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Paper fibres are hollow flattened slender cylinders
Model: Timoshenko beams with rigid joints
The displacement solves a linear system of equations Au = F
A is SPD, sparse but large and ill-conditioned
Direct methods are used (FCC)

Main goal: derive and analyze an efficient iterative method
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Målqvist (Chalmers and GU) Iterative methods for network models 2024-08-22 4 / 33

1 The Timoshenko beam model
2 Hybridized formulation
3 Iteration by subspace decomposition
4 Numerical examples
5 Conclusion and future work



The Timoshenko3 beam model

3Timoshenko, On the correction for shear of the differential equation for
transverse vibrations of prismatic bars, London Edinburgh Philos. Mag. and
J. Sci., 1921

Målqvist (Chalmers and GU) Iterative methods for network models 2024-08-22 5 / 33

1D model of the elastic deformation of a 3D beam
Assumption: the cross sections remains plain after deformation
Six degrees of freedom (centreline displacement and
cross-section rotation)



Governing equation4 (single beam)

4Carrera et. al., Beam Structures, Wiley 2011
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−Cn(∂xue + ie × re) = ne −Cm∂xre = me
∂xne = f e ∂xme + ie × ne = ge

Unit vector in direction of e, ie : e→ R3

Centre line displacement, ue : e→ R3

Cross-section rotation, re : e→ R3

Stress from normal and shear forces: ne : e→ R3

Moment from torsion and bending, me : e→ R3

Material parameter, Cn,Cm symmetric R3 × R3 depending on
Young’s modulus, Shear modulus, and cross-section.
Distributed force f e : e→ R3 and moment ge : e→ R

3



Weak formulation (single beam)
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For edge e and for all p,q ∈ V em = (H1(e))3 and
v,w ∈ V eu = (L2(e))3 it holds:

− (C−1
n ne,p)e + (ue, ∂xp)e − (ie × re,p)e = ⟨un,pνe⟩e

− (C−1
m me,q)e + (re, ∂xq)e = ⟨rn,qνe⟩e

(∂xne, v)e = (f e, v)e

(ie × ne,w)e + (∂xme,w)e = (ge,w)e

where (v,w)e B
´
e
v · w and ⟨p,q⟩e B

∑
n∼e p(n) · q(n). The unit

normals are denoted νe with νe(n1) = −1 and νe(n2) = 1.

Given un ∈ R3 and rn ∈ R3 the weak form has unique solution
me,ne ∈ V em and ue, re ∈ V eu.



Continuity and balance conditions5

5Lagnese et. at. Modeling, analysis and control of dynamic elastic multi-link
structures, Birkhäuser Boston, 1994
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The network is represented by a graph G = (N ,E).

1 Continuity of solution: ue(n) = un and re(n) = rn
2 Dirichlet boundary nodes: un = uD

n and rn = rD
n , n ∈ ND

3 Balance equations: Let [[·]]
n

be a summation operator and νe
the normal:

[[neνe]]n = fn [[meνe]]n = gn,
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Balance equation on weak form
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For each edge e ∈ E we introduce the following maps:
Ne : (un, rn, f e,ge) 7→ ne, Me : (un, rn, f e,ge) 7→ me,
Ue : (un, rn, f e,ge) 7→ ue, Re : (un, rn, f e,ge) 7→ re.

The balance equations in the nodes then reads

[[Ne(un, rn, f e,ge)νe]]n = fn [[Me(un, rn, f e,ge)νe]]n = gn,

Multiplication with test functions and summation over nodes yields∑
n∈N\ND

(
[[Ne(un, rn, f e,ge)νe]]n · µn + [[Me(un, rn, f e,ge)]]n · ψn

)
=

∑
n∈N\ND

(
fn · µn + gn · ψn

)



Hybridized formulation
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Let Vλ be the space of vector valued functions defined on the nodes
N fulfilling homogeneous Dirichlet boundary conditions.

Find un = λn + uD
n and rn = ϕn + rD

n , (λn,ϕn) ∈ Vλ × Vλ, such that

A((λn,ϕn), (µ,ψ)) = F((µ,ψ)), (µ,ψ) ∈ Vλ × Vλ

where

A((λn,ϕn), (µ,ψ)) := −
∑
n∈N\ND

(
[[Ne(λn,ϕn)νe]]n · µn+ [[Me(λn,ϕn)νe]]n ·ψn

)
F((µ,ψ)) B

∑
n∈N\ND

(
[[Ne(uD

n , r
D
n , f e,ge)νe]]n − fn

)
· µn

+
(
[[Me(uD

n , r
D
n , f e,ge)νe]]n − gn

)
· ψn.



Hybridized formulation

Målqvist (Chalmers and GU) Iterative methods for network models 2024-08-22 11 / 33

Let Vλ be the space of vector valued functions defined on the nodes
N fulfilling homogeneous Dirichlet boundary conditions.

Find un = λn + uD
n and rn = ϕn + rD

n , (λn,ϕn) ∈ Vλ × Vλ, such that

A((λn,ϕn), (µ,ψ)) = F((µ,ψ)), (µ,ψ) ∈ Vλ × Vλ

A hybrid formulation where the unknowns (λn,ϕn) sits on nodes
connecting the subdomains (beams).

Primal variables: ue, re ∈ V eu for all e ∈ E
Dual variables: me,ne ∈ V em for all e ∈ E
Hybrid variables: un, rn ∈ R3 for all n ∈ N



Hybridized formulation

6Kufner et. al. Simulation and structural optimization of 3D Timoshenko beam
networks based on fully analytical network solutions, M2AN, (2018)
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Let Vλ be the space of vector valued functions defined on the nodes
N fulfilling homogeneous Dirichlet boundary conditions.

Find un = λn + uD
n and rn = ϕn + rD

n , (λn,ϕn) ∈ Vλ × Vλ, such that

A((λn,ϕn), (µ,ψ)) = F((µ,ψ)), (µ,ψ) ∈ Vλ × Vλ

One global problem with 6|N \ ND | dofs plus independent local
problems on all edges e ∈ E.
A is symmetric and coercive, consequently the weak form is
well posed
Only local solver need to be discretized
With constant data local problems can be solved analytically6



HDG7 formulation

7Rupp et. al. PDEs on hypergraphs and networks of surfaces, M2AN, (2022)
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The space of polynomials of degree at most p is denoted Pp(e) and
we let V ep B (Pp(e))

3. The discrete method seeks
ūe, r̄e ∈ V ep for all edges e ∈ E
n̄e, m̄e ∈ V ep for all edges e ∈ E
ūn, r̄n ∈ R3 for all n ∈ N \ ND (continuity imposed weakly)

such that the discrete balance equations hold

[[n̄eνe + τe(ūe − ūn)]]n = fn, [[m̄eνe + τe(r̄e − r̄n)]]n = gn,

with penalty parameter τe > 0, and the local equations...



HDG7 formulation

7Rupp et. al. PDEs on hypergraphs and networks of surfaces, M2AN, (2022)
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The space of polynomials of degree at most p is denoted Pp(e) and
we let V ep B (Pp(e))

3. The discrete method seeks
ūe, r̄e ∈ V ep for all edges e ∈ E
n̄e, m̄e ∈ V ep for all edges e ∈ E
ūn, r̄n ∈ R3 for all n ∈ N \ ND (continuity imposed weakly)

For all p̄, q̄, v̄, w̄ ∈ V ep:

− (C−1
n n̄e, p̄)e + (ūe, ∂x p̄)e − (ie × r̄e,p)e = ⟨ūn, p̄νe⟩e,

− (C−1
m m̄e, q̄)e + (r̄e, ∂x q̄)e = ⟨r̄n, q̄νe⟩e,

(∂x n̄e, v̄)e + τe⟨ūe, v̄⟩e = (f e, v̄)e + τe⟨ūn, v̄⟩e,

(ie × n̄e, w̄)e + (∂xm̄e, w̄)e + τe⟨r̄e, w̄⟩e = (ge, w̄)e + τe⟨r̄n, w̄⟩e.

The local solver is well posed for τe > 0.



A priori error bound8

8Rupp, Hauck, M., Arbitrary order approximations at constant cost for
Timoshenko beam network models, arXiv:2407.14388
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Theorem (Convergence of HDG method)
If τe ∼ hs

e for some s ∈ {−1, 0, 1} and ue, re,ne,me ∈ Hp+1(e) for all
e ∈ E, then it holds[∑

e∈E

[
∥ue − ūe∥2e + ∥re − r̄e∥2e

] ]1/2

≲ hp+1−s+ ,[∑
e∈E

[
∥ne − n̄e∥2e + ∥me − m̄e∥2e

] ]1/2

≲ hp+1−|s|,

where s+ B max(s, 0).



Numerical example (convergence)
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Toy problem: 2D unit cross (+) embedded in 3D,(
[−1, 1] × {0} ∪ {0} × [−1, 1]

)
× {0}

Four edges before refinement
Dirichlet bc at the tips of the cross
Cn = Cm = I
Manufactured solution, forces chosen so that

u(x, y, z) =

 0
cos(πy)
cos(πx)

 , r(x, y, z) =

 0
sin(πx)
sin(πy)





Numerical example (convergence)
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Figure: Poly. deg. 1 (blue), 2 (red), 5 (black), and 6 (magenta) . Bottom
right: beam lengths 1 (cyan), 2−1 (purple), 2−4 (gray), and 2−5 (brown).



Important property of the hybrid formulation
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Recall the formulation:

Let Vλ be the space of vector valued functions defined on the nodes
N fulfilling homogeneous Dirichlet boundary conditions.

Find un = λn + uD
n and rn = ϕn + rD

n , (λn,ϕn) ∈ Vλ × Vλ, such that

A((λn,ϕn), (µ,ψ)) = F((µ,ψ)), (µ,ψ) ∈ Vλ × Vλ

A key observation in the convergence analysis is that:

A is spectrally equivalent to a weighted graph Laplacian



Graph Laplacian and norms
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Let G = (N ,E) be a graph of nodes and edges, x ∈ Ω ⊂ R3

Let V̂ : N → R be scalar functions on N . For v ,w ∈ V̂

(v ,w) =
∑

x

v(x)w(x)

(Lgv , v) =
∑

(x,y)∈E

(v(x) − v(y))2

(Lv , v) =
∑

(x,y)∈E

(v(x) − v(y))2

|x − y |

|v |L = (Lv , v)1/2

Example:

1

3

4

2

Lg =


2 −1 −1 0
−1 2 −1 0
−1 −1 3 −1
0 0 −1 1





Graph Laplacian and norms
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Let G = (N ,E) be a graph of nodes and edges, x ∈ Ω ⊂ R3

Let V̂ : N → R be scalar functions on N . For v ,w ∈ V̂

(v ,w) =
∑

x

v(x)w(x)

(Lgv , v) =
∑

(x,y)∈E

(v(x) − v(y))2

(Lv , v) =
∑

(x,y)∈E

(v(x) − v(y))2

|x − y |

|v |L = (Lv , v)1/2

Example:

1

3

4

2

Lg =


2 −1 −1 0
−1 2 −1 0
−1 −1 3 −1
0 0 −1 1


Let M be diagonal with Mxx = 1

2

∑
y∼x |x − y |, |v |M = (Mv , v)1/2

For a P1-FEM function vh ∈ Vh on a mesh of [a, b] ⊂ R we
have |vh |H1(Ω) = |vh |L . M is the lumped mass matrix.



Spectral equivalence

Målqvist (Chalmers and GU) Iterative methods for network models 2024-08-22 18 / 33

Theorem (Spectral equivalence to graph Laplacian)
Assume that the maximal edge length is sufficiently small and that
the material coefficients Cn and Cm are edgewise constant. Then,
there holds for all (λ,ϕ) ∈ Vλ × Vλ that

L(λ, λ) + L(ϕ,ϕ) ≲ A((λ,ϕ), (λ,ϕ)) ≲ L(λ, λ) + L(ϕ,ϕ),

where the hidden constants depend material data and on the
reciprocal of λmin B minµ∈Vλ\{0}

L(µ,µ)
M(µ,µ)

.
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Geometric coarsening9

9Görtz, Hellman, M., Iterative solution of spatial network models by subspace
decomposition, Math. Comp. (2024)
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TH is a mesh of boxes
V̂H is Q1-FEM with basis {φy}y

VH ⊂ V̂H satisfy the boundary conditions
Clément type interpolation operator

IHv =
∑

free DoFs y

v̄U(y)φy ∈ VH

Lemma (Stability and approximability of IH)
For all v ∈ V and for H ≥ R0 > 0,

H−1|v − IHv |M + |IHv |L ≤ C |v |L ,

where C = Cdµ
√
σ.



Network homogeneity
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The network must resemble a homogeneous material on coarse
scales H ≥ R0.

1 Homogeneity: Let BH(x) be a box at x of side length 2H, with
H ≥ R0. We assume limited mass variation

1 ≤
maxx |1|2M,BH(x)

minx |1|2M,BH(x)

≤ σ(R0)

Limited density variation on scales larger than R0.



Network connectivity
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2 Connectivity: For all H > R0 and x ∈ Ω there is a connected
subgraph G′ that contains

all edges with one endpoint in BH(x)

only edges with endpoints contained in
BH+R0(x)



Network connectivity

10Chung, Spectral graph theory, AMS, 1997
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2 Connectivity: For all H > R0 and x ∈ Ω there is a connected
subgraph G′ that contains

all edges with one endpoint in BH(x)

only edges with endpoints contained in
BH+R0(x)

Consider L ′ϕ = λM′ϕ, λ1 = 0, λ2 > 0 (Algebraic connectivity10):

|v − v̄ |M,BH ≤ |v − v̄ |M′ ≤ λ
−1/2
2 |v − v̄ |L ′ ≤ λ

−1/2
2 |v |L ,BH+R0

If G′ fulfills an iso-perimetric inequality λ2 ∼ H−2 and therefore

λ−1/2
2 = µ(R0)H



Example: Connectivity λ−1/2
2 ≈ µH
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Finite length fibers r = 0.05 and |1|2M = 1000, Ω = [0, 1]2

H varies from 2−2 to 2−6. Here R0 ∼ 2−6.



Subspace decomposition preconditioner11

11Kornhuber & Yserentant, Numerical homogenization of elliptic multiscale
problmes by subspace decomposition, MMS, 2016
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Let Vλ = Vλ,0 + Vλ,1 + · · ·+ Vλ,m with

Vλ,0 B VH × VH × VH

Vλ,i B {v ∈ Vλ : supp(v) ⊂ Ui}

Define Pi : Vλ × Vλ → Vλ,i × Vλ,i such that

(APi(λ,ϕ), (µ,ψ)) = (A(λ,ϕ), (µ,ψ))

for all (µ,ψ) and form P B P0+P1+ · · ·+Pm.

BAz = BF , with preconditioner P = BA and z = (λ,ϕ)

Preconditioned conjugate gradient method.
Semi-iterative: direct method on decoupled problems



Convergence analysis
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Lemma (Properties of the decomposition)
If the interpolation bound holds and A is spectrally equivalent to the
weighted Graph Laplacian with constants α and β, then for H > 2R0

At least one decomposition v =
∑m

j=0 vj satisfies:
∑m

j=0 |vj |
2
A ≤ C1|v |2A

Every decomposition satisfies: |v |2A ≤ C2
∑m

j=0 |vj |
2
A

The constants are C1 = Cdβα
−1σµ2 and C2 = Cd .

Theorem (Convergence of PCG)
With κ = C1C2, H > 2R0, and z = (λ,ϕ) it holds

|z − z(ℓ)|A ≤ 2
( √
κ − 1
√
κ + 1

)ℓ
|z − z(0)|A .
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Example: Convergence graph Laplacian
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Ku = M1, (Kv , v) =
∑

x∼y γxy
(v(x)−v(y))2

|x−y | , u|∂Ω = 0 , |1|2M = 1000.

Grid γ = 1 (left), rand γ = 1 (center), rand γ ∈ U([0.1, 1]) (right)



Example: Elastic deformation of paper
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4 mm x 4 mm paper
615K edges and 424K nodes
We study stretching of the paper caused by Dirichlet boundary
conditions (upper right)
HDG discretization with p = 5 and τ = 1
Preconditioner with 8 × 8 × 1 element in coarse space



Example: Elastic deformation of paper
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Figure: Convergence of PCG: constant material parameters (black) and
realistic (orange).



Engineering application (FCC/Stora Enso)
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Three-ply paperboard
Grammage: 400g/m2

Measure: (tensile) 4mm × 4mm (bending) 50mm × 4mm
Dofs: (tensile) 16M (bending) 200M



Engineering application (FCC/Stora Enso)

12Görtz et. al., Iterative method for large-scale Timoshenko beam models
assessed on commercial-grade paperboard, Computational Mechanics (2024)
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Solver converges in 60 iterations (practical purposes)
Validated on various commercial paperboards
Results consistent with experimental data12
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Conclusions and future works
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Robust iterative approach to solve spatial network models with
applications in the paper industry

1 Görtz, Hellman, M., Iterative solution of spatial network models
by subspace decomposition, Math. Comp. (2024)

2 Rupp, Hauck, M., Arbitrary order approximations at constant
cost for Timoshenko beam network models, arXiv:2407.14388

3 Görtz et. al., Iterative method for large-scale Timoshenko beam
models assessed on commercial-grade paperboard,
Computational Mechanics (2024)



Conclusions and future works
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Robust iterative approach to solve spatial network models with
applications in the paper industry

Future work:
δ-overlap in DD
Algebraic coarsening
Multilevel preconditioner
Elastic wave propagation
Large deformation, non-linear models


