Iterative methods for Timoshenko beam network models

Axel Målqvist

Morgan Görtz, Moritz Hauck, Fredrik Hellman, and Andreas Rupp

Department of Mathematical Sciences Chalmers University of Technology and University of Gothenburg Fraunhofer Chalmers Centre

2024-08-22

Målqvist (Chalmers and GU)

Iterative methods for network models

2024-08-22

Motivation: Simulation of paper/paperboard

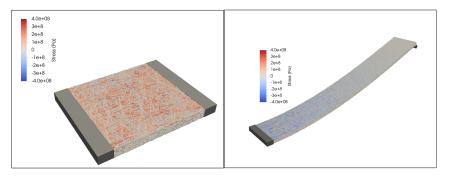
- Collaboration with Fraunhofer Chalmers Centre (FCC), paper making industry (Stora Enso)¹² and packaging (Tetra Pak)
- Simulation of mechanical properties (tensile/bending strength)

¹Kettil, Multiscale methods for simulation of paper making, PhD thesis, 2019 ²Görtz, Numerical homogenization of network models and micro-mechanical simulation of paperboard, PhD thesis, 2024

Målqvist (Chalmers and GU)

Iterative methods for network models

Motivation: Simulation of paper/paperboard



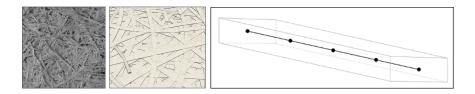
- Collaboration with Fraunhofer Chalmers Centre (FCC), paper making industry (Stora Enso)¹² and packaging (Tetra Pak)
- Simulation of mechanical properties (tensile/bending strength)

¹Kettil, Multiscale methods for simulation of paper making, PhD thesis, 2019 ²Görtz, Numerical homogenization of network models and micro-mechanical simulation of paperboard, PhD thesis, 2024

Målqvist (Chalmers and GU)

Iterative methods for network models

Motivation: Simulation of paper/paperboard



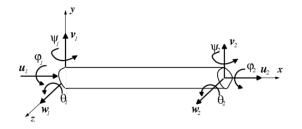
- Paper fibres are hollow flattened slender cylinders
- Model: Timoshenko beams with rigid joints
- The displacement solves a linear system of equations Au = F
- A is SPD, sparse but large and ill-conditioned
- Direct methods are used (FCC)

Main goal: derive and analyze an efficient iterative method

The Timoshenko beam model

- Output: A state of the state
- Iteration by subspace decomposition
- Oumerical examples
- Conclusion and future work

The Timoshenko³ beam model



- ID model of the elastic deformation of a 3D beam
- Assumption: the cross sections remains plain after deformation
- Six degrees of freedom (centreline displacement and cross-section rotation)

³Timoshenko, On the correction for shear of the differential equation for transverse vibrations of prismatic bars, London Edinburgh Philos. Mag. and J. Sci., 1921

Målqvist (Chalmers and GU)

Governing equation⁴ (single beam)

$$\begin{aligned} -C_{\boldsymbol{n}}(\partial_{\boldsymbol{x}}\boldsymbol{u}_{\boldsymbol{e}}+\boldsymbol{i}_{\boldsymbol{e}}\times\boldsymbol{r}_{\boldsymbol{e}}) &= \boldsymbol{n}_{\boldsymbol{e}} & -C_{\boldsymbol{m}}\partial_{\boldsymbol{x}}\boldsymbol{r}_{\boldsymbol{e}} &= \boldsymbol{m}_{\boldsymbol{e}} \\ \partial_{\boldsymbol{x}}\boldsymbol{n}_{\boldsymbol{e}} &= \boldsymbol{f}_{\boldsymbol{e}} & \partial_{\boldsymbol{x}}\boldsymbol{m}_{\boldsymbol{e}}+\boldsymbol{i}_{\boldsymbol{e}}\times\boldsymbol{n}_{\boldsymbol{e}} &= \boldsymbol{g}_{\boldsymbol{e}} \end{aligned}$$

- Unit vector in direction of $e, i_e : e \to \mathbb{R}^3$
- Centre line displacement, $\boldsymbol{u}_{e}: e \rightarrow \mathbb{R}^{3}$
- Cross-section rotation, $\boldsymbol{r}_{e}: e \rightarrow \mathbb{R}^{3}$
- Stress from normal and shear forces: $\mathbf{n}_{e} : e \rightarrow \mathbb{R}^{3}$
- Moment from torsion and bending, $\boldsymbol{m}_{e}: e \rightarrow \mathbb{R}^{3}$
- Material parameter, C_n, C_m symmetric ℝ³ × ℝ³ depending on Young's modulus, Shear modulus, and cross-section.
- Distributed force $f_e : e \to \mathbb{R}^3$ and moment $g_e : e \to \mathbb{R}^3$

⁴Carrera et. al., Beam Structures, Wiley 2011

Weak formulation (single beam)

For edge e and for all $\boldsymbol{p}, \boldsymbol{q} \in V_{\boldsymbol{m}}^{e} = (H^{1}(e))^{3}$ and $\boldsymbol{v}, \boldsymbol{w} \in V_{\boldsymbol{u}}^{e} = (L^{2}(e))^{3}$ it holds:

$$- (C_n^{-1} \mathbf{n}_e, \mathbf{p})_e + (\mathbf{u}_e, \partial_x \mathbf{p})_e - (\mathbf{i}_e \times \mathbf{r}_e, \mathbf{p})_e = \langle \mathbf{u}_n, \mathbf{p}_{\mathcal{V}_e} \rangle_e - (C_m^{-1} \mathbf{m}_e, \mathbf{q})_e + (\mathbf{r}_e, \partial_x \mathbf{q})_e = \langle \mathbf{r}_n, \mathbf{q}_{\mathcal{V}_e} \rangle_e (\partial_x \mathbf{n}_e, \mathbf{v})_e = (\mathbf{f}_e, \mathbf{v})_e (\mathbf{i}_e \times \mathbf{n}_e, \mathbf{w})_e + (\partial_x \mathbf{m}_e, \mathbf{w})_e = (\mathbf{q}_o, \mathbf{w})_e$$

where $(\boldsymbol{v}, \boldsymbol{w})_{e} \coloneqq \int_{e} \boldsymbol{v} \cdot \boldsymbol{w}$ and $\langle \boldsymbol{p}, \boldsymbol{q} \rangle_{e} \coloneqq \sum_{\boldsymbol{n} \sim e} \boldsymbol{p}(\boldsymbol{n}) \cdot \boldsymbol{q}(\boldsymbol{n})$. The unit normals are denoted v_{e} with $v_{e}(\boldsymbol{n}_{1}) = -1$ and $v_{e}(\boldsymbol{n}_{2}) = 1$.

Given $\boldsymbol{u}_{n} \in \mathbb{R}^{3}$ and $\boldsymbol{r}_{n} \in \mathbb{R}^{3}$ the weak form has unique solution $\boldsymbol{m}_{e}, \boldsymbol{n}_{e} \in V_{\boldsymbol{m}}^{e}$ and $\boldsymbol{u}_{e}, \boldsymbol{r}_{e} \in V_{\boldsymbol{u}}^{e}$.

2024-08-22

7/33

Continuity and balance conditions⁵

The network is represented by a graph $\mathcal{G} = (\mathcal{N}, \mathcal{E})$.

- Continuity of solution: $\boldsymbol{u}_{e}(n) = \boldsymbol{u}_{n}$ and $\boldsymbol{r}_{e}(n) = \boldsymbol{r}_{n}$
- 3 Dirichlet boundary nodes: $\boldsymbol{u}_{n} = \boldsymbol{u}_{n}^{D}$ and $\boldsymbol{r}_{n} = \boldsymbol{r}_{n}^{D}$, $n \in \mathcal{N}_{D}$
- Salance equations: Let [[·]]_n be a summation operator and ν_e the normal:

$$\llbracket \boldsymbol{n}_{\mathrm{e}}\boldsymbol{\nu}_{\mathrm{e}} \rrbracket_{\mathfrak{n}} = \boldsymbol{f}_{\mathfrak{n}} \qquad \llbracket \boldsymbol{m}_{\mathrm{e}}\boldsymbol{\nu}_{\mathrm{e}} \rrbracket_{\mathfrak{n}} = \boldsymbol{g}_{\mathfrak{n}},$$

⁵Lagnese et. at. Modeling, analysis and control of dynamic elastic multi-link structures, Birkhäuser Boston, 1994

The Timoshenko beam model

e Hybridized formulation

- Iteration by subspace decomposition
- Oumerical examples
- Sonclusion and future work

Balance equation on weak form

For each edge $e \in \mathcal{E}$ we introduce the following maps:

$$\begin{split} & \boldsymbol{N}_{\mathrm{e}} \colon \left(\boldsymbol{u}_{\mathrm{n}}, \boldsymbol{r}_{\mathrm{n}}, \boldsymbol{f}_{\mathrm{e}}, \boldsymbol{g}_{\mathrm{e}}\right) \mapsto \boldsymbol{n}_{\mathrm{e}}, \qquad \boldsymbol{M}_{\mathrm{e}} \colon \left(\boldsymbol{u}_{\mathrm{n}}, \boldsymbol{r}_{\mathrm{n}}, \boldsymbol{f}_{\mathrm{e}}, \boldsymbol{g}_{\mathrm{e}}\right) \mapsto \boldsymbol{m}_{\mathrm{e}}, \\ & \boldsymbol{U}_{\mathrm{e}} \colon \left(\boldsymbol{u}_{\mathrm{n}}, \boldsymbol{r}_{\mathrm{n}}, \boldsymbol{f}_{\mathrm{e}}, \boldsymbol{g}_{\mathrm{e}}\right) \mapsto \boldsymbol{u}_{\mathrm{e}}, \qquad \boldsymbol{R}_{\mathrm{e}} \colon \left(\boldsymbol{u}_{\mathrm{n}}, \boldsymbol{r}_{\mathrm{n}}, \boldsymbol{f}_{\mathrm{e}}, \boldsymbol{g}_{\mathrm{e}}\right) \mapsto \boldsymbol{r}_{\mathrm{e}}. \end{split}$$

The balance equations in the nodes then reads

$$\llbracket \boldsymbol{N}_{\mathrm{e}}(\boldsymbol{u}_{\mathrm{n}},\boldsymbol{r}_{\mathrm{n}},\boldsymbol{f}_{\mathrm{e}},\boldsymbol{g}_{\mathrm{e}})\boldsymbol{\nu}_{\mathrm{e}} \rrbracket_{\mathrm{n}} = \boldsymbol{f}_{\mathrm{n}} \qquad \llbracket \boldsymbol{M}_{\mathrm{e}}(\boldsymbol{u}_{\mathrm{n}},\boldsymbol{r}_{\mathrm{n}},\boldsymbol{f}_{\mathrm{e}},\boldsymbol{g}_{\mathrm{e}})\boldsymbol{\nu}_{\mathrm{e}} \rrbracket_{\mathrm{n}} = \boldsymbol{g}_{\mathrm{n}},$$

Multiplication with test functions and summation over nodes yields

$$\sum_{\mathfrak{n}\in\mathcal{N}\setminus\mathcal{N}_{D}} \left(\llbracket \boldsymbol{N}_{e}(\boldsymbol{u}_{\mathfrak{n}},\boldsymbol{r}_{\mathfrak{n}},\boldsymbol{f}_{e},\boldsymbol{g}_{e})\boldsymbol{\gamma}_{e} \rrbracket_{\mathfrak{n}}\cdot\boldsymbol{\mu}_{\mathfrak{n}} + \llbracket \boldsymbol{M}_{e}(\boldsymbol{u}_{\mathfrak{n}},\boldsymbol{r}_{\mathfrak{n}},\boldsymbol{f}_{e},\boldsymbol{g}_{e}) \rrbracket_{\mathfrak{n}}\cdot\boldsymbol{\psi}_{\mathfrak{n}} \right) \\ = \sum_{\mathfrak{n}\in\mathcal{N}\setminus\mathcal{N}_{D}} \left(\boldsymbol{f}_{\mathfrak{n}}\cdot\boldsymbol{\mu}_{\mathfrak{n}} + \boldsymbol{g}_{\mathfrak{n}}\cdot\boldsymbol{\psi}_{\mathfrak{n}} \right)$$

Hybridized formulation

Let V_{λ} be the space of vector valued functions defined on the nodes N fulfilling homogeneous Dirichlet boundary conditions.

Find
$$\boldsymbol{u}_{n} = \lambda_{n} + \boldsymbol{u}_{n}^{D}$$
 and $\boldsymbol{r}_{n} = \boldsymbol{\phi}_{n} + \boldsymbol{r}_{n}^{D}$, $(\lambda_{n}, \boldsymbol{\phi}_{n}) \in V_{\lambda} \times V_{\lambda}$, such that $A((\lambda_{n}, \boldsymbol{\phi}_{n}), (\boldsymbol{\mu}, \boldsymbol{\psi})) = F((\boldsymbol{\mu}, \boldsymbol{\psi})), \quad (\boldsymbol{\mu}, \boldsymbol{\psi}) \in V_{\lambda} \times V_{\lambda}$

where

$$\mathsf{A}((\boldsymbol{\lambda}_{\mathfrak{n}},\boldsymbol{\phi}_{\mathfrak{n}}),(\boldsymbol{\mu},\boldsymbol{\psi})) := -\sum_{\mathfrak{n}\in\mathcal{N}\setminus\mathcal{N}_{D}} (\llbracket \boldsymbol{N}_{\mathfrak{e}}(\boldsymbol{\lambda}_{\mathfrak{n}},\boldsymbol{\phi}_{\mathfrak{n}})\boldsymbol{\nu}_{\mathfrak{e}}\rrbracket_{\mathfrak{n}}\cdot\boldsymbol{\mu}_{\mathfrak{n}} + \llbracket \boldsymbol{M}_{\mathfrak{e}}(\boldsymbol{\lambda}_{\mathfrak{n}},\boldsymbol{\phi}_{\mathfrak{n}})\boldsymbol{\nu}_{\mathfrak{e}}\rrbracket_{\mathfrak{n}}\cdot\boldsymbol{\psi}_{\mathfrak{n}})$$

$$\begin{aligned} \mathsf{F}((\boldsymbol{\mu},\boldsymbol{\psi})) &\coloneqq \sum_{\mathfrak{n}\in\mathcal{N}\setminus\mathcal{N}_D} \left(\llbracket \mathbf{N}_{\mathfrak{e}}(\mathbf{u}_{\mathfrak{n}}^D,\mathbf{r}_{\mathfrak{n}}^D,\mathbf{f}_{\mathfrak{e}},\boldsymbol{g}_{\mathfrak{e}})\boldsymbol{\nu}_{\mathfrak{e}} \rrbracket_{\mathfrak{n}} - \mathbf{f}_{\mathfrak{n}} \right) \cdot \boldsymbol{\mu}_{\mathfrak{n}} \\ &+ \left(\llbracket \mathbf{M}_{\mathfrak{e}}(\mathbf{u}_{\mathfrak{n}}^D,\mathbf{r}_{\mathfrak{n}}^D,\mathbf{f}_{\mathfrak{e}},\boldsymbol{g}_{\mathfrak{e}})\boldsymbol{\nu}_{\mathfrak{e}} \rrbracket_{\mathfrak{n}} - \boldsymbol{g}_{\mathfrak{n}} \right) \cdot \boldsymbol{\psi}_{\mathfrak{n}}. \end{aligned}$$

Hybridized formulation

Let V_{λ} be the space of vector valued functions defined on the nodes N fulfilling homogeneous Dirichlet boundary conditions.

Find
$$\boldsymbol{u}_{n} = \lambda_{n} + \boldsymbol{u}_{n}^{D}$$
 and $\boldsymbol{r}_{n} = \boldsymbol{\phi}_{n} + \boldsymbol{r}_{n}^{D}$, $(\lambda_{n}, \boldsymbol{\phi}_{n}) \in V_{\lambda} \times V_{\lambda}$, such that $A((\lambda_{n}, \boldsymbol{\phi}_{n}), (\boldsymbol{\mu}, \boldsymbol{\psi})) = F((\boldsymbol{\mu}, \boldsymbol{\psi})), \quad (\boldsymbol{\mu}, \boldsymbol{\psi}) \in V_{\lambda} \times V_{\lambda}$

A hybrid formulation where the unknowns (λ_n, ϕ_n) sits on nodes connecting the subdomains (beams).

- Primal variables: $\boldsymbol{u}_{e}, \boldsymbol{r}_{e} \in V_{\boldsymbol{u}}^{e}$ for all $e \in \mathcal{E}$
- Dual variables: $\boldsymbol{m}_{e}, \boldsymbol{n}_{e} \in V_{\boldsymbol{m}}^{e}$ for all $e \in \mathcal{E}$
- Hybrid variables: $\boldsymbol{u}_{n}, \boldsymbol{r}_{n} \in \mathbb{R}^{3}$ for all $n \in \mathcal{N}$

Hybridized formulation

Let V_{λ} be the space of vector valued functions defined on the nodes N fulfilling homogeneous Dirichlet boundary conditions.

Find
$$\boldsymbol{u}_{n} = \lambda_{n} + \boldsymbol{u}_{n}^{D}$$
 and $\boldsymbol{r}_{n} = \boldsymbol{\phi}_{n} + \boldsymbol{r}_{n}^{D}$, $(\lambda_{n}, \boldsymbol{\phi}_{n}) \in V_{\lambda} \times V_{\lambda}$, such that $A((\lambda_{n}, \boldsymbol{\phi}_{n}), (\boldsymbol{\mu}, \boldsymbol{\psi})) = F((\boldsymbol{\mu}, \boldsymbol{\psi})), \quad (\boldsymbol{\mu}, \boldsymbol{\psi}) \in V_{\lambda} \times V_{\lambda}$

- One global problem with 6|N \ N_D| dofs plus independent local problems on all edges e ∈ E.
- A is symmetric and coercive, consequently the weak form is well posed
- Only local solver need to be discretized
- With constant data local problems can be solved analytically⁶

⁶Kufner et. al. Simulation and structural optimization of 3D Timoshenko beam networks based on fully analytical network solutions, M2AN, (2018) → (2018) → (2018)

HDG⁷ formulation

The space of polynomials of degree at most p is denoted $\mathbb{P}_p(e)$ and we let $V_p^e := (\mathbb{P}_p(e))^3$. The discrete method seeks

- $\bar{\boldsymbol{u}}_{e}, \bar{\boldsymbol{r}}_{e} \in V_{\rho}^{e}$ for all edges $e \in \mathcal{E}$
- $\bar{\boldsymbol{n}}_{e}, \bar{\boldsymbol{m}}_{e} \in V_{p}^{e}$ for all edges $e \in \mathcal{E}$
- $\bar{\boldsymbol{u}}_{n}, \bar{\boldsymbol{r}}_{n} \in \mathbb{R}^{3}$ for all $n \in \mathcal{N} \setminus \mathcal{N}_{D}$ (continuity imposed weakly)

such that the discrete balance equations hold

$$\llbracket \bar{\boldsymbol{n}}_{\mathrm{e}} \boldsymbol{\nu}_{\mathrm{e}} + \tau_{\mathrm{e}} (\bar{\boldsymbol{u}}_{\mathrm{e}} - \bar{\boldsymbol{u}}_{\mathrm{n}}) \rrbracket_{n} = f_{\mathrm{n}}, \qquad \llbracket \bar{\boldsymbol{m}}_{\mathrm{e}} \boldsymbol{\nu}_{\mathrm{e}} + \tau_{\mathrm{e}} (\bar{\boldsymbol{r}}_{\mathrm{e}} - \bar{\boldsymbol{r}}_{\mathrm{n}}) \rrbracket_{n} = g_{\mathrm{n}},$$

with penalty parameter $\tau_e > 0$, and the local equations...

 ⁷Rupp et. al. PDEs on hypergraphs and networks of surfaces, M2AN, (2022)

 Målqvist (Chalmers and GU)
 Iterative methods for network models
 2024-08-22
 12/33

HDG⁷ formulation

The space of polynomials of degree at most *p* is denoted $\mathbb{P}_p(\mathfrak{e})$ and we let $V_p^{\mathfrak{e}} := (\mathbb{P}_p(\mathfrak{e}))^3$. The discrete method seeks

- $\bar{\boldsymbol{u}}_{e}, \bar{\boldsymbol{r}}_{e} \in V_{\rho}^{e}$ for all edges $e \in \mathcal{E}$
- $\bar{\boldsymbol{n}}_{e}, \bar{\boldsymbol{m}}_{e} \in V_{p}^{e}$ for all edges $e \in \mathcal{E}$

• $\bar{\boldsymbol{u}}_{n}, \bar{\boldsymbol{r}}_{n} \in \mathbb{R}^{3}$ for all $n \in \mathcal{N} \setminus \mathcal{N}_{D}$ (continuity imposed weakly) For all $\bar{\boldsymbol{p}}, \bar{\boldsymbol{q}}, \bar{\boldsymbol{v}}, \bar{\boldsymbol{w}} \in V_{p}^{e}$:

$$\begin{array}{rcl} -\left(C_{\mathbf{n}}^{-1}\bar{\mathbf{n}}_{\mathrm{e}},\bar{\mathbf{p}}\right)_{\mathrm{e}} &+\left(\bar{\mathbf{u}}_{\mathrm{e}},\partial_{x}\bar{\mathbf{p}}\right)_{\mathrm{e}}-\left(\mathbf{i}_{\mathrm{e}}\times\bar{\mathbf{r}}_{\mathrm{e}},\mathbf{p}\right)_{\mathrm{e}}=\langle\bar{\mathbf{u}}_{\mathrm{n}},\bar{\mathbf{p}}\nu_{\mathrm{e}}\rangle_{\mathrm{e}},\\ &-\left(C_{\mathbf{m}}^{-1}\bar{\mathbf{m}}_{\mathrm{e}},\bar{\mathbf{q}}\right)_{\mathrm{e}} &+\left(\bar{\mathbf{r}}_{\mathrm{e}},\partial_{x}\bar{\mathbf{q}}\right)_{\mathrm{e}} &=\langle\bar{\mathbf{r}}_{\mathrm{n}},\bar{\mathbf{q}}\nu_{\mathrm{e}}\rangle_{\mathrm{e}},\\ &\left(\partial_{x}\bar{\mathbf{n}}_{\mathrm{e}},\bar{\mathbf{v}}\right)_{\mathrm{e}} &+\tau_{\mathrm{e}}\langle\bar{\mathbf{u}}_{\mathrm{e}},\bar{\mathbf{v}}\rangle_{\mathrm{e}} &=\left(\mathbf{f}_{\mathrm{e}},\bar{\mathbf{v}}\right)_{\mathrm{e}}+\tau_{\mathrm{e}}\langle\bar{\mathbf{u}}_{\mathrm{n}},\bar{\mathbf{v}}\rangle_{\mathrm{e}},\\ &\left(\bar{\mathbf{i}}_{\mathrm{e}}\times\bar{\mathbf{n}}_{\mathrm{e}},\bar{\mathbf{w}}\right)_{\mathrm{e}} &+\left(\partial_{x}\bar{\mathbf{m}}_{\mathrm{e}},\bar{\mathbf{w}}\right)_{\mathrm{e}} &+\tau_{\mathrm{e}}\langle\bar{\mathbf{r}}_{\mathrm{e}},\bar{\mathbf{w}}\rangle_{\mathrm{e}} &=\left(\mathbf{g}_{\mathrm{e}},\bar{\mathbf{w}}\right)_{\mathrm{e}}+\tau_{\mathrm{e}}\langle\bar{\mathbf{r}}_{\mathrm{n}},\bar{\mathbf{w}}\rangle_{\mathrm{e}}. \end{array}$$

The local solver is well posed for $\tau_e > 0$.

 ⁷Rupp et. al. PDEs on hypergraphs and networks of surfaces, M2AN, (2022)

 Målqvist (Chalmers and GU)
 Iterative methods for network models
 2024-08-22
 12/33

A priori error bound⁸

Theorem (Convergence of HDG method)

If $\tau_e \sim h_e^s$ for some $s \in \{-1, 0, 1\}$ and $\boldsymbol{u}_e, \boldsymbol{r}_e, \boldsymbol{n}_e, \boldsymbol{m}_e \in H^{p+1}(e)$ for all $e \in \mathcal{E}$, then it holds

$$\left[\sum_{e\in\mathcal{E}}\left[\|\boldsymbol{u}_{e}-\bar{\boldsymbol{u}}_{e}\|_{e}^{2}+\|\boldsymbol{r}_{e}-\bar{\boldsymbol{r}}_{e}\|_{e}^{2}\right]^{1/2} \lesssim h^{p+1-s^{+}},\\\left[\sum_{e\in\mathcal{E}}\left[\|\boldsymbol{n}_{e}-\bar{\boldsymbol{n}}_{e}\|_{e}^{2}+\|\boldsymbol{m}_{e}-\bar{\boldsymbol{m}}_{e}\|_{e}^{2}\right]^{1/2} \lesssim h^{p+1-|s|},\right]$$

where $s^+ \coloneqq \max(s, 0)$.

⁸Rupp, Hauck, M., Arbitrary order approximations at constant cost for Timoshenko beam network models, arXiv:2407.14388

Målqvist (Chalmers and GU)

Iterative methods for network models

2024-08-22

13/33

Numerical example (convergence)

• Toy problem: 2D unit cross (+) embedded in 3D,

$$\left(\left[-1,1\right]\times\left\{0\right\}\cup\left\{0\right\}\times\left[-1,1\right]\right)\times\left\{0\right\}$$

- Four edges before refinement
- Dirichlet bc at the tips of the cross

•
$$C_n = C_m = I$$

Manufactured solution, forces chosen so that

$$\boldsymbol{u}(x,y,z) = \begin{pmatrix} 0\\\cos(\pi y)\\\cos(\pi x) \end{pmatrix}, \quad \boldsymbol{r}(x,y,z) = \begin{pmatrix} 0\\\sin(\pi x)\\\sin(\pi y) \end{pmatrix}$$

Numerical example (convergence)

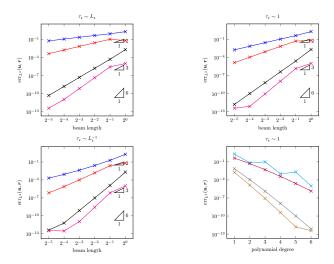


Figure: Poly. deg. 1 (blue), 2 (red), 5 (black), and 6 (magenta). Bottom right: beam lengths 1 (cyan), 2^{-1} (purple), 2^{-4} (gray), and 2^{-5} (brown).

Målqvist (Chalmers and GU)

2024-08-22

15/33

Important property of the hybrid formulation

Recall the formulation:

Let V_{λ} be the space of vector valued functions defined on the nodes N fulfilling homogeneous Dirichlet boundary conditions.

Find
$$\boldsymbol{u}_{n} = \lambda_{n} + \boldsymbol{u}_{n}^{D}$$
 and $\boldsymbol{r}_{n} = \boldsymbol{\phi}_{n} + \boldsymbol{r}_{n}^{D}$, $(\lambda_{n}, \boldsymbol{\phi}_{n}) \in V_{\lambda} \times V_{\lambda}$, such that $A((\lambda_{n}, \boldsymbol{\phi}_{n}), (\boldsymbol{\mu}, \boldsymbol{\psi})) = F((\boldsymbol{\mu}, \boldsymbol{\psi})), \quad (\boldsymbol{\mu}, \boldsymbol{\psi}) \in V_{\lambda} \times V_{\lambda}$

A key observation in the convergence analysis is that:

A is spectrally equivalent to a weighted graph Laplacian

Graph Laplacian and norms

Let G = (N, E) be a graph of nodes and edges, x ∈ Ω ⊂ ℝ³
Let Ŷ : N → ℝ be scalar functions on N. For v, w ∈ Ŷ

$$(v, w) = \sum_{x} v(x)w(x)$$

$$(L^{g}v, v) = \sum_{(x,y)\in\mathcal{E}} (v(x) - v(y))^{2}$$

$$(Lv, v) = \sum_{(x,y)\in\mathcal{E}} \frac{(v(x) - v(y))^{2}}{|x - y|}$$

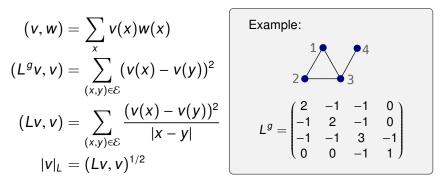
$$|v|_{L} = (Lv, v)^{1/2}$$

Example:

$$L^{g} = \begin{pmatrix} 2 & -1 & -1 & 0 \\ -1 & 2 & -1 & 0 \\ -1 & -1 & 3 & -1 \\ 0 & 0 & -1 & 1 \end{pmatrix}$$

Graph Laplacian and norms

Let G = (N, E) be a graph of nodes and edges, x ∈ Ω ⊂ ℝ³
Let Ŷ : N → ℝ be scalar functions on N. For v, w ∈ Ŷ



- Let *M* be diagonal with $M_{xx} = \frac{1}{2} \sum_{y \sim x} |x y|, |v|_M = (Mv, v)^{1/2}$
- For a P1-FEM function v_h ∈ V_h on a mesh of [a, b] ⊂ ℝ we have |v_h|_{H¹(Ω)} = |v_h|_L. M is the lumped mass matrix.

Målqvist (Chalmers and GU)

Theorem (Spectral equivalence to graph Laplacian)

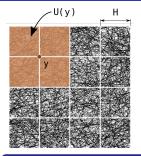
Assume that the maximal edge length is sufficiently small and that the material coefficients C_n and C_m are edgewise constant. Then, there holds for all $(\lambda, \phi) \in V_{\lambda} \times V_{\lambda}$ that

$$L(\lambda,\lambda) + L(\phi,\phi) \lesssim A((\lambda,\phi),(\lambda,\phi)) \lesssim L(\lambda,\lambda) + L(\phi,\phi),$$

where the hidden constants depend material data and on the reciprocal of $\lambda_{\min} := \min_{\mu \in V_{\lambda} \setminus \{0\}} \frac{L(\mu,\mu)}{M(\mu,\mu)}$.

- The Timoshenko beam model
- e Hybridized formulation
- Iteration by subspace decomposition
- Oumerical examples
- Sonclusion and future work

Geometric coarsening⁹



- \mathcal{T}_H is a mesh of boxes
- \hat{V}_H is Q1-FEM with basis $\{\varphi_y\}_y$
- $V_H \subset \hat{V}_H$ satisfy the boundary conditions
- Clément type interpolation operator

$${\mathcal{I}}_{{\mathcal{H}}}{\mathbf{v}} = \sum_{\text{free DoFs } y} \bar{{\mathbf{v}}}_{U(y)} \varphi_y \in V_{{\mathcal{H}}}$$

Lemma (Stability and approximability of I_H)

For all $v \in V$ and for $H \ge R_0 > 0$,

$$H^{-1}|\boldsymbol{v}-\boldsymbol{I}_{H}\boldsymbol{v}|_{M}+|\boldsymbol{I}_{H}\boldsymbol{v}|_{L}\leq C|\boldsymbol{v}|_{L},$$

where $C = C_d \mu \sqrt{\sigma}$.

⁹Görtz, Hellman, M., Iterative solution of spatial network models by subspace decomposition, Math. Comp. (2024)

Målqvist (Chalmers and GU)

Iterative methods for network models

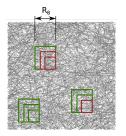
2024-08-22

20/33

Network homogeneity

The network must resemble a homogeneous material on coarse scales $H \ge R_0$.

• *Homogeneity:* Let $B_H(x)$ be a box at x of side length 2H, with $H \ge R_0$. We assume limited mass variation



$$1 \le \frac{\max_{x} |1|^{2}_{M,B_{H}(x)}}{\min_{x} |1|^{2}_{M,B_{H}(x)}} \le \sigma(R_{0})$$

Limited density variation on scales larger than R_0 .

Network connectivity

2 Connectivity: For all $H > R_0$ and $x \in \Omega$ there is a connected subgraph G' that contains

- all edges with one endpoint in $B_H(x)$
- only edges with endpoints contained in $B_{H+R_0}(x)$

Network connectivity

2 *Connectivity:* For all $H > R_0$ and $x \in \Omega$ there is a connected subgraph G' that contains

- all edges with one endpoint in $B_H(x)$
- only edges with endpoints contained in $B_{H+R_0}(x)$

Consider $L'\phi = \lambda M'\phi$, $\lambda_1 = 0$, $\lambda_2 > 0$ (Algebraic connectivity¹⁰):

$$|v - \bar{v}|_{M,B_{H}} \le |v - \bar{v}|_{M'} \le \lambda_{2}^{-1/2} |v - \bar{v}|_{L'} \le \lambda_{2}^{-1/2} |v|_{L,B_{H+B_{0}}}$$

If \mathcal{G}' fulfills an iso-perimetric inequality $\lambda_2 \sim H^{-2}$ and therefore

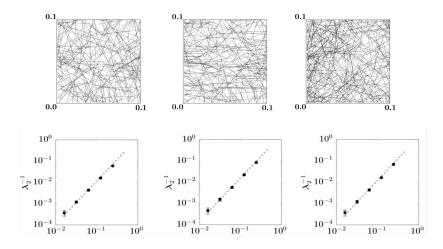
$$\lambda_2^{-1/2} = \mu(R_0)H$$

¹⁰Chung, Spectral graph theory, AMS, 1997

Målqvist (Chalmers and GU)

Example: Connectivity $\lambda_2^{-1/2} \approx \mu H$

Finite length fibers r = 0.05 and $|1|_{M}^{2} = 1000$, $\Omega = [0, 1]^{2}$



H varies from 2^{-2} to 2^{-6} . Here $R_0 \sim 2^{-6}$.

Målqvist (Chalmers and GU)

2024-08-22

Subspace decomposition preconditioner¹¹

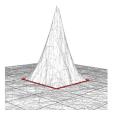
Let
$$V_{\lambda} = V_{\lambda,0} + V_{\lambda,1} + \cdots + V_{\lambda,m}$$
 with

 $V_{\lambda,0} \coloneqq V_H \times V_H \times V_H$

$$V_{\lambda,i} \coloneqq \{ \boldsymbol{v} \in V_{\lambda} : \operatorname{supp}(\boldsymbol{v}) \subset U_i \}$$

Define $P_i: V_{\lambda} \times V_{\lambda} \to V_{\lambda,i} \times V_{\lambda,i}$ such that

$$(\mathsf{AP}_i(\lambda, \pmb{\phi}), (\pmb{\mu}, \pmb{\psi})) = (\mathsf{A}(\lambda, \pmb{\phi}), (\pmb{\mu}, \pmb{\psi}))$$



for all (μ, ψ) and form $P \coloneqq P_0 + P_1 + \cdots + P_m$.

- BAz = BF, with preconditioner P = BA and $z = (\lambda, \phi)$
- Preconditioned conjugate gradient method.
- Semi-iterative: direct method on decoupled problems

¹¹Kornhuber & Yserentant, Numerical homogenization of elliptic multiscale problmes by subspace decomposition, MMS, 2016

Målqvist (Chalmers and GU)

Iterative methods for network models

Lemma (Properties of the decomposition)

If the interpolation bound holds and A is spectrally equivalent to the weighted Graph Laplacian with constants α and β , then for $H > 2R_0$ At least one decomposition $v = \sum_{j=0}^{m} v_j$ satisfies: $\sum_{j=0}^{m} |v_j|_A^2 \leq C_1 |v|_A^2$ Every decomposition satisfies: $|v|_A^2 \leq C_2 \sum_{j=0}^{m} |v_j|_A^2$ The constants are $C_1 = C_d \beta \alpha^{-1} \sigma \mu^2$ and $C_2 = C_d$.

Theorem (Convergence of PCG)

With $\kappa = C_1 C_2$, $H > 2R_0$, and $z = (\lambda, \phi)$ it holds

$$|z-z^{(\ell)}|_A \leq 2\left(\frac{\sqrt{\kappa}-1}{\sqrt{\kappa}+1}\right)^{\ell}|z-z^{(0)}|_A.$$

< ロ > < 同 > < 三 > < 三 > 、

э

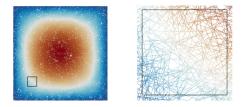
- The Timoshenko beam model
- e Hybridized formulation
- Iteration by subspace decomposition

Numerical examples

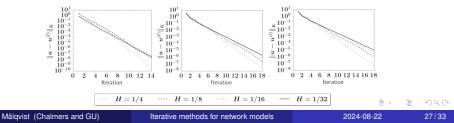
Sonclusion and future work

Example: Convergence graph Laplacian

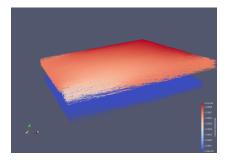
$$Ku = M1$$
, $(Kv, v) = \sum_{x \sim y} \gamma_{xy} \frac{(v(x) - v(y))^2}{|x - y|}$, $u|_{\partial\Omega} = 0$, $|1|_M^2 = 1000$.



Grid $\gamma = 1$ (left), rand $\gamma = 1$ (center), rand $\gamma \in U([0.1, 1])$ (right)



Example: Elastic deformation of paper



- 4 mm x 4 mm paper
- 615K edges and 424K nodes
- We study stretching of the paper caused by Dirichlet boundary conditions (upper right)
- HDG discretization with p = 5 and $\tau = 1$
- Preconditioner with 8 × 8 × 1 element in coarse space

Målqvist (Chalmers and GU)

Example: Elastic deformation of paper

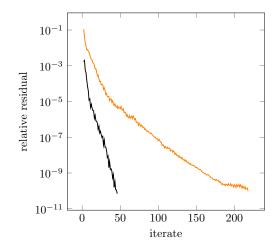
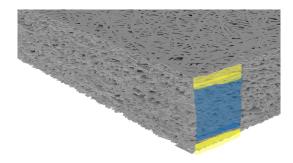


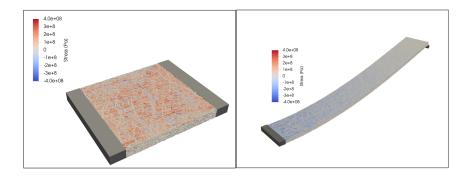
Figure: Convergence of PCG: constant material parameters (black) and realistic (orange).

Engineering application (FCC/Stora Enso)



- Three-ply paperboard
- Grammage: 400g/m²
- Measure: (tensile) 4mm × 4mm (bending) 50mm × 4mm
- Dofs: (tensile) 16M (bending) 200M

Engineering application (FCC/Stora Enso)



- Solver converges in 60 iterations (practical purposes)
- Validated on various commercial paperboards
- Results consistent with experimental data¹²

¹²Görtz et. al., Iterative method for large-scale Timoshenko beam models assessed on commercial-grade paperboard, Computational Mechanics (2024)

Målqvist (Chalmers and GU)

Iterative methods for network models

- The Timoshenko beam model
- e Hybridized formulation
- Iteration by subspace decomposition
- Oumerical examples
- Conclusion and future work

Robust iterative approach to solve spatial network models with applications in the paper industry

- Görtz, Hellman, M., Iterative solution of spatial network models by subspace decomposition, Math. Comp. (2024)
- Rupp, Hauck, M., Arbitrary order approximations at constant cost for Timoshenko beam network models, arXiv:2407.14388
- Görtz et. al., Iterative method for large-scale Timoshenko beam models assessed on commercial-grade paperboard, Computational Mechanics (2024)

Robust iterative approach to solve spatial network models with applications in the paper industry

Future work:

- δ -overlap in DD
- Algebraic coarsening
- Multilevel preconditioner
- Elastic wave propagation
- Large deformation, non-linear models