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2007

® A. Malgvist, Multiscale methods for elliptic problems (in review MMS)
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Model Problem

Elliptic equation: FIind « such that
Lu=—-V -aVu+V-(bu)+cu=f IinQ

where L is elliptic with multiscale coefficients, f is a given
function, and 2 c R% is a domain.

Weak form: Let a(v,w) = (Lv,w) and [(w) = (f,w) for all
v,w €V, for an appropriate function space V. Find u € V such
that,

a(u,v) =1Il(v), forallve V.
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Motivation: Why Resolve the Coefficients?

Simple periodic example: Consider the Poisson equation
Lu=—-V-aVu=/F,

with periodic coefficient a = a(x/¢) solved using the finite
element method on a mesh of size H, we have (Hou-Wu-Cali),

H
IvVaV (u — up)|l 2 ) < C?HfHLQ(Q)a

* ¢ < H will give unreliable results even with exact quadrature.

* ¢ > H will be to computationally expensive to solve on a
single mesh.

From now on we assume nothing on the coefficients, more then
what is needed to guarantee existence and uniqueness.
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Some Previous Works and Related Methods

Upscaling techniques: Durlofsky et al. 98, Nielsen et al. 98

Variational multiscale method: Hughes et al. 95, Arbogast
04, Larson-Malqvist 05, Nolen et al. 08, Nordbotten 09

Multiscale finite element method: Hou-Wu 96,
Efendiev-Ginting 04, Aarnes-Lie 06

Multiscale finite volume method: Jenny et al. 03

Heterogeneous multiscale method: Engquist-E 03,
E-Ming-Zhang 04

Equation free: Kevrekidis et al. 05

Local approximations (in parallel) on a fine scale are used to
modified the coarse scale equation.
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The Variational Multiscale Method (VMS)

The weak form reads: find v € V such that,

a(u,v) =1Il(v), forallve V.

Now let| V. @V, = V|

* V. is a finite dimensional approximation of V. (FE space)

* Y, can be chosen as e.g. hierarchical basis,

L?(Q)-orthogonal to V.., or wavelet modified hierarchical
basis.
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a-Orthogonal Split

We want to decouple the coarse and the fine scales. We
Introduce two multiscale projection operators, let
T,7T*:V.— Vysuch that

a(ve +Tve,vp) =0, forallv. € V., vr € Vs
a(ve,ve + T v.) =0, forallv. € V., vr €Vy

Let u = uc +Tuc +ur € Ve ®Vyand v = ve + 7 *v. + vy In the
weak form,

a(ue + Tue,ve + T ve) = l(ve + T v.) forall v, €V,
a(ur,ve) =l(vy) forallvy € Vy,

since a(uc + 7 ue,v¢) = a(us,ve + 7 v.) = 0.
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Modified Coarse Scale Equations

Find u. € V. such that
a(tue + T e, ve + 7T ve) = UWve + T ve) — alus, ve + T ve)

for all v. € V. (note that a(us,v¢) = l(vy) for all vy € Vy).

* If ¢ Is symmetric we get 7 *v. = 7 v, I.e. a Ssymmetric
formulation

* In standard VMS 7 *v, := 0 and u; Is included in the coarse
scale. The computation of 7u. + uy € Vy Is decoupled and

done analytically on each coarse element using
homogeneous Dirichlet boundary conditions.

* In MsFEM u; = 0 and therefore not present in the coarse

scale equations. Here the computation of v. + 7 v, IS
decoupled and solved numerically on each element (or
larger domains) using approximate boundary conditions.
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Approximation of 7, 77, and u

Let u. = Y. ulg; with {¢;} a basis in V..

We have Tu. = >, ulT ¢;, T ve =y ; 0T "¢, and up = Y, uy,
where,
a(7 ¢i,v5) = —a(@s,ve) forallve € Ve,
a(ve, T°¢;) = —a(vy, ¢;) forall vy € Vy,
a(uri,ve) = (foi,vr) forallve € Vy.

We compte approximations 7 ¢;, 7*;, and Uri by
* restricting to a localized patches supp(¢;) C wj,
* discretizing with a fine subgrid on w;,
* and using homogeneous boundary conditions on the patch.
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Refinements and Layers

We let H be coarse scale mesh size and / be fine scale mesh
size. Further we let L denote the number of layers of coarse
elements in the patch.
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Since we exclude V. from the fine scale the condition number is
only ~ (%)2 log(H /h) using an hierarchical split (Marion-Xu 95).
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Simple Observation About Decay in Vs (Fourier)

Consider the Laplace equation,
—Au=¢; InQ, wu=0o0no,

where ¢, has local support in 2. The weak form reads: find
u e W s.t., (Vu,Vov) = (g;,v) forallv e W.

Solution using interpolation on 3 layers Solution using L2 orthogonality on 3 layers

To the left W = V. @ Vy, middle W = V; using hierarchical split,
and right W = V; using L?-orthogonal split.

Constraints are realized using Lagrangian multipliers.
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Simple Observation About Decay in V¢

Decay of flux integrated over the boundary.

Decay, a=1, f=p
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We see exponential decay with respect distance measured in
number of coarse elements. This effect gives rapid convergence

as the patch size increases.
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The Proposed Multiscale Method

* Let 7,7* be the computable approximations of 7,7 *
* Let U; be the computable approximation of u ¢

We get: find U, € V. such that

a(U. + TU,, v, + f*vc) = l[(ve + f*vc)—a(Uf, Ve + j’*vc)

for all v. € V.. On matrix form this leads to a system,

KU, =b

Given U,, Uy, and 7, U can be computed.

When a(U;,v. + T*v,) is included, the error is orthogonal to
V. + T*v,. i.e. a(u— U, — TU, — Uf,ve + ’j'*vc) — 0.
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Parallel Structure

One local problem for each coarse dof, minimal communication.

/-F Da!ta a,é,Q Data transfer
K1 bl K2, b2 K3, b3 K4, b* Local solves
(XK KF)Ue =3, bF Global solve

Us Postprocessing
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Examples of Applications

Oil recovery: We seek water saturation s (oil is 1 — s)
o —aX(s)Vu =10

—V.-0=gq
s$+o0-Vf(s) =0

f(s) is fractional flow function, A(s) is total mobility, a is
permeability, and ¢ Is a source term.

Organic Semi-Conductor:  We seek electric potential ¢, hole
concentration p, and electron concentration n,

n—V - (D,Vn — u,nVe) =0
p— V- (DpVp+ pppVe) =0
—V -eVo =p—n,

where D, are diffusions, 1; mobillities, : = n, p, € dielectric func.
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The Mixed Problem in Oil Recovery

Poisson equation on mixed form:

[ ls—Vu=0 inQ
9 —V-o=f InQ
n-c=0 onl

\

where the permeabillity a is constant, random, or taken from the
SPE data set (upperness in log-scale),

max(a)/min(a)=1 max(a)/min(a)=3e3 max(a)/min(a)=5e6

HH

N
[T I Hi

We let a(v, w)

= (301, w1) + (v2, V- w1) + (V - w1, ws) and
l(w) — _(fan)'
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Splitting Based on RT-elements

We use lowest order RT basis functions together with piecewise
constants.

* LetII. be the RT-interpolant onto the space of lowest order
RT functions V, and P, be the L?-projection onto the space
of piecewise constants W,

* We define Wy = (I — P.)W, W = L*(Q)
* We define Vy = (I —11,)V, V = H(div; )
® Thismeanso, =n.c €V, u.= PueW..

e Thus we are using an L?-orthogonal splitting in the scalar
variable.

Hierarchical split for lagrangian elements leads to nodal
exactness in the coarse solution U,. ~ w.u while here we get
exactness of average values on coarse elements U. ~ P.u.
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Example of Local Solutions 7, ¢;

/

(%Ij;'¢i7vf) + (/]N;L¢Z7 V- Uf) — _(%¢ivvf)

We use 3 layer patches and plot absolute value of the flux |7, ¢;|.
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Example of Convergence

* The reference mesh has 32 x 32 elements
* The coarse mesh has 8 x 8 elements.

* We let f = 1 lower left corner and f = —1 in upper right,
otherwise f = 0.

Error compared to reference solution.
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Two Convection Dominated Problems

Lu=—eAu+V - -(bu)=f inQ, uw=0 onol,
. Letb=[N(0,1) + 0.25, N(0,1) + 0.25] and € = 0.008
. Letb = [sin(257y) + 0.3, cos(257x) + 0.3], and € = 0.005.

In both examples f =1 for 0 < z,y < 0.1 and zero otherwise.
We let a(v, w) = (eVv, Vw) 4+ (V - (bv),w) and [(w) = (f, w).
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Split Based on Lagrangian Basis Functions

* We let the coarse mesh consist of 16 x 16 and the reference
mesh of 128 x 128 rectangular elements.

* We let 7. be the interpolant onto bilinear functions of the
coarse mesh and let V¢ = (1 — )V, i.e. an hierarchical split

* We remember the definition of the fine scale equations,

CL<T¢Z',’U]"> — _a’(gbiavf)a
CL(Uf, T*gbl) — —CL(Uf, sz),
a(ug,i,vy) = U(givy),

for all vy € V¢ and i € A (coarse nodes).
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Decay of Local Solutions

We use three refinements in all local problems and vary the

number of layers. We plot local solutions 7 ¢; and 7*¢; using
four layers (random).

0.2

We still get decay but not as quick as in the non-convective
problem. Directed patches would reduce the work.
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Error in Multiscale Solution

We now plot the max norm of the error |[u — U|| 1~ (q) With and
without 7* in the right slot.
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Layers

We observe quick decay (slower) starting from two layers.

The random coefficient appears to be more difficult to resolve.
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Adaptive Multiscale Method

The adaptive version of the method (sometimes referred to as
AVMS) builds on the following ingredients:

* Error estimation framework

* Adaptive strategy for tuning of critical discretization
parameters

The method Is designed so that:

error - Owhen h — 0and L — oo

* A priori error estimates in progress.

* To circumvent difficulties with choosing discretization

parameters h and L we use an adaptive algorithm based on
a posteriori error estimates
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A Posteriori Error Estimate (Poisson, mixed)

The following energy norm bound holds

|—=(o = D)II < C, Z o T Bow,)

\f

where
1 . ~ | -
R2, = |- (Ziei+ Tod0) + T}) — VU;[12,+

h T | ~
= (fts + V- (B + L) + DG, + D Ih7 207 5k

Kew;

R??wi — Hh_1/2 l»]‘]zp’>l< H%wz\r

U* Is a post processed version (Lovadina and Stenberg 06)
of U, Cy ~ H\/aHLOO(wz)
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Adaptive Algorithm

We have the error bound
lo—%|2 <Ca > (RZ, + R3,,)

Leth = H/2and L =1 for all i.
for:=1,...,ndo
Compute 7 ¢;, T*¢; (if non-symmetric), and U ;.
end for
Compute the solution {U, X}
fore=1,...,ndo
Compute residuals R;, and R?_, .
end for
Mark large entries.
For marked entries in R2_let h := h/2.

For marked entries in R let L := L + 1.
Return to step two or stop If estimators are small enough.
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Back to the Oil Recovery Example

Layer 1 and 50 in the SPE comparative sol. proj. (log scale).
h

Plot of the sol. (pressure), ¢ = 1 upper right ¢ = —1 lower left.

x10 e g
1
2.
0.
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Refinements and Layers SPES0

We use 55 x 15 coarse elements and a reference mesh with
440 x 120 elements.

Number of refinements in local problems (avarage) Number of Layers in local problems (avarage)

0.9
0.8
0.7

0.6

0.5

0.4

0.3

0.2

0.1

We start the adaptive algorithm with one refinement and one
layer in all local problems. After three iterations in the algorithm
marking 30%.
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Convergence of Adaptive Algorithm

We compare error in energy norm with reference solution.

0.7
[« =—s— SPE layer 1
—6— SPE layer 50

®* Critical areas are found

* A majority of the patches uses one layer and one
refinement.

* As the water front travels only local problems at the front
need to be recomputed.
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Summary and Future Work

The adaptive variational multiscale method (AVMS) provides:

* Systematic technique for construction of a computable
approximation of the fine scale part of the solution using
decoupled localized subgrid problems.

* A posteriori error estimation framework

* Adaptive algorithms for automatic tuning of critical
discretization parameters

The decay in V; together with the adaptive strategy makes the
method efficient.

Future work includes: 3D implementation, a priori error analysis,
time-dependent convection dominated problems, other
applications
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