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Abstract

The variational multiscale method provides a framework for construction of adaptive

multiscale finite element methods. We present a new adaptive finite element method

based on the variational multiscale method and an a posteriori error estimate in

the energy norm for this method. The estimate captures crucial parameters of the

method and shows how they are related. We present an adaptive algorithm that tunes

these parameters automatically according to the a posteriori error estimate. Finally,

we show how the method works in practice by presenting a numerical example.
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The focus of this note is to present the adaptive variational multiscale method and show

how it can be used to solve multiscale problems in an adaptive fashion. We start by

introducing a simple model problem.
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1 The Model Problem

We study the Poisson equation with a coefficient a and homogeneous Dirichlet boundary

conditions: find u ∈ H1
0 (Ω) such that

−∇ · a∇u = f in Ω, (1.1)

where Ω is a polygonal domain in Rd, d = 1, 2, or 3 with boundary Γ, f ∈ L2(Ω), and

a ∈ L∞(Ω) such that a(x) > 0 for all x ∈ Ω. The variational form of (1.1) reads: find

u ∈ V = H1
0 (Ω) such that

a(u, v) = (f, v) for all v ∈ V , (1.2)

with the bilinear form

a(u, v) = (a∇u,∇v), (1.3)

for all u, v ∈ V. We mainly focus on multiscale phenomena arising from the coefficient a

in Eq. (1.1).

2 The Variational Multiscale Method

An important framework for solving multiscale problems is the Variational Multiscale

Method (VMM), see Hughes et al. [2, 3]. The idea is to decompose the solution into

fine uf ∈ Vf and coarse uc ∈ Vc scale contributions as in Eq. (2.1),

a(uc, vc) + a(uf , vc) = (f, vc) for all vc ∈ Vc,

a(uf , vf ) = (f, vf) − a(uc, vf ) =: (R(uc), vf) for all vf ∈ Vf .
(2.1)
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The fine scale equations are solved in terms of the coarse scale residual R(uc), and finally

we eliminate the fine scale solution from the coarse scale equation. This procedure leads

to the modified coarse scale Eq. (2.2) where the modification accounts for the effect of fine

scale behavior on the coarse scales.

a(uc, vc) + a(T R(uc), vc) = (f, vc) for all vc ∈ Vc. (2.2)

Here T represents an approximate solution operator of the fine scale problem. In several

works various ways of analytical modeling of T are investigated often based on bubbles or

element Green’s functions, see Hughes [2].

3 Approximation of Fine Scales Based on Localized

Problems

In the adaptive variational multiscale method (AVMM), see Larson et al. [5, 4, 6] the fine

scale equations of Eq. (2.1) are decoupled by a partition of unity and solved numerically

on patches.

We let N be the set of coarse nodes and Vc be the finite element space of continuous

piecewise linears polynomials on the coarse mesh. We let uf =
∑

i∈N uf,i where

a(uf,i, vf) = (ϕiR(uc), vf) for all vf ∈ Vf ,

and {ϕi}i∈N is a partition of unity e. g. the set of Lagrange basis functions in Vc, be the

solution to the decoupled fine scale equations.

We introduce this expansion of uf in the right hand side of the fine scale equation (2.1)
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and get: find uc ∈ Vc and uf =
∑

i∈N uf,i ∈ Vf such that

a(uc, vc) + a(uf , vc) = (f, vc) for all vc ∈ Vc,

a(uf,i, vf) = (ϕiR(uc), vf) for all vf ∈ Vf and i ∈ N .
(3.1)

The next step is to solve the fine scale equations approximately. For each element in the

partition of unity we associate a domain ωi on which we solve Dirichlet problems. We often

use coarse mesh stars of many layers as local domains. By adding a layer we mean adding

all coarse elements bordering the star. The local domain ωi contains the support of the

element in the partition of unity and is large enough to give a good approximate solution.

The quality of the solution is controlled by error estimates. We now define the local finite

element space Vh
f (ωi) associated with node i. We refine the coarse mesh on the patch ωi

and let Vh
f (ωi) be the fine part of the hierarchical basis on this mesh.

The resulting method reads: find Uc ∈ Vc and Uf =
∑n

i Uf,i where Uf,i ∈ Vh
f (ωi) such that

a(Uc, vc) + a(Uf , vc) = (f, vc) for all vc ∈ Vc,

a(Uf,i, vf) = (ϕiR(Uc), vf) for all vf ∈ Vh
f (ωi) and i ∈ N .

(3.2)

Since the functions in the local finite element spaces Vh
f (ωi) are equal to zero on ∂ωi, Uf

and therefore U will be continuous. If we just have fine scale features on part of the domain

we only solve local problems for these areas. We denote coarse nodes in these areas F and

the rest C. If we write the method in matrix form we would get,

(A + T )Uc = b − d, (3.3)

where A and b are the standard finite element stiffness matrix and load vector and the T

matrix and d vector arises in analogy with Eq. (2.2) since T (R(Uc)) is affine in Uc.

To get an idea of how the localized solution Uf,i behaves when the domain ωi increases we
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plot different solutions Uf,i in Figure 1. Since Uf,i is solved in the slice space Vf and since

the right hand side of the fine scale equations of (3.2) has the same support as ϕi, Uf,i will

decay rapidly towards the boundary of ωi, this can also be seen in Figure 1. We can see

that one layer stars appears to give bad accuracy while two and more layer stars captures

the features of the correct solution.

4 Error Estimation

In Larson et al. [6] we present the following a posteriori error estimate for the adaptive

variational multiscale method in the energy norm ‖e‖2
a = a(e, e).

Theorem 4.1 It holds,

‖e‖2
a ≤ C

∑

i∈C
‖HR(Uc)‖2

ωi
‖ 1√

a
‖2

L∞(ωi)
(4.1)

+ C
∑

i∈F

(

‖
√

HΣ(Uf,i)‖2
∂ωi\Γ + ‖hRi(Uf,i)‖2

ωi

)

‖ 1√
a
‖2

L∞(ωi)
,

where

(−Σ(Uf,i), vf)∂ωi
= (ϕiR(Uc), vf)ωi

− a(Uf,i, vf)ωi
, for all vf ∈ V h

f (ω̄i). (4.2)

Here R(Uc) and Ri(Uf,i) are bounds of the coarse and fine scale residual and Σ(Uf,i) is a

variational approximation of ∂nUf,i on ∂ωi. We can easily understand the contributions to

the error. If no fine scale equations are solved we obtain the first term in the estimate; the

first part of the second sum measures the effect of restriction to patches; and finally the

second part measures the influence of the fine scale mesh parameter h.

For the case of periodic oscillations in a = a(x/ε) we get,
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Theorem 4.2 It holds

‖e‖2
a ≤ C

(

h

ε

)2

‖f‖2 + C
∑

i∈N
‖
√

HΣ(Uf,i)‖2
∂ωi\Γ‖

1√
a
‖2

L∞(ωi)
. (4.3)

Here local problems are solved for all nodes since all areas are equally hard to resolve.

Again we see clearly that ‖Σ(Uf,i)‖∂ωi
which depends on the number of layers and the fine

scale mesh size h needs to be balanced. The coefficient a is periodic so we just need to solve

a few localized problems since the correction matrix for the coarse scale computations will

be identical for most patches.

In Larson et al. [4] we also present an error estimate of the adaptive variational multiscale

method for a linear function of the error.

5 Adaptive Algorithm

We present a simple adaptive algorithm based on the error estimate in Eq. (4.3).

1. Give starting values for the refinement level r where h = H/2r and number of layers

L of the extended stars ωi.

2. Solve Eq. (3.1) to get Uc.

3. Calculate Ri =
(

h
ε

)2 ‖ϕ1/2
i f‖2 and Li = ‖

√
HΣ(Uf,i)‖2

∂ωi\Γ‖
1√
a
‖2

L∞(ωi)
for each coarse

node i.

4. If the levels of Ri and Li are acceptable stop or else refine the fine scale mesh if

Ri > Li or increase the fine scale domain size if Ri < Li and return to 2.
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6 Numerical Examples

We let Ω be the unit square and we let the coefficient a oscillate rapidly with period H

according to Figure 2. Since we have a periodic coefficient we use a constant h and L for

all local problems and use the fact that many of them gives equivalent contributions to

the total modified stiffness matrix. In this way a simple implementation of the method

in Matlab can still handle very fine oscillations ε. The limit is the size of the coarse scale

calculation.

We let f = 1, H = 1/128, and start the adaptive algorithm with r = L = 1. In Figure

3 we show how the error indicators Ri and Li changes through the iterations. As seen in

Figure 3 the algorithm first performs two refinements to resolve the lattice of with H/8.

Then one layer is added to the stars and then one more refinement and so on. It appears

to be simple to adjust the of layers so that the main contribution to the error is the fine

scale mesh size. This is possible since the indicator Li drops quickly while increasing the

number of layers.

As mentioned before calculating a modified stiffness matrix rather than using an iterative

approach is very efficient in the periodic setting. To understand the method it is interesting

to know how the method actually modifies the stiffness matrix. We do this by studying

the spectrum of the resulting matrix A+T , see Eq. (3.3), for different number of layers in

Figure 4. We study the twenty lowest and most significant eigenvalues. The first thing we

note is that the eigenvalues of A + T always is smaller than the ones of A. This is natural

since the discretization increases eigenvalues of the operator. We also see that already after

two layers we get very nice agreement with the correct spectrum we like to approximate.
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Figure 1: A typical localized solution Uf,i of the fine scale equations in a smooth region
using one, two, three layer stars, and the entire domain.

Figure 2: The coefficient is discontinuous with the values a = 1 on the white areas and
a = 0.05 on the dark areas. The Figure is a zoom of a small part of the domain.
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Figure 3: The error indicators during six iterations in the adaptive algorithm.
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Figure 4: The twenty lowest eigenvalues of the matrix A+T for fine scale problems solved
using no stars, one layer stars, two layer stars, three layer stars, and the entire domain.
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