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Summary. This note provides a condensed introduction to the adaptive variational method
for an elliptic model problem. Key features of the method include a novel and systematic
technique for approximating the fine scales using decoupled localized subgrid problems and
adaptive algorithms based on a posteriori error estimates.

1 INTRODUCTION

The adaptive variational multiscale 4,5,6,7 (AVMS) method is a novel multiscale method
that builds on the combination of:

• The variational multiscale framework 2.

• A systematic technique for numerical approximation of the fine scale part of the solution
based on solving localized subgrid problems on patches.

• A posteriori error estimates and adaptive algorithms that provide control of numerical
error as well as automatic tuning of critical discretization parameters.

In this note we give a condensed presentation of the AVMS method and the energy norm
a posteriori error estimates for an elliptic model problem with multiscale features in the
conductivity, see 6 for further details and numerical examples. A mixed version of the method
is presented in 5 and transport dominated problems are considered in 7.

2 THE VARIATIONAL MULTISCALE METHOD

We shall study the following simple model problem: find u such that

−∇ · a∇u = f in Ω, u = 0 on Γ, (1)

where Ω is a polygonal domain in Rd, d = 1, 2, or 3 with boundary Γ, f ∈ L2(Ω), and
a ∈ L∞(Ω) satisfies a(x) ≥ a0 > 0 for all x ∈ Ω is a conductivity coefficient with multiscale
features.
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The variational form of (1) reads: find u ∈ V = H1
0 (Ω) such that

a(u, v) = (f, v) for all v ∈ V, (2)

with the bilinear form a(u, v) = (a∇u,∇v), for all u, v ∈ V.
The Variational Multiscale method 1,2 (VMS) is an important framework for constructing

multiscale methods. The idea is to decompose the solution into fine uf ∈ Vf and coarse
uc ∈ Vc scale contributions as follows

a(uc, vc) + a(uf , vc) = (f, vc) for all vc ∈ Vc,
a(uf , vf ) = (f, vf )− a(uc, vf ) =: (R(uc), vf ) for all vf ∈ Vf .

(3)

The fine scale equation are solved in terms of the coarse scale residual R(uc), and finally
eliminate the fine scale solution from the coarse scale equation. This procedure leads to the
modified coarse scale equation (4) where the modification accounts for the effect of fine scale
behavior on the coarse scales.

a(uc, vc) + a(T R(uc), vc) = (f, vc) for all vc ∈ Vc. (4)

Here T represents an approximate solution operator of the fine scale problem. In several
works various ways of analytical modeling of T are investigated often based on bubbles or
element Green’s functions 1.

3 APPROXIMATION OF FINE SCALES

In the adaptive variational multiscale method 4,5,6,7 the fine scale equations of equation
(3) are decoupled and solved numerically on patches. The idea is to decouple the fine scale
equations by including a partition of unity in the right hand side of the fine scale part of
equation (3) and then to solve the resulting problems on patches.

We introduce a partition K = {K} of the domain Ω into coarse shape regular elements K
of diameter H and we let N be the set of coarse nodes. Further we let Vc be the space of
continuous piecewise polynomials of one defined on K. We let uf =

∑
i∈N uf,i where

a(uf,i, vf ) = (ϕiR(uc), vf ) for all vf ∈ Vf , (5)

and {ϕi}i∈N is a partition of unity e. g. the set of Lagrange basis functions in Vc, be the
solution to the decoupled fine scale equations.

We introduce this expansion of uf in the right hand side of the fine scale equation (3) and
get: find uc ∈ Vc and uf =

∑
i∈N uf,i ∈ Vf such that

a(uc, vc) + a(uf , vc) = (f, vc) for all vc ∈ Vc,
a(uf,i, vf ) = (ϕiR(uc), vf ) for all vf ∈ Vf and i ∈ N .

(6)

The next step is to solve the fine scale equations approximately. For each element in the
partition of unity we associate a domain ωi on which we solve Dirichlet problems. We often
use coarse mesh stars of many layers as local domains. By adding a layer we mean adding all
coarse elements bordering the star. The local domain ωi contains the support of the element
in the partition of unity and is large enough to give a good approximate solution. The quality
of the solution is controlled by error estimates. We now define the local finite element space
Vh

f (ωi) associated with node i. We refine the coarse mesh on the patch ωi and let Vh
f (ωi) be

the fine part of the hierarchical basis on this mesh.
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Figure 1: A typical localized solution Uf,i of the fine scale equations in a smooth region using one,
two, three layer stars, and the entire domain.

The resulting method reads: find Uc ∈ Vc and Uf =
∑n

i Uf,i where Uf,i ∈ Vh
f (ωi) such that

a(Uc, vc) + a(Uf , vc) = (f, vc) for all vc ∈ Vc,
a(Uf,i, vf ) = (ϕiR(Uc), vf ) for all vf ∈ Vh

f (ωi) and i ∈ N .
(7)

Since the functions in the local finite element spaces Vh
f (ωi) are equal to zero on ∂ωi, Uf and

therefore U will be continuous. If we just have fine scale features on part of the domain we
only solve local problems for these areas. We denote coarse nodes in these areas F and the
rest C. If we write the method in matrix form we would get,

(A + T )Uc = b− d, (8)

where A and b are the standard finite element stiffness matrix and load vector and the T
matrix and d vector arises in analogy with equation (4) since T (R(Uc)) is affine in Uc.

To get an idea of how the localized solution Uf,i behaves when the domain ωi increases we
plot different solutions Uf,i in Figure 1. Since Uf,i is solved in the slice space Vf and since the
right hand side of the fine scale equations of (7) has the same support as ϕi, Uf,i will decay
rapidly towards the boundary of ωi, this can also be seen in Figure 1. We can see that one
layer stars appears to give bad accuracy while two and more layer stars captures the features
of the correct solution.

4 A POSTERIORI ERROR ESTIMATES

In 6 we present the following a posteriori error estimate for the adaptive variational mul-
tiscale method in the energy norm ‖e‖2

a = a(e, e).

Theorem 4.1 It holds,

‖e‖2
a ≤ C

∑

i∈C
‖HR(Uc)‖2

ωi
‖ 1√

a
‖2

L∞(ωi)
(9)

+ C
∑

i∈F

(
‖
√

HΣ(Uf,i)‖2
∂ωi\Γ + ‖hRi(Uf,i)‖2

ωi

)
‖ 1√

a
‖2

L∞(ωi)
,

where

(−Σ(Uf,i), vf )∂ωi = (ϕiR(Uc), vf )ωi − a(Uf,i, vf )ωi , for all vf ∈ V h
f (ω̄i). (10)

Here R(Uc) and Ri(Uf,i) are bounds of the coarse and fine scale residual and Σ(Uf,i) is a vari-
ational approximation of the L2(∂ωi) of ∂nUf,i. We can easily understand the contributions
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to the error. If no fine scale equations are solved we obtain the first term in the estimate;
the first part of the second sum measures the effect of restriction to patches; and finally the
second part measures the influence of the fine scale mesh parameter h. Using these indicators
one may construct an adaptive algorithm for automatic tuning of the size of the patches and
the subgrid resolution, see 6 for details.

For the case of periodic oscillations in a = a(x/ε) we get,

Theorem 4.2 It holds

‖e‖2
a ≤ C

(
h

ε

)2

‖f‖2 + C
∑

K∈K
‖
√

HΣ(Uf,i)‖2
∂ωi\Γ‖

1√
a
‖2

L∞(ωi)
. (11)

Here local problems are solved for all nodes since all areas are equally hard to resolve. Again
we see clearly that ‖Σ(Uf,i)‖∂ωi which depends on the number of layers and the fine scale
mesh size h needs to be balanced. The coefficient a is periodic so we just need to solve a few
number of localized problems since the correction matrix for the coarse scale computations
will be identical for most patches.

In 4 we also present an error estimate of the adaptive variational multiscale method for a
linear function of the error.

REFERENCES

[1] T. J.R. Hughes, Multiscale phenomena: Green’s functions, the Dirichlet-to-Neumann
formulation, subgrid scale models, bubbles and the origins of stabilized methods, Comput.
Methods Appl. Mech. Engrg. 127, 1995, 387-401.

[2] T. J.R. Hughes, L Mazzei, A. A. Oberai, and M. G. Larson, The continuous Galerkin
method is locally conservative, J. Comput. Phys., Vol. 163(2), 2000, 467-488.
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