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Outline

Given samples of the data A to a PDE, the goal is to compute
samples of the solution U cheaply.

A U
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* A model problem with randomly perturbed coefficient

* A method for computing samples of the solution

* Convergence and duality based a posteriori error analysis
* Adaptive algorithm

* Numerical examples

®* Conclusions and future work
|
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Poisson equation with randomly perturbed coefficient

Strong form:

—V - -AVU° = f InQ,
U°=0 onT.
* We assume that A° =a+ A% > a > 0,
* that a I1s deterministic with multiscale features,
* that A% are piecewise constant, iid, random pert., s € A,

* and that f € L?(Q) is deterministic,
Weak form:

Find U* € V = H} () such that,

(A°VU?®, Vo) = (f,v) forallveV.
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Diffusion coefficient

A piecewise constant random perturbation is added to a
deterministic diffusion coefficient.
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Motivation

* There are often measurement errors in field data.

* One way to model this uncertainty is as a random
perturbations of the data.

* The sensitivity In the solution to these perturbations is
Important to understand if we want to be able to rely on the
solution.

|
Numerical Analysis and Adaptive Computation for Solutions of Elliptic Problems with Randomly Perturbed Coefficients, ICIAMQ7, Zirich, Switzerland, 2007-07-16 — p. 5/27



Simple observation

Note that if we want to find a* such that,
—V - a*VE[U®] = f

then a* # E[A®] in general, in fact if .A° is constant in space we
have that,

p—

T
A
In general there is no simple expression.

This means that even finding E|U?] for this problem is non-trivial.

The goal of this work Is to compute stochastic quantities of
{U?}sen cheaply given { A% }sen.
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Monte Carlo finite element method

Here we solve one PDE for each sample A°.

for sfrom 1to S do

AS — a_l_AS
U?® = solver(f, A?%)
end for

E[U] ~ Y2, U?/S for example.

* Positive: We have full access to {U*}2_,. Itis possible to
get a good picture of how sensitive the solution is to the
perturbations.

* Negative: Expensive since we need to solve S PDE’s all
with different operators and multiscale features which
means that a high resolution is necessary.

Want same information to much lower cost.
|
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In case of constant perturbation

If A° was a constant perturbation (in space) we could use a
Neumann series to compute the inverse of the matrix,

Us = (k% + A°k) " 'b = (I + A5(k*) k)1 (k") b
(A% (k") k)" (k") b,

t=0

where ki . = (aVi, Vo;), kij = (Voi, Vo;), and b; = (f, ¢;),

given a set of finite element basis function {¢; }.

* Positive: If Neumann series converges quickly we use
truncated version. We only need to invert the matrix once.

* Negative: a has multiscale features — expensive to solve,
since we need high resolution to get an accurate solution.
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The main idea

However, when A° (A° = a + A®) Is piecewise constant we can
use a non-overlapping domain decomposition algorithm with
domains that coincide with the regions where A% is constant.

* |f the Neumann series converges quickly we can still
compute samples of the solution by just multiplying and
adding random numbers and vectors (computed using
matrix vector multiplication), now individually on the
domains.

* We only need to invert the matrices on each domain which
IS much cheeper.

* When computing good approximations of a stochastic
guantity the number of samples needed to get accurate
solution is a bottle neck.

* Domain decomposition is very suited for solving multiscale

problems.
|
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Lions’ non-overlapping domain decomposition method

We use the following non-overlapping domain decomposition
algorithm proposed by Lions, here presented on two domains
Q = Q1 U, for simplicity,

v ASVU(‘jf)1 = £ inQy,

U(Si’)1 =0, onoQNT,

U + Ay - VUG = U2 ) = Ang - ASVU? ) on 09, 1 09y,

(4) (4) (¢—1) )’
—V. ASVU(Si’)Q — £ in o,
U(Si’)2 =0, ondNNT,
S,2 T $2 __ rrs,l YT s,1
U(z) +Anoy - A VU(z) — U(z'—l) Anqg - A VU(i—l)’

where (i) is the iterate in the domain decomposition algorithm.
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Monte Carlo with Lions’ Domain Decomposition solver

We introduce Lions’ non-overlapping domain decomposition
method as the solver in the Monte Carlo finite element method.

for sfrom 1to S do
for : from 1 to I do
for d from1to D do

Compute U(SZ.’)d = (k® 4 A%9K) 13 (f, A°, U(S,L._l)).
end for
end for
end for

Here d indicates a certain domain in the DD algorithm.

Note that the loop over s is independent of the other loops.
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Monte Carlo with DD: reversed order

Since the loops are independent we can reverse the order,

for ¢ from1to I do
for d from 1 to D do
for s from 1to S do
Compute Ufz.’)d = (k® 4 A%9K) 13 (f, A°, U(Si_l))

end for
end for
end for

Remember that the random perturbation 4%¢ is a constant. This
means that on each domain d we want to solve S problems with
very similar matrices, that can be approximately inverted using a

truncated Neumann series. |
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The proposed method

We approximate the inverse of the
perturbed matrix with a truncated Neumann series using 1" terms,

for + from 1 to I do
for d from 1to D do
for t from 0 to 7 do
Compute ¢! = ((k%) k)’ (k)1
end for
for sfrom1to S do
Uty ~ Lo (- A%l (f, 4%, U _y)
end for
end for
end for

We want to minimize the work in the inner loop.
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Convergence of the Neumann series

Let || - || be an operator norm. If we assume
’As,d

< a* = mingcq, a then,

s,d t
(i H(A&d(k%lk)’fuéc(f‘ )

(i) (T + A% )T = 30 (- A k) T,
t=0
T—1
(i) T+ A% )T = 30 (A k) )|
t=0

a

AS,d ! s,d/y,aN—11,\—1
<C(— ) I+A&)"k)~.
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Error estimation

We are going to focus on estimating the error of some stochastic
guantity, i.e. the distribution function, of a linear functional of the
solution.

There are four different error contributions in this method:
1. Space discretization error (h).

2. Error committed by not converging in the domain
decomposition algorithm (7).

3. Error committed by truncating the Neumann series (7).

4. Error committed by only using (.5) realizations of the
solutions in order to compute the desired stochastic
guantity.

The goal is to equidistribute the error between these
components.
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Duality based a posteriori error analysis

The dual problem gives us an error representation formula for
each sample,

—V - AV®° =1 inQ,
& =0 onT,

where 1 Is deterministic.

’(US _ Uif,LT? w)’ — ‘(fa (I)S) — (*ASVU;,OO,OO? vq)s)
+ (A°VWU} o — Up11), V)
+ (ASV(Uﬁ,oo,oo - Uif,oo,T)? V(I)S)’
~ ey +err ey,
where U} ; - Is the approximate solution.
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Second (/) and third (77) term

Let Al be some positive number. Given an approximation to the

dual solution corresponding to U*?, &7, . We assume

(ASV(Uif,oo,T—Uif,I,T)a Vo?) ~ (ASV(Uif,HAI,T—Uﬁ,I,T)a Vo5, I T )-

For the third term we use the summation formula,
h 00,00 Zt O[( AS,d)t((ka)_lk)t](ka)_lbs’ and’
U;fjoT = ST (= ASD) (k) ~1k)!] (k) ~1b*. This means that,
P oo = Ub oo = 2orl(—A)((k*) k)T ](k*)~10° =
(—A>N (k") ~'k)" U} . To approximate this quantity we

assume, Uy o = Up ¢ = [(=A*" (k") 'K U} 1 oarr

(Asv(Ui,oo,oo - Ulﬁ,oo,T)? vq)s)
~ (AV(=A*N (k)R Uf rearss VO 1)
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First term (h)

The natural thing would be to say,
(f, @)= (A°VU} 0,00, VO°) = (f, @pr v 1 )= (AVU 12, VO 7o ).

However, (f, ®°) — (A*VU} | p, V®?) is the entire error i.e. the
sum of the three parts. So instead we let,

(f;@%) = (AVU}, 0,00: V) = (f, 3 v ) = (AVU 10, VO v 1)
— (AU rearr = Un ), VO o)
— (A°V (=AY (k)R U ryar T VO, o).

This gives us computable approximations to the three first error
terms. Note that Al > 0 to get a non-zeros contribution to the

second term and more importantly »° < k in order for the

approximation of the first term to make sense.
|
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Stochastic error contribution

For each sample we have,

((U® = Up, %) = e + e +epp =€’
We want to minimize the error in the distribution function F'(x):
F(z) — Fs(z) = PU®,¥)}sen < ) — PEUS 1.0, ¥) o1 < ).

We prove, using the Central Limit Theorem, that,

Fla) - Fy(@)] < \/ SEBEL x| Fi(o),

with approximate probability [7__e~*"/2dt//2r. This estimate is

valid for large values S and can be used in an adaptive
algorithm.
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Adaptive algorithm

1. Compute {U; , }5_, and {®%, , . }5_, given {A*}°_,.
2. Compute Fs(z) and an approximation to F4(z) using central

differences.

3. Compute approximations to the three first parts of the error
Indicator e; that depends on h, e;; that depends on I, and

err7 that depends on T, and multiply these by F%(x).
4. Compute the error indicator associated with the sample

size, ejy = T\/F(l — F)/8S.

5. If the error is small enough, stop.

6. Otherwise improve h, I, T, and S according to the error
Indicators.

/. Returnto 1.
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Numerical example: oil reservoir data

We study a pressure equation that arises in oil reservoir
simulation.

—V - -AVU® = f In (),
A°0,U° =0 on 'y,
U°=0 onlp,

where I'y UI'p = I'. Here U* represents the pressure field, and
a IS the local permeabillity.

We have chosen f = 1 in the lower left corner, the injector, and
f = —1in the upper right corner, the producer.

Note that the a posteriori error analysis for this setting is almost
identical to the pure Dirichlet case.
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Numerical example: oil reservoir data

The permealbility is piecewise constant on a 27 x 7 grid and is
plotted in log-scale to the left.

log(a)
[l JL ll) o N B [} [ee]
)

We add a random perturbation to a (20% of the magnitude of a).
To the right: a typical solution U*.

The band of low permeability at x ~ 0.2 creates a large pressure
|

drop parallel to the y-axis at this location.
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Numerical example: oil reservoir data

We assume the mesh is given and can not be refined due to the
size of the problem (common in these applications).

We fix the number of nodes on each of the 27 x 7 domains to be
5xbandlety =1.Letl =100,7 =1,S =30, 7 = 1.645 (95%
probability), and TOL = 0.15.

Since the mesh size is fix in this example h does not appear in

the figure. The error tolerance is achieved when I = 800, T" = 4,
and S = 240.
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Numerical example: oil reservoir data

We plot error bound indicators after each iteration in the
adaptive algorithm and the total error bound.

Iterations in adaptive algorithm

We solve the dual problem using the same parameter values as
the primal since we are not interested in refining the mesh.
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Numerical example: oil reservoir data

We plot the approximation to F'(x) after each iteration.
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Conclusions

* We present a novel method for cheaply computing samples
of the solution to an elliptic problem with randomly
perturbed coefficient

* We prove the Neumann series expansion converges

* We present an a posteriori error representation formula and
an adaptive algorithm that tunes all critical parameters

* We apply the method to a pressure equation that arises In
oll reservoir simulation
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Future Work

* The method easily extends to piecewise linear
representation of the random perturbation. This is
particulary useful when the deterministic part a Is
continuous. We can then avoid to add artificial low regularity
to the solution.

* We will study the error in using coarser representation of
the random perturbation locally

* Study more challenging equations such as the transport
equation in oil reservoir simulation
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