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The model problem

Model problem: Convection-Diffusion problem with
multiscale features in b, ǫ > 0,

−ǫ△u+ ∇ · (bu) = f in Ω,

u = 0 on Γ.

Weak form: Find u ∈ V = H1
0 (Ω) such that,

a(u, v) = l(v) for all v ∈ H1
0 (Ω),

where a(v,w) =
∫

Ω
ǫ∇v · ∇w dx+

∫

Ω
∇ · (bv)w dx and

l(v) =
∫

Ω
fv dx.
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Example of a Solution

Let ǫ = 0.01, B = rand(96), b = [B(i, j), B(i, j)] for
i/n < x < (i+ 1)/n and j/n < y < (j + 1)/n, and
f = I{x+y<0.05}.
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Mesh size: h = 1/96.
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Our Goal

• We assume that we can form matrices and solve linear
systems of equations on a coarse mesh with mesh
parameter H.

• We introduce href < H as a reference mesh on which we
would like to make our computations.

• By solving several "small" local problems and one coarse
global problem we aim at getting a good approximation of
the reference solution.
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The variational multiscale method

Find uc ∈ Vc and uf ∈ Vf , Vc ⊕ Vf = V such that,

a(uc + uf , vc + vf ) = l(vc + vf ),

for all vc ∈ Vc and vf ∈ Vf .

a(uc, vc) + a(uf , vc) = l(vc) for all vc ∈ Vc,

a(uf , vf ) = (R(uc), vf ) for all vf ∈ Vf .

where we introduce the residual distribution R : V → V ′,
(R(v), w) = l(w) − a(v,w), for all v,w ∈ V .
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The variational multiscale method
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We plot uc, uf , and uc + uf in a typical situation.
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General framework for approximation

We derive the method in two steps.
• We decouple the fine scale equations by introducing a

partition of unity
∑

i∈N ϕi = 1,

a(uf,i, vf ) = (ϕiR(uc), vf ) for all vf ∈ Vf .

• For each i ∈ N we discretize Vf and solve the resulting
problem on a patch ωi, where ϕi ⊂ ωi, rather then Ω,

a(Uf,i, vf ) = (ϕiR(Uc), vf ) for all vf ∈ V h
f (ωi).

We use homogeneous Dirichlet bc.
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The patch ωi
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One and two layer mesh stars. The coarse mesh size is H the
fine mesh size h is independent between the patches and
H > h ≥ href.
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Our method

The resulting method reads: find Uc ∈ Vc and Uf =
∑

i∈N Uf,i

where Uf,i ∈ V h
f (ωi) such that

a(Uc, vc) + a(Uf , vc) = l(vc),

a(Uf,i, vf ) = (ϕiR(Uc), vf ),

for all vc ∈ Vc, vf ∈ V h
f (ωi), and i ∈ N .

The patch is chosen such that supp(ϕi) ⊂ ωi ⊂ Ω.
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The local solution Uf,i
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The solution improves as the patch size increases.
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Motivation of the method

Why do we expect the method to work?
• The right hand side of the fine scale equations, ϕiR(Uc),

has support on a coarse 1-ring if ϕi is a finite element basis
function.

• The fine scale solution Uf,i ∈ V h
f (ωi) which is a slice space.

In particular if we use the hierarchical split functions in
V h

f (ωi) are forced to be zero in coarse nodes.

This makes Uf,i decay, which makes it possible to get a good
approximation using small patches. The size of ǫ will also affect
the decay and therefore the optimal size of the patches.
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Implementation

We have: find Uf,k ∈ V h
f (ωk) such that

a(Uf,k, vf ) = (f, vfϕk) − a(Uc, vfϕk)

for all vf ∈ V h
f (ωk). Instead we solve: find χi

k, ηk ∈ V h
f (ωk) such

that
{

a(χi
k, vf ) = −a(ϕi, vfϕk)

a(ηk, vf ) = (f, vfϕk).

for all vf ∈ V h
f (ωk) and supp(ϕi) ∩ supp(ϕk) 6= ∅ i.e.

∑

i∈N U i
cχ

i
k + ηk solves:

a(
∑

i∈N

U i
cχ

i
k + ηk, vf ) = (f, vfϕk) − a(Uc, vfϕk),
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Implementation

We identify Uf,k =
∑

i∈N U i
cχ

i
k + ηk and

Uf =
∑

k∈N

∑

i∈N

U i
cχ

i
k + ηk =

∑

i∈N

U i
cχ

i + η,

where χi =
∑

k∈N χi
k and η =

∑

k∈N ηk. We include this in the
coarse scale equations: Find Uc =

∑

i∈N U i
cϕi such that,

(f, ϕj) =a(Uc, ϕj) + a(Uf , ϕj)

= a(
∑

i∈N

U i
cϕi, ϕj) + a(

∑

i∈N

U i
cχ

i + η, ϕj),

for all j ∈ N or

∑

i∈N

U i
ca(ϕi + χi, ϕj) = (f, ϕj) − a(η, ϕj).
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Implementation

This can now be written on matrix form as,

(A+ T )Uc = b− d

where,


















Aij = a(ϕi, ϕj),

Tij = a(χi, ϕj),

bj = (f, ϕj),

di = a(η, ϕj).

Implementing the method comes down to calculating T and d
locally, T =

∑

k∈N T k and d =
∑

k∈N dk.

T k
ij = a(χi

k, ϕj), dk
j = a(ηk, ϕj).

These can be computed on the patches without knowing Uc.
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Duality Based Error Analysis

Find φ ∈ V such that

a(w,φ) = (w,ψ) for all w ∈ V.

We end up with the following error representation formula,

(e, ψ) = a(e, φ) = l(φ) − a(U, φ)

=
∑

i∈N

l(ϕiφ) − a(Uc, ϕiφ) − a(Uf,i, φ).

The oscillating coefficient b will most likely not be computed
using exact quadrature. We introduce,

ah(v,w) = (ǫ∇v,∇w) + (∇ · (bhv), w),

where bh is a piecewise polynomial on the space V h
f (ωi).
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Error Representation Formula

We continue the calculation using coarse and fine scale
Galerkin Orthogonality,

(e, ψ) = l(φ− πcφ) − ah(U, φ− πcφ) + ah(U, φ) − a(U, φ)

=
∑

i

l(ϕi(φf − π0
f,iφf )) − ah(Uc, ϕi(φf − π0

f,iφf ))

− a(Uf,i, φf − π0
f,iφf ) + (∇ · ((b− bh)U), φ),

Where π0
f,i is the interpolant onto V h

f (ωi) i.e. zero on ∂ωi.

Remember, any function in V h
f (ωi) can be subtracted.

We can also introduce πf,i as the nodal interpolant on the mesh
associated with V h

f (ωi) and express the error representation

formula in terms of πf,i and π0
f,i − πf,i.
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Error Representation Formula

We end up with three terms,

(e, ψ) =
∑

i

l(ϕi(φf − πf,iφf )) − ah(Uc, ϕi(φf − πf,iφf ))

− a(Uf,i, φf − πf,iφf )

+
∑

i

(∇ · ((b− bh)Uc), ϕiφ) + (∇ · ((b− bh)Uf,i), φ)

+
∑

i

l(ϕi(πf,iφf − π0
f,iφf )) − ah(Uc, ϕi(πf,iφf − π0

f,iφf ))

− ah(Uf,i, πf,iφf − π0
f,iφf ).

The first term decreases with h, the second term decreases with
the resolution of bh, and the third term decreases as the patch
size increases.
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Solving the Dual Problem

Remember the dual problem: find φ ∈ V such that,

(ǫ∇φ,∇w) − (b · ∇φ,w) = (1, w), for all w ∈ V.
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• Computing approximation Φ on the reference mesh or use
AVMS with more refinement → good approx. of the error.

• Computing Φ using the same method as the primal or
h = H/2 for all local problems → good indicator for
adaptivity.
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Adaptive Algorithm

(e, ψ) =
∑

i∈N

Di(U,Φf − πf,iΦf ) +Qi(U,Φ) + Pi(U,Φf ).

1. Start with given ri and Li where hi = H/2ri .

2. Calculate U and Φ.

3. Calculate Di, Qi, and Pi.

4. Stop if they are small enough, else order the indicators by
size and let ri := 2ri for large values in Di +Qi and let
Li = Li + 1 for large values in Pi, return to 2.
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Numerical Examples

We let ǫ = 0.01, f = I{x+y<0.05}, and B = rand(96),
b = [B(i, j), B(i, j)] for i/n < x < (i+ 1)/n and
j/n < y < (j + 1)/n.
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Numerical Examples

We let ψ = 1 and use a refinement level of 40%.
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Refinements and Patchsizes.
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Numerical Examples

We plot the relative error compared to a reference solution in the
quantity of interest. We solve the dual and the primal using the
same method.
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Improvements, comments, and future work

• Patches shaped adaptively to suite Uf,i.

• A split between Vc and Vf that in a better way captures
mean values of the coarse solution and perhaps depends
on b.

• A poorly computed dual solution often gives a bad
approximation of the error but serves as a good indicator for
adaptivity.

• Prove a priori error estimates for the multiscale method.
• Use more then two scales and consider more extreme scale

separation.
• Make an evaluation of how the method performs compared

to other methods.
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