpn. J. Ind. Appl. Math., 30:681–
689, 2013.

[63] L. R. Scott and S. Zhang. Finite element interpolation of nonsmooth
functions satisfying boundary conditions. Math. Comput., 54(190):483–493,
1990.

[64] V. Thomée. Galerkin Finite Element Methods for Parabolic Problems, volume 25
of Springer Series in Computational Mathematics. Springer, 1997.

[65] K. Urban and A. T. Patera. An improved error bound for reduced basis
approximation of linear parabolic problems. Math. Comp., 83(288):1599–
1615, 2014.

[66] Y. Yan. Semidiscrete Galerkin approximation for a linear stochastic
parabolic partial differential equation driven by an additive noise. BIT
Numer. Math., 44:829–847, 12 2004.

[67] Y. Yan. Galerkin finite element methods for stochastic parabolic partial
differential equations. SIAM J. Numer. Anal., 43, 01 2005.

[68] S. Yousefi, D. Lesnic, and Z. Barikbin. Satisfier function in Ritz-Galerkin
method for the identification of a time-dependent diffusivity. J. Inverse Ill
Posed Probl., 20, 12 2012.


	Abstract
	List of publications
	Acknowledgements
	Contents
	Introduction
	The finite element method
	Stationary equations
	Evolution problems
	Stochastic PDEs

	Localized orthogonal decomposition (LOD)
	LOD in the elliptic setting
	LOD for time-dependent problems

	LOD for evolution problems
	Strongly damped wave equation
	Parabolic equation with time-dependent diffusion
	Wave equation on spatial networks
	Parabolic SPDE with additive noise

	Summary of papers
	Bibliography
	Papers I-IV

