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Motivating example: secondary oil recovery

Find pressure p and water concentration s such that:

−∇ · kλ(s)∇p = q, ṡ−∇ · [f(s)λ(s)k∇p] = g, in Ω,

where k is permeability, λ(s) the total mobility, f fractional flow,
and g, q sink and source terms.
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Outline and papers

Outline
• Model problem, elliptic

• Previous work

• Derivation of a multiscale method

• Convergence analysis, with numerical examples

• Adaptivity, with numerical examples

• Conclusions and future work

Papers
• M. G. Larson and A. Målqvist, Adaptive variational multiscale methods based on a

posteriori error estimation: energy norm estimates for elliptic problems, CMAME
2007

• A. Målqvist, A priori error analysis of a multiscale method, preprint

Thanks
• M. G. Larson, Umeå, G. Tsogtgerel, McGill, D. Elfverson Uppsala, and

D. Peterseim Humboldt.
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Model problem

We consider the strong form:

−∇ · α∇u = f, in Ω, u = 0 on ∂Ω.

The weak form reads: find u ∈ V := H1
0 (Ω) such that,

a(u, v) :=

∫

Ω
α∇u · ∇v dx =

∫

Ω
fv dx := l(v), for all v ∈ V .

We assume f ∈ L2(Ω) and 0 < α0 ≤ α ∈ L∞(Ω).
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Why do we need to resolve the coefficients?

Example: Consider the Poisson equation

−∇ · α∇u = f,

with coefficient α, with oscillations down to a scale ǫ, solved
using the finite element method (mesh size H),

‖√α∇(u− uH)‖L2(Ω) . H‖∆u‖L2(Ω) . ǫ−1H‖f‖L2(Ω),

• ǫ < H will give unreliable results even with exact quadrature.
• ǫ > H will be too computationally expensive to solve on a

single mesh.

From now on we assume nothing on the coefficients, more than
what is needed to guarantee existence and uniqueness.
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Some previous works and related methods

• Upscaling techniques: Durlofsky et al. 98, Nielsen et al. 98
• Variational multiscale method: Hughes et al. 95, Arbogast

04, Larson-Målqvist 05, Nolen et al. 08, Nordbotten 09
• Multiscale finite element method: Hou-Wu 96,

Efendiev-Ginting 04, Aarnes-Lie 06
• Multiscale finite volume method: Jenny et al. 03
• Heterogeneous multiscale method: Engquist-E 03,

E-Ming-Zhang 04
• Equation free: Kevrekidis et al. 05
• ...

Local approximations (in parallel) on a fine scale are used to
modified a coarse scale equation.
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The variational multiscale method (VMS)

The weak form reads: find u ∈ V such that,

a(u, v) = l(v), ∀v ∈ V .

Now let Vc ⊕ Vf = V .
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• Vc is a finite dimensional approximation of V . (FE space)
• Vf can be chosen e.g. as hierarchical basis,
L2(Ω)-orthogonal to Vc, or wavelet modified hierarchical
basis.
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The variational multiscale method

Using the split we have: find uc ∈ Vc and uf ∈ Vf such that,

a(uc, vc) + a(uf , vc) = l(vc), ∀vc ∈ Vc

a(uf , vf ) = l(vf )− a(uc, vf ) := (f − Luc, vf ), ∀vf ∈ Vf .

The fine scale problem is then decoupled on each element K,

a(uc, vc) + a(uf , vc) = l(vc), ∀vc ∈ Vc

a(uf,K , vf ) = l(vf )− a(uc, vf ) := (f − Luc, vf ), ∀vf ∈ Vf ∩H1
0 (K).

The solutions uf,K ∈ H1
0 (K) are approximated using the

element Green’s function. The coarse equations reads:

a(uvms
c , vc) + a(M(f − Luvms

c ), vc) = l(vc), ∀vc ∈ Vc,

where M is the approximate fine scale solution operator.
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The multiscale finite element method (MsFEM)

On each element we let T φi ∈ H1
0 (K) solve,

a(φi + T φi, v) = 0, ∀v ∈ H1
0 (K), K ∈ K, i ∈ N .
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We then get the multiscale finite element solution by solving:
find umsfem

c ∈ Vms
c = span({φi + T φi}i∈N ) such that,

a(umsfem
c , v) = l(v), ∀v ∈ Vms

c .

The modified basis functions T φi are computed on subgrids of
the individual coarse elements K.
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Comments

• VMS gives a non-symmetric coarse scale equation even if
the original problem is symmetric.

• VMS can be used to derive stabilized methods (GLS,
SUPG, ...).

• MsFEM is based on ideas from homogenization theory
where periodic problems can be solved using a
homogenized (coarse scale) equation derived by solving a
fine scale cell problem.

• The error analysis available for MsFEM is also based on
ideas from homogenization theory an can only be applied
for very special coefficients, such as periodic coefficients.

• A convergence proof for general L∞ coefficient is still an
open problem.
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Properties we seek

We want to:
• use the split into a coarse scale where we can do

computations using standard techniques and a fine scale
where computations are totally decoupled.

• use the space Vf = {v ∈ V : πcv = 0} since it has very nice
properties (condition number, decay of solution to elliptic
problems).

• symmetric method based on modification of basis functions.
• use adaptivity to focus computational resources on local

problems that contribute most to the error.
• be able to prove convergence for arbitrary L∞ coefficients.
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The proposed method

Let K be a (coarse) mesh with mesh parameter H and FE space
Vc = span({φi}i∈N ). Further let Vf = {v ∈ V : πcv = 0} where
πc : C(Ω) ∩ V → Vc is an interpolant.

We let T : Vc → Vf and ul,i ∈ Vf solve (fine scale equations),

a(φi + T φi, v) = 0, ∀v ∈ Vf ,

a(ul,i, v) = l(φiv), ∀v ∈ Vf .

We let
∑

i∈N

(

βi(φi + T φi) + ul,i
)

solve (coarse scale equation),

∑

i∈N

βia(φi + T φi, φj + T φj) = l(φj + T φj)−
∑

i∈N

a(ul,i, φj+T φj),∀j

We note that u =
∑

i∈N

(

βi(φi + T φi) + ul,i
)

, why?
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Approximation of T φi and ul,i

Spatial approximation Vh
f ⊂ Vf gives,

a(φi + T hφi, v) = 0, ∀v ∈ Vh
f ,

a(uhl,i, v) = l(φiv), ∀v ∈ Vh
f .

Localization: introduce a patch ωk
i around supp(φi),

ω
1

i

i

i

ω
2

Let Vh
f (ω

k
i ) = {v ∈ Vf : v piecewise polynomial, supp(v) ⊂ ωk

i }.
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Discrete version

Let T h,kφi ∈ Vh
f (ω

k
i ) and uh,kl,i ∈ Vh

f (ω
k
i ) be given by,

a(φi + T h,kφi, v) = 0, ∀v ∈ Vh
f (ω

k
i ),

a(uh,kl,i , v) = l(φiv), ∀v ∈ Vh
f (ω

k
i ).

The method reads: Find uh,kc ∈ Vc such that

a(uh,kc +T h,kuh,kc , v+T h,kv) = l(v+T h,kv)−a(uh,kl , v+T h,kv), ∀v ∈ Vc.
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uh,k = uh,kc + uh,kf , where uh,kf = T h,kuh,kc + uh,kl ∈ Vf .
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Sketch of algorithm

One local problem for each coarse dof, minimal communication.

Data α, f,Ω

K1, b1 K2, b2 K3, b3 K4, b4 . . .

(
∑

i K
i
)

u
h,k
c =

∑

i b
i

u
h,k
f

Data transfer

Local solves

Global solve

Postprocessing
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Observation about decay in Vf (Fourier)

Consider the Poisson equation,

−∆u = φi in Ω, u = 0 on ∂Ω,

where φi has local support in Ω. The weak form reads: find
u ∈ W such that, a(u, v) = (φi, v) for all v ∈ W .
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Solution on 3 layers
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Solution using interpolation on 3 layers

To the left W = V (log decay) and right W = Vf (exp decay).

Constraints are realized using Lagrangian multipliers.
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Summary so far

• We have derived a multiscale method using modified basis
functions a-orthogonal to the kernal of the coarse scale
interpolant πc.

• The approximation is computed by solving totally decoupled
local fine scale problems on patches using homogeneous
(Dirichlet) boundary conditions.

• The quality of the solution will directly depend on the decay
of these localized fine scale solutions.

• Experiments indicate exponential decay (in terms of k) for
fix H.

• The main goal is to prove this result theoretically.

Humboldt University, Berlin, Germany, 19th October, 2011 – p. 17/36



A priori error analysis

Let Vh be the FE space resulting from J uniform refinements of
Vc. Further let uh solve a(uh, v) = l(v) for all v ∈ Vh.

We show |||uh − uh,k||| . ρk, for some 0 ≤ ρ(J) < 1, in two steps

1. First we prove |||T hφi − T h,kφi||| . ρk|||T hφi|||, (and

|||uhl,i − uh,kl,i ||| . ρk|||uhl,i|||),
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2. and then, |||uh − uh,k||| . ρk using the bound of the basis
functions φi + T hφi and the right hand side −a(uhl,i, ·).
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Proof of step 1: condition number of stiffness matrix

Let Vh
f = {v ∈ Vh : πcv = 0}. Further let {χj}j∈M be a

hierarchical basis of Vh
f , and Aij = a(χj , χi).

Then κ(A) = J2 in 2D and κ(A) = 22J in 3D, Marion & Xu 1995,
but independent of the coarse mesh size H.
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Proof of step 1: decay of basis function

Let T hφi =
∑

j∈M βjχj . We use CG with β̂0 = 0 and right hand
side bj = −a(φi, χj), which has support on a 1-ring. We have,

|β−β̂m|A ≤ 2

(

√

κ(A)− 1
√

κ(A) + 1

)m

|β|A := 2ρm|β|A, where |v|2A = vTAv.

HB only spreads information within ωk
i in 2k iterations,

|βΩ\ωk |2 =
∑

j∈M(Ω\ωk

i
)

|βj |2 =
∑

j∈M(Ω\ωk

i
)

|βj − β̂2k
j |2 ≤ |β − β̂2k|2,

where βΩ\ωk only contains the node values outside ωk
i .

Furthermore |βΩ\ωk |2A ≤ Cκ|β − β̂2k|2A ≤ Cκρ
4k|β|2A which means

that the coefficients in β decays away from node i and more
precisely |||T hφi|Ω\ωk

i

||| ≤ Cρ2k|||T hφi|||, with |||v|||2ω = 〈v, v〉ω.
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Proof of step 1: error in basis function

We have |||T hφi|Ω\ωk

i

||| ≤ Cρ2k|||T hφi|||, where C depends on the
condition number of A.

We use Galerkin Orthogonality to conclude,

a(T hφi − T h,kφi, T hφi − T hφi|Ω\ωk

i

− T h,kφi) = 0,

i.e. |||T hφi − T h,kφi|||2 = a(T hφi − T h,kφi, T hφi|Ω\ωk

i

)

≤ |||T hφi − T h,kφi||||||T hφi|Ω\ωk

i

|||

We conclude,

|||T hφi − T h,kφi||| ≤ Cρ2k|||T hφi|||,

|||uhl,i − uh,kl,i ||| ≤ Cρ2k|||uhl,i|||.
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Step 2: global error bound

Vh
c = span({φi + T hφi}) (blue) Vh,k

c = span({φi + T h,kφi}) (red).

We compute uhc (black) and uh,kc (green) as projections:

Theorem 1 Let uh be the reference solution and
uh,k = (1 + T h,k)uh,kc + uh,kl the multiscale approximation. Then,

|||uh − uh,k||| ≤ C
(

‖uh‖L∞(Ω)/H + ‖f‖L2(Ω)

)

ρ2k,

where ρ =

√
κ(A)−1√
κ(A)+1

and
√

κ(A) ∼ J in 2D and
√

κ(A) ∼ 2J in 3D.
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Numerical examples































α1(x, y) = 1,

α2(x, y) = 1 + 0.5 · sin(8x)sin(8y),
α3(x, y) = 0.1 + 0.9 ∗ rand, (x, y) ∈ τ, ∀τ ∈ T1,
α4(x, y) = αGSLIB(i, j), for i−1

120 ≤ x < i
120 ,

j−1
120 ≤ y < j

120 ,

α5(x, y) = αSPE(i, j), for i−1
120 ≤ x < i

120 ,
j−1
120 ≤ y < j

120 ,

We let f = χinj − χprod, with supp(χinj) = [0, 1/60]× [0, 1/60], and
supp(χprod) = [1− 1/60, 1] × [1− 1/60, 1].
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Convergence of local solution T h,kφi

i = 435, h = H2−J , J = 3, H = 1/30, using rectangular mesh:
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Relative error in energy norm (left). We get exponential
convergence in k.

Corresponding error using 2k cg iterations (right) ⇒ slower
convergence for high aspect ratio.

Preconditioner that works in the argument?

Humboldt University, Berlin, Germany, 19th October, 2011 – p. 24/36



Convergence of global solution uh,k

Again J = 3 and H = 1/30. We plot the error uh − uh,k in energy
norm (relative).
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How does the error depend on H?

Remember

|||uh − uh,k||| ≤ C
(

‖uh‖L∞(Ω)/H + ‖f‖L2(Ω)

)

ρ2k,

We let J = 2 and k = 3.
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The bound is not sharp in terms of H.
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Recent improvements

Using the modified basis {φi + T kφi}i∈N it has been proven that,

|||u− uk||| ≤ C(‖Hf‖L2(Ω) + γk),

where 0 ≤ γ < 1 is computable and only dependent on shape
regularity constant and maxα/minα. Classical a priori error
analysis then gives a bound for |||uk − uh,k|||.

Note that the condition number is not present at all, analytical
techniques using cut off functions are instead used.

The constant C depends on maxT H/minT H.

M. & Peterseim, Localization of elliptic multiscale problems,
preprint arXiv
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A posteriori error estimation and adaptivity

Motivation:
• The method we propose will have overlapping patches,

which, especially in 3D, is expensive.
• The problems we consider often includes channels so the

solution is typically localized in space.
• The size of the patches and the refinement level is difficult

to predict a priori, we therefore need error indicators to tune
these parameters automatically.
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A posteriori error estimate

Let ρ2(g; v)=
∑

K∈Kh
h2K‖g +∇ ·α∇v‖2

L2(K)+ hK‖[n ·α∇v]‖2
L2(∂K)

Theorem 2 Let uh,k = (1 + T h,k)uh,kc + uh,kl be the multiscale
approximation. Then,

|||u− uh,k|||2 .
∑

i∈N

ρ(−∇ · α∇φi; T h,kφi) + ρ(fφi;u
h,k
l,i )

+
∑

i∈N

H
(

‖n · α∇T h,kφi‖2L2(∂ωk

i
) + ‖n · α∇uh,kl,i ‖2L2(∂ωk

i
)

)

• A standard element indicator on each patch measuring the
effect of decreasing fine scale mesh size h.

• A new indicator on the boundary of each patch ∂ωk
i . The a

priori analysis shows that T h,kφi and uh,kl,i decays
exponentially in k.
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Adaptive algorithm

Given the bound

|||u− uh,k|||2 .
∑

i∈N

ρ(−∇ · α∇φi; T h,kφi) + ρ(fφi;u
h,k
l,i )

+
∑

i∈N

H
(

‖n · α∇T h,kφi‖2L2(∂ωk

i
) + ‖n · α∇uh,kl,i ‖2L2(∂ωk

i
)

)

.

1. Compute multiscale approximation.

2. Compute indicators.

3. If the error is small enough break.

4. Otherwise, decrease h locally if interior indicator is large
and increase k locally is boundary indicator is large.

5. Go back to 1.
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Numerical example

• Let the coarse mesh consist of 32× 32 elements.
• Let the fine reference mesh consist of 256× 256 elements.
• f = −1 in lower left corner (0 ≤ x, y ≤ 1/128) and f = 1 in

upper right corner, otherwise f = 0.
• We consider four layers of the SPE data set:

We use a symmetric Discontinuous Galerkin method as base for
the multiscale method. Local problems are solved using
Neumann boundary conditions, hanging nodes are allowed,
there is a common reference mesh for the local problems.
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Numerical example

We start with one refinement and two layers in each local
problem. In each iteration we refine and increase the size of
30% of the patches (possibly different patches).

We plot refinements and layers for layer 31 after three iterations.
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Numerical example

Convergence of relative error vs. number of iterations.
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We note that layer 41 is more difficult, max a/min a ≈ 6 · 106
instead of 6 · 105.
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Why DG?

Advantage:
• It allows for Neumann conditions on the patches since

discontinuous fine scale solutions are not a problem.
• One can use adaptively refined local subgrid and still have a

global reference grid by using hanging nodes.
• Construction of a conservative flux, which is essential in the

application area, is easy.

Disadvantage:
• Expensive.
• There is a penalty parameter which needs to be tuned.
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Summary of this talk

1. We prove an a priori error bound and thereby convergence
as k → ∞ for the proposed method, for fix H and h = H2−J .

2. The bound reveals that for fix H and J we get exponential
decay in the number of layers k.

3. Numerical experiments confirms this and furthermore
reveals that a very small value k ∼ 2 is needed for 2D
examples in practise.

4. There are still improvements needed in the analysis in the

case when maxx α(x)
minx α(x) or J is large. Preconditioner and/or

wavelet basis might resolve this. Different split may also
prove useful.

5. We show an a posteriori error bound and numerical
examples with adaptively refined local problems.
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Future directions

• Improving the convergence result with Peterseim
(quasi-uniform, max a/min a)

• Convergence results for different equations, such as
convection-diffusion

• Convergence of the adaptive algorithm
• Multiscale in time
• Implementation on parallel machines, 3D
• Solving the coupled system of hyperbolic and elliptic arising

in porous media flow
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