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Wood fibres⇒ flattened cylinders⇒ Timoshenko beams
Discretize the beams and consider small deformations⇒
displacement/rotation solves Az = F
A is SPD, sparse but large and ill-conditioned
Direct methods are often used in practise (memory intense)

Main goal: derive and analyze robust iterative solvers
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The Timoshenko1 beam model

1Timoshenko, On the correction for shear of the differential equation for transverse vibrations of
prismatic bars, London Edinburgh Philos. Mag. and J. Sci., 1921
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1D model of the elastic deformation of a 3D beam
Assumption: the cross sections remains plain after deformation
Six degrees of freedom (centreline displacement and
cross-section rotation)



Governing equation2 (single beam)

2Carrera et. al., Beam Structures, Wiley 2011
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−Cn(∂xue + ie × re) = ne −Cm∂xre = me
∂xne = f e ∂xme + ie × ne = ge

Unit vector in direction of e, ie : e→ R3

Centre line displacement, ue : e→ R3

Cross-section rotation, re : e→ R3

Stress from normal and shear forces: ne : e→ R3

Moment from torsion and bending, me : e→ R3

Material parameter, Cn,Cm symmetric R3 × R3 depending on
Young’s modulus, Shear modulus, and cross-section.
Distributed force f e : e→ R3 and moment ge : e→ R

3



Continuity and balance conditions3

3Lagnese et. at. Modeling, analysis and control of dynamic elastic multi-link structures,
Birkhäuser Boston, 1994
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The network is represented by a graph G = (N ,E).

1 Continuity of solution: ue(n) = un and re(n) = rn
2 Dirichlet boundary nodes: un = uD

n and rn = rD
n , n ∈ ND

3 Balance equations: Let [[·]]
n

be a summation at n and νe = ±1:

[[neνe]]n = fn [[meνe]]n = gn
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HDG4discretization

4Cockburn et. al. Unified hybridization of discontinuous Galerkin, mixed, and continuous Galerkin
methods for second order elliptic problems, SINUM, (2009)
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Aim: reduce dofs in global solve to dofs at joints

Primal variables: ūe, r̄e ∈ V eh,p B (Ph,p(e))
3 ⊂ (L2(e))3, ∀e ∈ E

Dual variables: n̄e, m̄e ∈ V eh,p ⊂ (H1(e))3, ∀e ∈ E

Hybrid variables: ūn, r̄n ∈ R3, ∀n ∈ N \ ND
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Aim: reduce dofs in global solve to dofs at joints

Primal variables: ūe, r̄e ∈ V eh,p B (Ph,p(e))
3 ⊂ (L2(e))3, ∀e ∈ E

Dual variables: n̄e, m̄e ∈ V eh,p ⊂ (H1(e))3, ∀e ∈ E

Hybrid variables: ūn, r̄n ∈ R3, ∀n ∈ N \ ND

For all p̄, q̄, v̄, w̄ ∈ V eh,p:

− (C−1
n n̄e, p̄)e + (ūe, ∂x p̄)e − (ie × r̄e,p)e = ⟨ūn, p̄νe⟩e

− (C−1
m m̄e, q̄)e + (r̄e, ∂x q̄)e = ⟨r̄n, q̄νe⟩e

(∂x n̄e, v̄)e = (f e, v̄)e

(ie × n̄e, w̄)e + (∂xm̄e, w̄)e = (ge, w̄)e
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Aim: reduce dofs in global solve to dofs at joints

Primal variables: ūe, r̄e ∈ V eh,p B (Ph,p(e))
3 ⊂ (L2(e))3, ∀e ∈ E

Dual variables: n̄e, m̄e ∈ V eh,p ⊂ (H1(e))3, ∀e ∈ E

Hybrid variables: ūn, r̄n ∈ R3, ∀n ∈ N \ ND

For all p̄, q̄, v̄, w̄ ∈ V eh,p: (penalty parameter τe > 0)

− (C−1
n n̄e, p̄)e + (ūe, ∂x p̄)e − (ie × r̄e,p)e = ⟨ūn, p̄νe⟩e

− (C−1
m m̄e, q̄)e + (r̄e, ∂x q̄)e = ⟨r̄n, q̄νe⟩e

(∂x n̄e, v̄)e + τe⟨ūe, v̄⟩e = (f e, v̄)e + τe⟨ūn, v̄⟩e

(ie × n̄e, w̄)e + (∂xm̄e, w̄)e + τe⟨r̄e, w̄⟩e = (ge, w̄)e + τe⟨r̄n, w̄⟩e



HDG4discretization
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Aim: reduce dofs in global solve to dofs at joints

Primal variables: ūe, r̄e ∈ V eh,p B (Ph,p(e))
3 ⊂ (L2(e))3, ∀e ∈ E

Dual variables: n̄e, m̄e ∈ V eh,p ⊂ (H1(e))3, ∀e ∈ E

Hybrid variables: ūn, r̄n ∈ R3, ∀n ∈ N \ ND

The discrete balance equations reads

[[n̄eνe + τe(ūe − ūn)]]n = fn, [[m̄eνe + τe(r̄e − r̄n)]]n = gn



HDG discretization5

5Rupp, Hauck, M., Arbitrary order approximations at constant cost for Timoshenko beam network
models, arXiv:2407.14388
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Global system:
Az̄h = F ,

where z̄h = (ūn, r̄n) with 6 dofs per joint.
Independent local solves on edges are needed to form A and F
F contains applied forces, moments and boundary data



HDG discretization5

5Rupp, Hauck, M., Arbitrary order approximations at constant cost for Timoshenko beam network
models, arXiv:2407.14388

Målqvist (Chalmers and GU) Numerical simulation of network beam models 2025-09-01 10 / 20

Global system:
Az̄h = F ,

where z̄h = (ūn, r̄n) with 6 dofs per joint.
Independent local solves on edges are needed to form A and F
F contains applied forces, moments and boundary data

Theorem (Spectral equivalence to graph Laplacian)
If Cn and Cm are edgewise constant. Then, for all (λ, ϕ) ∈ V × V:

α (λ⊤Lλ+ ϕ⊤Lϕ) ≤ (λ, ϕ)⊤A(λ, ϕ) ≤ β (λ⊤Lλ+ ϕ⊤Lϕ) ,

where v⊤Lv =
∑

x∈N
1
2

∑
x∼y

|v(x)−v(y)|2

|x−y | and 0 < α < β depend on the
algebraic connectivity of the graph G and Cn and Cm.



A priori error bound67

6Celiker, Cockburn, Shi, Hybridizable DG methods for Timoshenko beams, JSC (2010)
7Rupp, Hauck, M., Arbitrary order approximations at constant cost for Timoshenko beam network

models, arXiv:2407.14388
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Theorem (Convergence of HDG method)
If τe ∼ hs

e for some s ∈ {−1, 0, 1} and ue, re,ne,me ∈ Hp+1(e) for all
e ∈ E, then it holds[∑

e∈E

[
∥ue − ūe∥2e + ∥re − r̄e∥2e

] ]1/2

≲ hp+1−s+ ,[∑
e∈E

[
∥ne − n̄e∥2e + ∥me − m̄e∥2e

] ]1/2

≲ hp+1−|s|,

where s+ B max(s, 0).
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Subspace decomposition preconditioner8

8Xu, Iterative methods by subspace decomposition and subspace correction, SIAM Review, 1992
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Let V (= R3n) = V0 + V1 + · · ·+ Vm with

V0 B VH (Q1-FEM)3 on mesh TH

Vi B {v ∈ V : supp(v) ⊂ Ui}

Define Pi : V × V → Vi × Vi such that

(APiv ,w) = (Av ,w)

for all w and form P B P0 + P1 + · · ·+ Pm.

BAz = BF , with preconditioner P = BA
Preconditioned conjugate gradient method.
Semi-iterative: direct method on decoupled problems



Convergence analysis9

9Görtz, Hellman, M., Iterative solution of spatial network models by subspace decomposition,
Math. Comp. (2024)
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Lemma (Properties of the decomposition)
If A ∼ L then for H ≥ 2R0 (at least) one decomposition v =

∑m
j=0 vj

satisfies: m∑
j=0

|vj |
2
A ≤ C1|v |2A , C1 = Cdβα

−1σµ2

and every decomposition satisfies |v |2A ≤ C2
∑m

j=0 |vj |
2
A with C2 = Cd .

Theorem (Convergence of PCG)
With κ = C1C2, H > 2R0, it holds

|z − z(ℓ)|A ≤ 2
( √
κ − 1
√
κ + 1

)ℓ
|z − z(0)|A .



Network homogeneity and connectivity H > R0
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1 Homogeneity: maxx∈Ω |1|2M,BH(x)
≤ σ(R0)minx∈Ω |1|2M,BH(x)
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1 Homogeneity: maxx∈Ω |1|2M,BH(x)
≤ σ(R0)minx∈Ω |1|2M,BH(x)

2 Connectivity: µ(R0) < ∞ if there for all x ∈ Ω exists G′ ⊂ G that

contains all edges with one endpoint in
BH(x)

only contains edges with endpoints
contained in BH+R0(x)



Network homogeneity and connectivity H > R0

10Cheeger 1970, Fiedler 1973, Chung 1997 Spectral graph theory (AMS)
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1 Homogeneity: maxx∈Ω |1|2M,BH(x)
≤ σ(R0)minx∈Ω |1|2M,BH(x)

2 Connectivity: µ(R0) < ∞ if there for all x ∈ Ω exists G′ ⊂ G that

contains all edges with one endpoint in
BH(x)

only contains edges with endpoints
contained in BH+R0(x)

Consider L ′ϕ = λM′ϕ, M′ is diagonal (mass). Then λ1 = 0 and
λ2 > 0 measures algebraic connectivity.

If every G′ fulfills an iso-perimetric inequality10: λ−1/2
2 = µ(R0)H

with moderate µ.
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Example: Elastic deformation of paper
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4 mm x 4 mm paper
615K edges and 424K nodes
We study stretching of the paper caused by Dirichlet boundary
conditions (upper right)
HDG discretization with p = 5 and τ = 1
Preconditioner with 8 × 8 × 1 element in coarse space



Example: Elastic deformation of paper
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Figure: Convergence of PCG: constant material parameters (black) and
realistic (orange).
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Ongoing and future work

11Görtz et. al., Iterative method for large-scale Timoshenko beam models assessed on
commercial-grade paperboard, Computational Mechanics (2025).
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Robust iterative approach to solve spatial network models

Engineering applications11 in collaboration with Fraunhofer
Chalmers Centre and recently packaging company Tetra Pak.


