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The Model Problem

Poisson Equation.

−∇ · a∇u = f in Ω, u = 0 on ∂Ω.

where a > 0 bounded, and Ω is a domain in R
d,

d = 1, 2, 3.

Weak Form. Find u ∈ H1

0
(Ω) such that

a(u, v) = (a∇u,∇v) = (f, v) for all v ∈ H1

0
(Ω).
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Multiscale Problems

Below are three examples of multiscale
problems.
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The first one represents difficulties in the domain
(cracks, holes, ...) the second one oscillations in
a and the third one oscillations in f .
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Motivation

• Very important applications including
materials, flow in porous media, ...

• The problems are very computationally
challenging so error estimation and efficient
algorithms are crucial.

• Attempts on using adaptive algorithms are
not common in literature.
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Variational Multiscale Method

We introduce two spaces Vc and Vf such that
Vc ⊕ Vf = H1

0
(Ω).

• Vc is a finite dimensional approximation of
H1

0
(Ω). (finite element space)

• Vf is can be chosen in different ways e.g.
(i) Hierarchical basis.
(ii) L2(Ω)-orthogonal to Vc.
(iii) Wavelet modified hierarchical basis.
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Variational Multiscale Method
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Figure 1: uc, uf , and uc + uf .
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Variational Multiscale Method

Find uc ∈ Vc and uf ∈ Vf such that

a(uc, vc) + a(uf , vc) = (f, vc) for all vc ∈ Vc,

a(uf , vf ) = (f, vf ) − a(uc, vf )

:= (R(uc), vf ) for all vf ∈ Vf .

Fine scale information is used to modify the
coarse scale equation: Find uc ∈ Vc such that

a(uc, vc) + a(Â−1

f R(uc), vc) = (f, vc) ∀vc ∈ Vc.
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Our Basic Idea

• Discretization of Vf (analytical estimates are
more common).

• Solve localized fine scale problems for each
coarse node (or some coarse nodes) in
parallel.

• Error estimation framework.
• Adaptive strategy for this setting.
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Decouple Fine Scale Equations

Remember the fine scale equations:

a(uf , vf ) = (R(uc), vf ), for all vf ∈ Vf .

Include a partition of unity,

a(uf , vf ) = (R(uc), vf ) =
n

∑

i=1

(R(uc), ϕivf),

let uf =
∑n

i uf,i where a(uf,i, vf) = (R(uc), ϕivf).
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Approximate Solution

Since ϕi has support on a star S1

i in node i we
solve the fine scale equations approximately on
ωi with Uf,i = 0 on ∂ωi.

Find Uc ∈ Vc and Uf =
∑n

i Uf,i where
Uf,i ∈ Vh

f (ωi) such that

a(Uc, vc) + a(Uf , vc) = (f, vc) for all vc ∈ Vc,

a(Uf,i, vf) = (R(Uc), ϕivf) for all vf ∈ Vh
f (ωi).
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Refinement and Layers
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Localized Fine Scale Solution
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Energy Norm Estimate

‖
√

a∇e‖ ≤
∑

i∈C
Ci‖HR(Uc)‖ωi

+
∑

i∈F
Ci

(

‖
√

HΣ(Uf,i)‖∂ωi
+ ‖hRi(Uf,i)‖ωi

)

• The first term is coarse mesh error.
• The second term is the normal derivative of

the fine scale solutions on ∂ωi.
• The third term is fine scale error.
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Adaptive Strategy

‖
√

a∇e‖ ≤
∑

i∈C
Ci‖HR(Uc)‖ωi

+
∑

i∈F
Ci

(

‖
√

HΣ(Uf,i)‖∂ωi
+ ‖hRi(Uf,i)‖ωi

)

• We calculate these for each i ∈ {coarse fine}.
• Large values i ∈ coarse → more local

problems.
• Large values i ∈ fine → more layers or

smaller h.
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Numerical Examples

We start with a unit square containing a crack.

We let the coefficient a = 1 and solve, −4u = f
with u = 0 on the boundary including the crack.
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Numerical Examples

We solve the problem by using the adaptive
algorithm.
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We plot the difference between our solution and
a reference solution.
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Numerical Examples
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Numerical Examples

In this example we study a discontinuous
coefficient a in −∇ · a∇u = f . a = 1 (white) and
a = 0.05 (blue).
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Numerical Examples
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0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1
0

0.05

0.1

0.15

0.2

0.25

0.3

one layer

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1
0

0.05

0.1

0.15

0.2

0.25

0.3

two layer

European Congress on Computational Methods in Applied Sciences and Engineering 27 july 2004 – p. 19



Numerical Examples
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The number of layers seems to depend on the
fine scale structure rather that the domain size.
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Outlook

• Extended numerical tests in both 2D and 3D.
• Mixed formulation.
• Other equations (convection-diffusion, ...).
• More scales.
• Comparing results with classical

Homogenization theory.
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