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Simulation of spatial network models at FCC

1Görtz-Hellman-M., Iterative solution of spatial network models by subspace
decomposition, arXiv:2207.07488

Målqvist (Department of Mathematical Sciences Chalmers University of Technology and University of Gothenburg Fraunhofer Chalmers Centre)Iterative solution of spatial network models 2022-10-25 2 / 20

We consider
Ku = f

a simplified network model of an elliptic PDE (K is SPD)
K is ill-conditioned (geometry and material data variation), only
direct solver works
The goal is to develop an iterative solver1
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Graph Laplacian
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Let G = (N ,E) be a graph of nodes and edges, x ∈ Ω ⊂ Rd

The graph Laplacian Lg is SP(semi-)D, Lg1 = 0
Let V̂ : N → R be scalar functions on N . For v ,w ∈ V̂

(v ,w) =
∑

x

v(x)w(x)

(Lgv , v) =
∑

(x,y)∈E

(v(x) − v(y))2

Lg =
∑

x

Lg
x

(Lg
x v , v) =

1
2

∑
y∼x

(v(x) − v(y))2

Example:

1

3

4

2

Lg =


2 −1 −1 0
−1 2 −1 0
−1 −1 3 −1
0 0 −1 1


x ∼ y denotes that x and y are connected by an edge



Weighted graph Laplacian
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A weighted graph Laplacian and diagonal mass matrix

(Lxv , v) =
1
2

∑
y∼x

(v(x) − v(y))2

|x − y |
, L =

∑
Lx

(Mxv , v) :=
1
2

v(x)2
∑
y∼x

|x − y |, M =
∑

Mx

Consider the 1D mesh 0 = x0 < x1 < · · · < xn = 1.

(Lv , v) :=
n∑

i=1

(v(xi) − v(xi−1))
2

|xi − xi−1|

L is the P1-FEM stiffness matrix (−∆) and M is the lumped
mass matrix



Model problem

Målqvist (Department of Mathematical Sciences Chalmers University of Technology and University of Gothenburg Fraunhofer Chalmers Centre)Iterative solution of spatial network models 2022-10-25 6 / 20

Find u ∈ V := {v ∈ V̂ : v(x) = 0 for x ∈ ΓD}:

(Ku, v) = (f , v), v ∈ V .

Assume: (K ·, ·) is scalar product on V and

α(Lv , v) ≤ (Kv , v) ≤ β(Lv , v), ∀v ∈ V .

Example:

(Kv , v) =
∑

(x,y)∈E

γxy
(v(x) − v(y))2

|x − y |
, α ≤ γxy ≤ β

P1-FEM for 1D diffusion-reaction model on network with
continuity and Kirchhoff flux constraint in junctions
Structural model of a fibre network.
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Multilevel solver: coarse scale representation
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TH is a mesh of squares
V̂H is Q1-FEM with basis {φy}y

VH ⊂ V̂H satisfy the boundary conditions
Clément type interpolation operator

IHv =
∑

free DoFs y

(MU(y)1, v)
(MU(y)1, 1)

φy ∈ VH

Lemma (Stability and approximability of IH)
For all v ∈ V and for H > R0,

H−1|v − IHv |M + |IHv |L ≤ C |v |L ,

where | · |2M = (M·, ·), | · |2L = (L ·, ·) and C = Cdµ
√
σ.



Network locality, homogeneity and connectivity

Målqvist (Department of Mathematical Sciences Chalmers University of Technology and University of Gothenburg Fraunhofer Chalmers Centre)Iterative solution of spatial network models 2022-10-25 9 / 20

1 All edges are shorter than R0 > 0 (length scale)
2 Let BR(x) be a box at x of side length 2R, with H ≥ R0,

1 ≤
maxx |1|2M,BH(x)

minx |1|2M,BH(x)

≤ σ(R0)

3 For all x ∈ Ω and H > R0 there is a (uniform) µ(R0) < ∞ and
cx ∈ R, such that the Poincaré-type inequality holds

|v − cx |M,BH(x) ≤ µH|v |L ,BH+R0 (x)
, ∀v ∈ V̂



Poincaré constant

2Cheeger 1970, Fiedler 1973
3F. Chung, Spectral graph theory, AMS, 1997
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Let G′ = (N ′,E′) ⊂ G be connected and
all nodes in BH(x) are included
no nodes outside BH+R0(x) are
included

With L ′,M′ defined on G′ we have

λ1 = inf
(L ′z, z)
(M′z, z)

=
(L ′1, 1)
(M′1, 1)

= 0, λ2 = inf
(M′1,z)=0

(L ′z, z)
(M′z, z)

> 0.

With cx =
(M′1,v)
(M′1,1) we have (M′1, v − cx) = 0 so

|v − cx |M,BH(x) ≤ |v − cx |M′ ≤ λ
−1/2
2 |v − cx |L ′ ≤ λ

−1/2
2 |v |L ,BH+R0 (x)

λ2: measure connectivity2 ∼ CH−2 if isoperimetric3 dim d.



Example: Connectivity λ−1/2
2 ≈ µR
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Finite length fibers r = 0.05 and |1|2M = 1000, Ω = [0, 1]2

Table: (σ, µ) for different R

R−1 = 4 R−1 = 8 R−1 = 16 R−1 = 32 R−1 = 64
(1.04,0.49) (1.08,0.53) (1.27,0.57) (1.85,0.675) (3.42,1.53)
(1.04,0.59) (1.08,0.61) (1.27,0.69) (1.87,0.83) (2.93,1.35)
(1.04,0.53) (1.57,0.54) (2.13,0.58) (3.1,0.76) (6.86,1.45)
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Subspace decomposition preconditioner4

4Kornhuber & Yserentant, MMS, 2016
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Let V0 = VH. and

Vj = V(U(yj)), j = 1, . . . ,m.

Define projections Pj : V → Vj by

(KPjv , vj) = (Kv , vj), ∀vj ∈ Vj ⊂ V .

We add the projections to form

P = P0 + P1 + · · ·+ Pm.

P = BK is used as a preconditioner: BKu = Bf .
We use the preconditioned conjugate gradient method.
Involves direct solution of decoupled problems (semi-iterative).



Convergence analysis
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Lemma (Spectral bound of P)
For H > 2R0 it holds

C−1
1 |v |

2
K ≤ (KPv , v) ≤ C2|v |2K , ∀v ∈ V ,

where C1 = Cdβα
−1σµ2 and C2 = Cdβα

−1.

Interpolation bound is a crucial component of the proof.

Theorem (Convergence of PCG)
With

√
κ =
√

C1C2 = Cdβα
−1µ
√
σ and H > 2R0 it holds

|u − u(ℓ)|K ≤ 2
( √
κ − 1
√
κ + 1

)ℓ
|u − u(0)|K .
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Example: Convergence graph Laplacian
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Consider Ku = M1 with homogeneous Dirichlet bc |1|2M = 1000.

Grid γ = 1 (left), rand γ = 1 (center), rand γ ∈ U([0.1, 1]) (right)



Example: A fibre network model5

5Kettil et. al. Numerical upscaling of discrete network models, BIT 2020
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2 · 104 fibres, biased angle (x-axis), length 0.05, 3 · 105 nodes,
α = 0.05, β = 500.
Two forces in the model: edge extension and angular deviation.
Find displacement u: Ku = f (tensile, distributed load)
Theory extends to vector valued setting (Korn, K ∼ L )
DD with H = 1/4, 1/8, 1/16, 1/32.



Example: A fibre network model
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Conclusions
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The network should resemble a homogeneous material on
coarse scales H > H0

Direct solver on fine scales (localized, in parallell)
Poincaré type inequality plays a crucial role in the analysis
Numerical PDE methods/analysis can be applied to spatial
network models


