Numerical simulation of beam network models

Axel Målqvist

Morgan Görtz, Moritz Hauck, Fredrik Hellman, and Andreas Rupp

Department of Mathematical Sciences
Chalmers University of Technology and University of Gothenburg
Fraunhofer Chalmers Centre

2025-09-01

Motivation: Simulation of fibre based materials

Motivation: Simulation of fibre based materials

- Wood fibres ⇒ flattened cylinders ⇒ Timoshenko beams
- Discretize the beams and consider small deformations ⇒ displacement/rotation solves Az = F
- A is SPD, sparse but large and ill-conditioned
- Direct methods are often used in practise (memory intense)

Main goal: derive and analyze robust iterative solvers

Outline

- The Timoshenko beam model
- Hybridized formulation
- Iteration by subspace decomposition
- Numerical examples
- Conclusion and future work

The Timoshenko¹ beam model

- 1D model of the elastic deformation of a 3D beam
- Assumption: the cross sections remains plain after deformation
- Six degrees of freedom (centreline displacement and cross-section rotation)

¹Timoshenko, On the correction for shear of the differential equation for transverse vibrations of prismatic bars, London Edinburgh Philos. Mag. and J. Sci., 1921

Governing equation² (single beam)

$$-C_{m{n}}(\partial_{x}m{u}_{\mathrm{e}}+m{i}_{\mathrm{e}} imesm{r}_{\mathrm{e}})=m{n}_{\mathrm{e}} \qquad \qquad -C_{m{m}}\partial_{x}m{r}_{\mathrm{e}}=m{m}_{\mathrm{e}} \ \partial_{x}m{m}_{\mathrm{e}}+m{i}_{\mathrm{e}} imesm{n}_{\mathrm{e}}=m{g}_{\mathrm{e}}$$

- Unit vector in direction of e, $i_e : e \to \mathbb{R}^3$
- Centre line displacement, $\mathbf{u}_{\mathfrak{e}}:\mathfrak{e}\to\mathbb{R}^3$
- Cross-section rotation, $\mathbf{r}_{e}: e \rightarrow \mathbb{R}^{3}$
- Stress from normal and shear forces: $\mathbf{n}_{e}: e \to \mathbb{R}^{3}$
- Moment from torsion and bending, $\mathbf{m}_{e}: e \to \mathbb{R}^{3}$
- Material parameter, C_n , C_m symmetric $\mathbb{R}^3 \times \mathbb{R}^3$ depending on Young's modulus, Shear modulus, and cross-section.
- Distributed force $\mathbf{f}_e : e \to \mathbb{R}^3$ and moment $\mathbf{g}_e : e \to \mathbb{R}^3$

²Carrera et. al., Beam Structures, Wiley 2011

Continuity and balance conditions³

The network is represented by a graph $G = (N, \mathcal{E})$.

- **①** Continuity of solution: $\mathbf{u}_{e}(\mathfrak{n}) = \mathbf{u}_{\mathfrak{n}}$ and $\mathbf{r}_{e}(\mathfrak{n}) = \mathbf{r}_{\mathfrak{n}}$
- $m{@}$ Dirichlet boundary nodes: $m{u}_{\mathfrak{n}}=m{u}_{\mathfrak{n}}^{ extsf{D}}$ and $m{r}_{\mathfrak{n}}=m{r}_{\mathfrak{n}}^{ extsf{D}},$ $\mathfrak{n}\in\mathcal{N}_{D}$
- **3** Balance equations: Let $\llbracket \cdot \rrbracket_n$ be a summation at n and $\nu_e = \pm 1$:

$$\llbracket \boldsymbol{n}_{\mathrm{e}} \boldsymbol{\nu}_{\mathrm{e}}
rbracket_{\mathfrak{n}} = \boldsymbol{f}_{\mathfrak{n}} \qquad \llbracket \boldsymbol{m}_{\mathrm{e}} \boldsymbol{\nu}_{\mathrm{e}}
rbracket_{\mathfrak{n}} = \boldsymbol{g}_{\mathfrak{n}}$$

³Lagnese et. at. Modeling, analysis and control of dynamic elastic multi-link structures, Birkhäuser Boston, 1994

Outline

- The Timoshenko beam model
- Hybridized formulation
- Iteration by subspace decomposition
- Numerical examples
- Conclusion and future work

Aim: reduce dofs in global solve to dofs at joints

- Primal variables: $\bar{\mathbf{u}}_{e}, \bar{\mathbf{r}}_{e} \in V_{h,p}^{e} := (\mathbb{P}_{h,p}(e))^{3} \subset (L^{2}(e))^{3}, \forall e \in \mathcal{E}$
- Dual variables: $\bar{\boldsymbol{n}}_{e}$, $\bar{\boldsymbol{m}}_{e} \in V_{h,p}^{e} \subset (H^{1}(e))^{3}$, $\forall e \in \mathcal{E}$
- Hybrid variables: $\bar{\boldsymbol{u}}_{n}, \bar{\boldsymbol{r}}_{n} \in \mathbb{R}^{3}, \forall n \in \mathcal{N} \setminus \mathcal{N}_{D}$

⁴Cockburn et. al. Unified hybridization of discontinuous Galerkin, mixed, and continuous Galerkin methods for second order elliptic problems, SINUM, (2009)

Aim: reduce dofs in global solve to dofs at joints

- Primal variables: $\bar{\mathbf{u}}_{e}, \bar{\mathbf{r}}_{e} \in V_{h,p}^{e} := (\mathbb{P}_{h,p}(e))^{3} \subset (L^{2}(e))^{3}, \forall e \in \mathcal{E}$
- Dual variables: $\bar{\boldsymbol{n}}_{\varepsilon}$, $\bar{\boldsymbol{m}}_{\varepsilon} \in V_{h,p}^{\varepsilon} \subset (H^{1}(\varepsilon))^{3}$, $\forall \varepsilon \in \mathcal{E}$
- Hybrid variables: $\bar{\mathbf{u}}_{n}, \bar{\mathbf{r}}_{n} \in \mathbb{R}^{3}, \forall n \in \mathcal{N} \setminus \mathcal{N}_{D}$

For all $\bar{\boldsymbol{p}}, \bar{\boldsymbol{q}}, \bar{\boldsymbol{v}}, \bar{\boldsymbol{w}} \in V_{h,p}^{e}$:

$$\begin{aligned} -\left(\boldsymbol{C}_{\boldsymbol{n}}^{-1}\bar{\boldsymbol{n}}_{\mathrm{e}},\bar{\boldsymbol{p}}\right)_{\mathrm{e}} &+\left(\bar{\boldsymbol{u}}_{\mathrm{e}},\partial_{x}\bar{\boldsymbol{p}}\right)_{\mathrm{e}} -\left(\boldsymbol{i}_{\mathrm{e}}\times\bar{\boldsymbol{r}}_{\mathrm{e}},\boldsymbol{p}\right)_{\mathrm{e}} = \langle\bar{\boldsymbol{u}}_{\mathrm{n}},\bar{\boldsymbol{p}}\nu_{\mathrm{e}}\rangle_{\mathrm{e}} \\ &-\left(\boldsymbol{C}_{\boldsymbol{m}}^{-1}\bar{\boldsymbol{m}}_{\mathrm{e}},\bar{\boldsymbol{q}}\right)_{\mathrm{e}} &+\left(\bar{\boldsymbol{r}}_{\mathrm{e}},\partial_{x}\bar{\boldsymbol{q}}\right)_{\mathrm{e}} &=\langle\bar{\boldsymbol{r}}_{\mathrm{n}},\bar{\boldsymbol{q}}\nu_{\mathrm{e}}\rangle_{\mathrm{e}} \\ &\left(\partial_{x}\bar{\boldsymbol{n}}_{\mathrm{e}},\bar{\boldsymbol{v}}\right)_{\mathrm{e}} &=\left(\boldsymbol{f}_{\mathrm{e}},\bar{\boldsymbol{v}}\right)_{\mathrm{e}} \\ &\left(\boldsymbol{i}_{\mathrm{e}}\times\bar{\boldsymbol{n}}_{\mathrm{e}},\bar{\boldsymbol{w}}\right)_{\mathrm{e}} +\left(\partial_{x}\bar{\boldsymbol{m}}_{\mathrm{e}},\bar{\boldsymbol{w}}\right)_{\mathrm{e}} &=\left(\boldsymbol{g}_{\mathrm{e}},\bar{\boldsymbol{w}}\right)_{\mathrm{e}} \end{aligned}$$

⁴Cockburn et. al. Unified hybridization of discontinuous Galerkin, mixed, and continuous Galerkin methods for second order elliptic problems, SINUM, (2009)

Aim: reduce dofs in global solve to dofs at joints

- Primal variables: $\bar{\mathbf{u}}_{\epsilon}, \bar{\mathbf{r}}_{\epsilon} \in V_{h,p}^{\epsilon} := (\mathbb{P}_{h,p}(\epsilon))^3 \subset (L^2(\epsilon))^3, \forall \epsilon \in \mathcal{E}$
- Dual variables: $\bar{\boldsymbol{n}}_{\varepsilon}$, $\bar{\boldsymbol{m}}_{\varepsilon} \in V_{h,p}^{\varepsilon} \subset (H^{1}(\varepsilon))^{3}$, $\forall \varepsilon \in \mathcal{E}$
- Hybrid variables: $\bar{\boldsymbol{u}}_{n}, \bar{\boldsymbol{r}}_{n} \in \mathbb{R}^{3}, \forall n \in \mathcal{N} \setminus \mathcal{N}_{D}$

For all $\bar{p}, \bar{q}, \bar{v}, \bar{w} \in V_{h,p}^{e}$: (penalty parameter $\tau_{e} > 0$)

$$\begin{split} -\left(\boldsymbol{C}_{\boldsymbol{n}}^{-1}\bar{\boldsymbol{n}}_{e},\bar{\boldsymbol{p}}\right)_{e} &+\left(\bar{\boldsymbol{u}}_{e},\partial_{x}\bar{\boldsymbol{p}}\right)_{e}-\left(\boldsymbol{i}_{e}\times\bar{\boldsymbol{r}}_{e},\boldsymbol{p}\right)_{e}=\langle\bar{\boldsymbol{u}}_{n},\bar{\boldsymbol{p}}\nu_{e}\rangle_{e} \\ &-\left(\boldsymbol{C}_{\boldsymbol{m}}^{-1}\bar{\boldsymbol{m}}_{e},\bar{\boldsymbol{q}}\right)_{e} &+\left(\bar{\boldsymbol{r}}_{e},\partial_{x}\bar{\boldsymbol{q}}\right)_{e} &=\langle\bar{\boldsymbol{r}}_{n},\bar{\boldsymbol{q}}\nu_{e}\rangle_{e} \\ &\left(\partial_{x}\bar{\boldsymbol{n}}_{e},\bar{\boldsymbol{v}}\right)_{e} &+\tau_{e}\langle\bar{\boldsymbol{u}}_{e},\bar{\boldsymbol{v}}\rangle_{e} &=\left(\boldsymbol{f}_{e},\bar{\boldsymbol{v}}\right)_{e}+\tau_{e}\langle\bar{\boldsymbol{u}}_{n},\bar{\boldsymbol{v}}\rangle_{e} \\ &\left(\boldsymbol{i}_{e}\times\bar{\boldsymbol{n}}_{e},\bar{\boldsymbol{w}}\right)_{e} +\left(\partial_{x}\bar{\boldsymbol{m}}_{e},\bar{\boldsymbol{w}}\right)_{e} &+\tau_{e}\langle\bar{\boldsymbol{r}}_{n},\bar{\boldsymbol{w}}\rangle_{e} \\ \end{split}$$

⁴Cockburn et. al. Unified hybridization of discontinuous Galerkin, mixed, and continuous Galerkin methods for second order elliptic problems, SINUM, (2009)

Aim: reduce dofs in global solve to dofs at joints

- Primal variables: $\bar{\mathbf{u}}_{\epsilon}, \bar{\mathbf{r}}_{\epsilon} \in V_{h,p}^{\epsilon} := (\mathbb{P}_{h,p}(\epsilon))^3 \subset (L^2(\epsilon))^3, \forall \epsilon \in \mathcal{E}$
- Dual variables: $\bar{\boldsymbol{n}}_{\epsilon}$, $\bar{\boldsymbol{m}}_{\epsilon} \in V_{h,p}^{\epsilon} \subset (H^{1}(\epsilon))^{3}$, $\forall \epsilon \in \mathcal{E}$
- Hybrid variables: $\bar{\boldsymbol{u}}_{n}, \bar{\boldsymbol{r}}_{n} \in \mathbb{R}^{3}, \forall n \in \mathcal{N} \setminus \mathcal{N}_{D}$

The discrete balance equations reads

$$[\![\bar{m{n}}_{\mathrm{e}}m{
u}_{\mathrm{e}} + au_{\mathrm{e}}(\bar{m{u}}_{\mathrm{e}} - \bar{m{u}}_{\mathrm{n}})]\!]_n = m{f}_{\mathrm{n}}, \qquad [\![\bar{m{m}}_{\mathrm{e}}m{
u}_{\mathrm{e}} + au_{\mathrm{e}}(\bar{m{r}}_{\mathrm{e}} - \bar{m{r}}_{\mathrm{n}})]\!]_n = m{g}_{\mathrm{n}}$$

⁴Cockburn et. al. Unified hybridization of discontinuous Galerkin, mixed, and continuous Galerkin methods for second order elliptic problems, SINUM, (2009)

HDG discretization⁵

Global system:

$$A\bar{z}_h=F$$
,

where $\bar{z}_h = (\bar{\boldsymbol{u}}_n, \bar{\boldsymbol{r}}_n)$ with 6 dofs per joint.

- Independent local solves on edges are needed to form A and F
- F contains applied forces, moments and boundary data

⁵Rupp, Hauck, M., Arbitrary order approximations at constant cost for Timoshenko beam network models, arXiv:2407.14388

HDG discretization⁵

Global system:

$$A\bar{z}_h = F$$
,

where $\bar{z}_h = (\bar{\boldsymbol{u}}_n, \bar{\boldsymbol{r}}_n)$ with 6 dofs per joint.

- Independent local solves on edges are needed to form A and F
- F contains applied forces, moments and boundary data

Theorem (Spectral equivalence to graph Laplacian)

If C_n and C_m are edgewise constant. Then, for all $(\lambda, \phi) \in V \times V$:

$$\alpha \left(\lambda^{\mathsf{T}} \mathsf{L} \lambda + \phi^{\mathsf{T}} \mathsf{L} \phi \right) \leq \left(\lambda, \phi \right)^{\mathsf{T}} \mathsf{A} \left(\lambda, \phi \right) \leq \beta \left(\lambda^{\mathsf{T}} \mathsf{L} \lambda + \phi^{\mathsf{T}} \mathsf{L} \phi \right),$$

where $v^{\mathsf{T}} L v = \sum_{x \in \mathcal{N}} \frac{1}{2} \sum_{x \sim y} \frac{|v(x) - v(y)|^2}{|x - y|}$ and $0 < \alpha < \beta$ depend on the algebraic connectivity of the graph \mathcal{G} and C_{n} and C_{m} .

⁵Rupp, Hauck, M., Arbitrary order approximations at constant cost for Timoshenko beam network models, arXiv:2407.14388

A priori error bound⁶⁷

Theorem (Convergence of HDG method)

If $\tau_{\varepsilon} \sim h_{\varepsilon}^{s}$ for some $s \in \{-1, 0, 1\}$ and $\boldsymbol{u}_{\varepsilon}, \boldsymbol{r}_{\varepsilon}, \boldsymbol{n}_{\varepsilon}, \boldsymbol{m}_{\varepsilon} \in H^{p+1}(\varepsilon)$ for all $\varepsilon \in \mathcal{E}$, then it holds

$$\begin{split} & \left[\sum_{e \in \mathcal{E}} \left[\| \boldsymbol{u}_e - \bar{\boldsymbol{u}}_e \|_e^2 + \| \boldsymbol{r}_e - \bar{\boldsymbol{r}}_e \|_e^2 \right] \right]^{1/2} \lesssim h^{p+1-s^+}, \\ & \left[\sum_{e \in \mathcal{E}} \left[\| \boldsymbol{n}_e - \bar{\boldsymbol{n}}_e \|_e^2 + \| \boldsymbol{m}_e - \bar{\boldsymbol{m}}_e \|_e^2 \right] \right]^{1/2} \lesssim h^{p+1-|s|}, \end{split}$$

where $s^+ := \max(s, 0)$.

⁶Celiker, Cockburn, Shi, Hybridizable DG methods for Timoshenko beams, JSC (2010)

⁷Rupp, Hauck, M., Arbitrary order approximations at constant cost for Timoshenko beam network models, arXiv:2407.14388

Outline

- The Timoshenko beam model
- Hybridized formulation
- Iteration by subspace decomposition
- Numerical examples
- Conclusion and future work

Subspace decomposition preconditioner⁸

Let
$$V (= \mathbb{R}^{3n}) = V_0 + V_1 + \cdots + V_m$$
 with

$$V_0 := V_H \quad (Q1-FEM)^3 \text{ on mesh } \mathcal{T}_H$$

$$V_i := \{ \boldsymbol{v} \in V : \operatorname{supp}(\boldsymbol{v}) \subset U_i \}$$

Define P_i : $V \times V \rightarrow V_i \times V_i$ such that

$$(AP_iv,w)=(Av,w)$$

for all w and form $P := P_0 + P_1 + \cdots + P_m$.

- BAz = BF, with preconditioner P = BA
- Preconditioned conjugate gradient method.
- Semi-iterative: direct method on decoupled problems

⁸Xu, Iterative methods by subspace decomposition and subspace correction, SIAM Review, 1992.

Convergence analysis⁹

Lemma (Properties of the decomposition)

If A ~ L then for H \geq 2R₀ (at least) one decomposition $v = \sum_{i=0}^{m} v_i$ satisfies: $\sum_{i=0}^{m} |v_{i}|_{A}^{2} \leq C_{1}|v|_{A}^{2}, \quad C_{1} = C_{d}\beta\alpha^{-1}\sigma\mu^{2}$

and every decomposition satisfies $|v|_A^2 \le C_2 \sum_{i=0}^m |v_i|_A^2$ with $C_2 = C_d$.

Theorem (Convergence of PCG)

With $\kappa = C_1 C_2$, $H > 2R_0$, it holds

$$|z-z^{(\ell)}|_A \leq 2\left(\frac{\sqrt{\kappa}-1}{\sqrt{\kappa}+1}\right)^{\ell}|z-z^{(0)}|_A.$$

⁹Görtz, Hellman, M., Iterative solution of spatial network models by subspace decomposition, Math. Comp. (2024)

Network homogeneity and connectivity $H > R_0$

• Homogeneity: $\max_{x \in \Omega} |1|_{M, B_H(x)}^2 \le \sigma(R_0) \min_{x \in \Omega} |1|_{M, B_H(x)}^2$

Network homogeneity and connectivity $H > R_0$

- Homogeneity: $\max_{x \in \Omega} |1|_{M,B_H(x)}^2 \le \sigma(R_0) \min_{x \in \Omega} |1|_{M,B_H(x)}^2$
- ② Connectivity: $\mu(R_0) < \infty$ if there for all $x \in \Omega$ exists $\mathcal{G}' \subset \mathcal{G}$ that

- contains all edges with one endpoint in $B_H(x)$
- only contains edges with endpoints contained in B_{H+R₀}(x)

Network homogeneity and connectivity $H > R_0$

- Homogeneity: $\max_{x \in \Omega} |1|_{M, B_H(x)}^2 \le \sigma(R_0) \min_{x \in \Omega} |1|_{M, B_H(x)}^2$
- **2** Connectivity: $\mu(R_0) < \infty$ if there for all $x \in \Omega$ exists $\mathcal{G}' \subset \mathcal{G}$ that

- contains all edges with one endpoint in $B_H(x)$
- only contains edges with endpoints contained in $B_{H+R_0}(x)$

Consider $L'\phi = \lambda M'\phi$, M' is diagonal (mass). Then $\lambda_1 = 0$ and $\lambda_2 > 0$ measures algebraic connectivity.

If every \mathcal{G}' fulfills an iso-perimetric inequality¹⁰: $\lambda_2^{-1/2} = \mu(R_0)H$ with moderate μ .

¹⁰ Cheeger 1970, Fiedler 1973, Chung 1997 Spectral graph theory (AMS) → 4 ≥ → 4 ≥ → 2 → 2

Outline

- The Timoshenko beam model
- Hybridized formulation
- Iteration by subspace decomposition
- Numerical examples
- Conclusion and future work

Example: Elastic deformation of paper

- 4 mm x 4 mm paper
- 615K edges and 424K nodes
- We study stretching of the paper caused by Dirichlet boundary conditions (upper right)
- HDG discretization with p = 5 and $\tau = 1$
- Preconditioner with 8 × 8 × 1 element in coarse space

Example: Elastic deformation of paper

Figure: Convergence of PCG: constant material parameters (black) and realistic (orange).

Outline

- The Timoshenko beam model
- Hybridized formulation
- Iteration by subspace decomposition
- Numerical examples
- Conclusion and future work

Ongoing and future work

Robust iterative approach to solve spatial network models

Engineering applications¹¹ in collaboration with Fraunhofer Chalmers Centre and recently packaging company Tetra Pak.

¹¹Görtz et. al., Iterative method for large-scale Timoshenko beam models assessed on commercial-grade paperboard, Computational Mechanics (2025).