Numerical homogenization of multiscale problems

Axel Målqvist¹

Fredrik Hellman (Uppsala) and Daniel Peterseim (Augsburg)

Computational mathematical modeling

Department of Mathematical Sciences, Göteborg

2017-04-28

¹Chalmers University of Technology and University of Gothenburg = 🦂 🤄

Målqvist

Numerical homogenization of multiscale problem

Multiscale materials

Numerical homogenization of multiscale problem

Multiscale problems

We consider applications such as

▷ composite materials □ ▷ flow in a porous medium

that require numerical solution of partial differential equations with rough data (module of elasticity, conductivity, or permeability).

Major challenge: Features on multiple non-separated scales.

Elliptic problem: Homogenization and FEM

- Introduction to multiscale methods
- Applications
- Conclusions

Elliptic model problem

The Poisson equation

$$-\nabla \cdot \mathbf{A} \nabla u = f$$
 in Ω $u = 0$ on $\partial \Omega$

with data $0 < \alpha \leq A \leq \beta < \infty$ and $f \in L^2(\Omega)$.

Numerical homogenization of multiscale problem

Homogenization of an elliptic model problem

The Poisson equation

$$-\nabla \cdot \mathbf{A} \nabla u = f$$
 in Ω $u = 0$ on $\partial \Omega$

with data $0 < \alpha \le A \le \beta < \infty$ and $f \in L^2(\Omega)$.

Homogenization theory Let $A = A(x/\epsilon)$ be ϵ -periodic, and consider

$$-\nabla \cdot (A(x/\epsilon)\nabla u_{\epsilon}(x,x/\epsilon)) = f(x).$$

It can be shown that as $\epsilon \to 0$, $u_{\epsilon} \to v$ solves

$$-\nabla\cdot(A^*\nabla v(x))=f(x),$$

- In 1D with no slow variation in A, $A^* = \frac{1}{\langle 1/A \rangle}$, i.e. the harmonic average.
- Otherwise A* is computed by solving a cell problem.

Homogenization of an elliptic model problem

The Poisson equation

$$-\nabla \cdot \mathbf{A} \nabla u = f$$
 in Ω $u = 0$ on $\partial \Omega$

with data $0 < \alpha \le A \le \beta < \infty$ and $f \in L^2(\Omega)$.

Homogenization theory

- Requires $\epsilon \rightarrow 0$, i.e. very large scale separation.
- Requires periodic data.
- Complex geometry and boundary conditions are not covered by the theory.
- Numerical approaches inspired by homogenization theory (e.g. HMM and MsFEM) suffers form similar drawbacks.

Multiscale finite element method, (Hou & Wu), 1996. Heterogeneous multiscale method, (Engquist & E), 2003.

The Poisson equation (weak form): $u \in V = H_0^1(\Omega)$ such that

$$a(u, v) := \int_{\Omega} (\mathbf{A} \nabla u) \cdot \nabla v \, dx = \int_{\Omega} f \cdot v \, dx$$
 for all $v \in V$

with data $0 < \alpha \le A \le \beta < \infty$ and $f \in L^2(\Omega)$.

The Poisson equation (FE approximation): $u_h \in V_h \subset V$ such that

$$a(u_h, v) := \int_{\Omega} (\mathbf{A} \nabla u_h) \cdot \nabla v \, dx = \int_{\Omega} f \cdot v \, dx$$
 for all $v \in V_h$

with data $0 < \alpha \le A \le \beta < \infty$ and $f \in L^2(\Omega)$.

Numerical error (piecewise linear continuous FE approximation)

• For solution $u \in H^2(\Omega)$ we have

 $|||u - u_h||| := ||A^{1/2}\nabla(u - u_h)||_{L^2(\Omega)} \le C\beta^{1/2}h||D^2u||_{L^2(\Omega)} \sim C(\alpha, \beta, A')h.$

The mesh size *h* has to resolve the variations in *A*, e.g. *h* < *ϵ* if *A* is *ϵ*-periodic.

The Poisson equation (FE approximation): $u_h \in V_h \subset V$ such that

$$a(u_h, v) := \int_{\Omega} (\mathbf{A}
abla u_h) \cdot
abla v \, \mathrm{d}x = \int_{\Omega} f \cdot v \, \mathrm{d}x$$
 for all $v \in V_h$

with data $0 < \alpha \le A \le \beta < \infty$ and $f \in L^2(\Omega)$.

The Poisson equation (FE approximation): $u_h \in V_h \subset V$ such that

$$a(u_h, v) := \int_{\Omega} (\mathbf{A} \nabla u_h) \cdot \nabla v \, dx = \int_{\Omega} f \cdot v \, dx$$
 for all $v \in V_h$

with data $0 < \alpha \le A \le \beta < \infty$ and $f \in L^2(\Omega)$.

The Poisson equation (FE approximation): $u_h \in V_h \subset V$ such that

$$a(u_h, v) := \int_{\Omega} (\mathbf{A} \nabla u_h) \cdot \nabla v \, dx = \int_{\Omega} f \cdot v \, dx$$
 for all $v \in V_h$

with data $0 < \alpha \le A \le \beta < \infty$ and $f \in L^2(\Omega)$.

The Poisson equation (FE approximation): $u_h \in V_h \subset V$ such that

$$a(u_h, v) := \int_{\Omega} (\mathbf{A}
abla u_h) \cdot
abla v \, \mathrm{d} x = \int_{\Omega} f \cdot v \, \mathrm{d} x$$
 for all $v \in V_h$

with data $0 < \alpha \le A \le \beta < \infty$ and $f \in L^2(\Omega)$.

The Poisson equation (FE approximation): $u_h \in V_h \subset V$ such that

$$a(u_h, v) := \int_{\Omega} (\mathbf{A}
abla u_h) \cdot
abla v \, \mathrm{d}x = \int_{\Omega} f \cdot v \, \mathrm{d}x$$
 for all $v \in V_h$

with data $0 < \alpha \le A \le \beta < \infty$ and $f \in L^2(\Omega)$.

The Poisson equation (FE approximation): $u_h \in V_h \subset V$ such that

$$a(u_h, v) := \int_{\Omega} (\mathbf{A}
abla u_h) \cdot
abla v \, \mathrm{d}x = \int_{\Omega} f \cdot v \, \mathrm{d}x$$
 for all $v \in V_h$

with data $0 < \alpha \le A \le \beta < \infty$ and $f \in L^2(\Omega)$.

The Poisson equation (FE approximation): $u_h \in V_h \subset V$ such that

$$a(u_h, v) := \int_{\Omega} (\mathbf{A}
abla u_h) \cdot
abla v \, \mathrm{d} x = \int_{\Omega} f \cdot v \, \mathrm{d} x$$
 for all $v \in V_h$

with data $0 < \alpha \le A \le \beta < \infty$ and $f \in L^2(\Omega)$.

The Poisson equation (FE approximation): $u_h \in V_h \subset V$ such that

$$a(u_h, v) := \int_{\Omega} (\mathbf{A}
abla u_h) \cdot
abla v \, \mathrm{d}x = \int_{\Omega} f \cdot v \, \mathrm{d}x$$
 for all $v \in V_h$

with data $0 < \alpha \le A \le \beta < \infty$ and $f \in L^2(\Omega)$.

The Poisson equation (FE approximation): $u_h \in V_h \subset V$ such that

$$a(u_h, v) := \int_{\Omega} (\mathbf{A}
abla u_h) \cdot
abla v \, \mathrm{d}x = \int_{\Omega} f \cdot v \, \mathrm{d}x$$
 for all $v \in V_h$

with data $0 < \alpha \le A \le \beta < \infty$ and $f \in L^2(\Omega)$.

The Poisson equation (FE approximation): $u_h \in V_h \subset V$ such that

$$a(u_h, v) := \int_{\Omega} (\mathbf{A}
abla u_h) \cdot
abla v \, \mathrm{d}x = \int_{\Omega} f \cdot v \, \mathrm{d}x$$
 for all $v \in V_h$

with data $0 < \alpha \le A \le \beta < \infty$ and $f \in L^2(\Omega)$.

The Poisson equation (FE approximation): $u_h \in V_h \subset V$ such that

$$a(u_h, v) := \int_{\Omega} (\mathbf{A}
abla u_h) \cdot
abla v \, \mathrm{d} x = \int_{\Omega} f \cdot v \, \mathrm{d} x$$
 for all $v \in V_h$

with data $0 < \alpha \le A \le \beta < \infty$ and $f \in L^2(\Omega)$.

The Poisson equation (FE approximation): $u_h \in V_h \subset V$ such that

$$a(u_h, v) := \int_{\Omega} (\mathbf{A}
abla u_h) \cdot
abla v \, \mathrm{d}x = \int_{\Omega} f \cdot v \, \mathrm{d}x$$
 for all $v \in V_h$

with data $0 < \alpha \le A \le \beta < \infty$ and $f \in L^2(\Omega)$.

Multiscale approach

Objectives:

Find a subspace of V^{ms}_H ⊂ V_h for which the Galerkin approximation fulfills

$$|||u_h - u_H^{\mathsf{ms}}||| \le C(\alpha, \beta) H \approx C(\alpha, \beta, \mathbf{A'})h,$$

but with dim $(V_H^{\rm ms}) \ll \dim(V_h)$.

- Show that a basis for V_{H}^{ms} can be constructed by local parallel computations.
- Demonstrate efficiency for applications where V_H^{ms} is reused (eigenvalue, time dependent, semi-linear, systems).

Variational multiscale method, (Hughes), 1995

Elliptic problem: Homogenization and FEM

Introduction to multiscale methods

Applications

Conclusions

Multiscale decomposition

- (coarse) FE mesh \mathcal{T} with parameter H > h
- P1-FE space $V_H := \{ v \in V \mid \forall T \in \mathcal{T}, v |_T \in P_1(T) \}$
- $\mathfrak{I}_{\mathcal{T}}: V \to V_H$ some interpolation operator

Decomposition

$$V = V_H \oplus V^f$$
 with $V^f := \text{kernel } \mathfrak{I}_{\mathcal{T}} = \{ v \in V \mid \mathfrak{I}_{\mathcal{T}} v = 0 \}$

Example:

rough coefficient

Målqvist

Numerical homogenization of multiscale problem

2017-04-28 10 / 30

Multiscale decomposition

- (coarse) FE mesh \mathcal{T} with parameter H > h
- P1-FE space $V_H := \{ v \in V \mid \forall T \in \mathcal{T}, v |_T \in P_1(T) \}$
- $\mathfrak{I}_{\mathcal{T}}: V \to V_H$ some interpolation operator

Decomposition

$$V = V_H \oplus V^f$$
 with $V^f := \text{kernel } \mathfrak{I}_{\mathcal{T}} = \{v \in V \mid \mathfrak{I}_{\mathcal{T}} v = 0\}$

Example:

Orthogonalization

• For each $v \in V$ define finescale projection $Qv \in V^{f}$ by

$$a(Qv,w) = a(v,w)$$
 for all $w \in V^{\mathsf{f}}$

a-Orthogonal Decomposition

$$V = V_H^{ms} \oplus V^{f}$$
 with $V_H^{ms} := (V_H - QV_H)$

Example:

Ideal multiscale representation

Given the space V_{H}^{ms} we construct a Galerkin approximation:

Ideal method Find $u_{H}^{ms} \in V_{H}^{ms}$ such that $a(u_{H}^{ms}, v) = (f, v), \ \forall v \in V_{H}^{ms}.$

We have that $u - u_H^{ms} = u_f \in V^f$ since u_H^{ms} is the *a*-orthogonal projection of *u* onto V_H^{ms} . Therefore

$$|||u_{f}|||^{2} = a(u, u_{f}) = (f, u_{f}) = (f, u_{f} - \Im_{\mathcal{T}} u_{f}) \leq \frac{C_{\Im_{\mathcal{T}}}}{\alpha^{1/2}} ||Hf||_{L^{2}(\Omega)} |||u_{f}|||.$$

For V_{H}^{ms} to be useful we need a discrete local basis.

Modified nodal basis

- ${\cal N}$ denotes set of interior vertices of ${\cal T}$
- $\phi_x \in V_H$ denotes classical nodal basis function ($x \in N$)
- $Q\phi_x \in V^{f}$ denotes the finescale correction of ϕ_x ($x \in N$)

Ideal multiscale FE space

$$V_H^{ms} = \operatorname{span} \{ \phi_x - Q \phi_x \mid x \in \mathcal{N} \}$$

Modified nodal basis

- ${\cal N}$ denotes set of interior vertices of ${\cal T}$
- $\phi_x \in V_H$ denotes classical nodal basis function ($x \in N$)
- $Q\phi_x \in V^{f}$ denotes the finescale correction of ϕ_x ($x \in N$)

Ideal multiscale FE space

$$V_H^{ms} = \operatorname{span} \{ \phi_x - Q \phi_x \mid x \in \mathcal{N} \}$$

Numerical homogenization of multiscale problem

Modified nodal basis

2017-04-28 13/30

イロト イポト イヨト イヨト 二日

Localization

• Define nodal patches of ℓ -th order $\omega_{T,\ell}$ about $T \in \mathcal{T}$

 $\omega_{T,1}$

 $\omega_{T,2}$

• Correctors $Q_{\ell}^{T}\phi_{x} \in V^{f}(\omega_{T,\ell}) := \{v \in V^{f} \mid v|_{\Omega \setminus \omega_{T,\ell}} = 0\}$ solve

$$a(Q_{\ell}^{\mathsf{T}}\phi_x,w) = \int_{\mathsf{T}} A \nabla \phi_x \cdot \nabla w \, dx \quad ext{for all } w \in V^{\mathsf{f}}(\omega_{\mathcal{T},\ell})$$

Localized multiscale FE spaces

$$V_{H,\ell}^{\mathsf{ms}} = \mathsf{span}\{\phi_x - \sum_{T \in \mathcal{T}} Q_\ell^T \phi_x \mid x \in \mathcal{N}\}$$

Fine scale discretization

• Finescale mesh

 \mathcal{T}_h with $h \leq H$

• Reference FE space

$$V_h := \{ v \in V \mid \forall T \in \mathcal{T}(\Omega), v |_T \in P_1(T) \}$$

mesh refinement

 \sim

• Reference FE solution $u_h \in V_h$ solves

$$a(u_h, v) = (f, v)$$
 for all $v \in V_h$

• Fully discrete correctors $Q_{\ell,h}^T \phi_x \in V_h^f(\omega_{T,\ell}) := V^f(\omega_{T,\ell}) \cap V_h$:

$$a(Q_{\ell,h}^{\mathsf{T}}\phi_x,w) = (A \nabla \phi_x, \nabla w)_{\mathsf{T}} \text{ for all } w \in V_h^{\mathsf{f}}(\omega_{\mathsf{T},\ell})$$

Localized Orthogonal Decomposition (LOD)

Fully discrete multiscale FE spaces

$$V_{H,\ell}^{\mathsf{ms},h} = \mathsf{span}\{\phi_x - \sum_{T \in \mathcal{T}} Q_{\ell,h}^T \phi_x \mid x \in \mathcal{N}\}$$

Fully discrete multiscale approximation $u_{H,\ell}^{ms,h} \in V_{H,\ell}^{ms,h}$

$$a(u_{H,\ell}^{{
m ms},h}, v) = (f,v) \quad ext{ for all } v \in V_{H,\ell}^{{
m ms},h}$$

Remarks:

• dim
$$V_{H,\ell}^{\mathrm{ms},h} = |\mathcal{N}| = \dim V_H$$

 The basis functions have local support, with overlap depending on *l*, and are independent.

Målqvist

Lemma (Truncation error)

$$|||Q_h v_H - Q_{\ell,h} v_H||| \le C_1 \gamma^{\ell} |||Q_h v_H|||, \quad \forall v_h \in V_H$$

 $C_1 < \infty$ and $\gamma < 1$ depends on β/α but not A'.

By choosing $\ell = C_2 \log(H^{-1})$ with appropriate C_2 we guarantee that the truncation leads to a higher order perturbation:

Theorem (A priori error bound)

$$|||u_h - u_{H,\ell}^{\mathsf{ms},h}||| \le C(\alpha,\beta)H,$$

with C independent of A'.

M. & Peterseim, Localization of elliptic multiscale problems, 2014.

Numerical experiment: Poisson's equation

Numerical experiment: Poisson's equation

3D implementation in python

- Trilinear shape functions on cubes.
- Petrov-Galerkin formulation reduces communication, Elfverson et.al. Numer. Math. 2016.
- Storage of all basis function is not needed. The full solution can be recomputed (at a lower cost) once ℑ_T u^{ms,h}_{Hℓ} is computed.

Corrector function $Q^T \phi_x$, implementation by Fredrik Hellman.

Numerical experiment: Poisson's equation 3D

Numerical experiment: Poisson's equation 3D

Elliptic problem: Homogenization and FEM

Introduction to multiscale methods

Applications

Conclusions

Two phase flow

Two-phase Darcy flow of water and oil:

Find water concentration $s \in V$ and pressure $u \in V$ such that for all $v, w \in V$ and t > 0,

$$(\lambda(s)K
abla u,
abla v) = 0, \ (\dot{s},w) + (\lambda_w(s)K
abla u,
abla w) = (f,w),$$

- initial condition $s(0) = s_0$,
- permeability K (log normal correlation length 0.05),
- mobility of the water $\lambda_w(s) = s^3$,
- total mobility $\lambda(s) = s^3 + (1-s)^3$.

IMplicit Pressure Explicit Saturation (IMPES)

- Saturation: zeroth order upwind DG or coarse mesh,
- Pressure: LOD with adaptively updated diffusion.

Numerical example 2D

Two-phase Darcy flow of water and oil: Let $h = 2^{-9}$, $H = 2^{-6}$, $k = |\log(H)|$, $\Delta t = 1/2000$.

- At most 50 updates during 2000 time steps.
- The implicit pressure equation is solved by solving 2000 linear systems with 4.000 unknowns rather than 250.000 unknowns.
- Error wrt FE reference solution is around 1%.

Numerical example 3D

Two-phase Darcy flow of water and oil: Let $h = 2^{-7}$, $H = 2^{-4}$, $k = |\log(H)|$, $\Delta t = 1/200$.

Permeability, initial data, solution and updated basis at T = 1.

Prototypical self-adjoint eigenvalue problem

$$-\nabla \cdot \mathbf{A} \nabla u = \lambda u$$
 in Ω $u = 0$ on $\partial \Omega$

with data $0 < \alpha \le A \le \beta < \infty$

Prototypical self-adjoint eigenvalue problem (variational form): find $u \in V := H_0^1(\Omega)$ and $\lambda \in \mathbb{R}$ such that

$$a(u,v) := \int_{\Omega} (A \nabla u) \cdot \nabla v \, dx = \lambda \int_{\Omega} u \cdot v \, dx$$
 for all $v \in V$

with data $0 < \alpha \le A \le \beta < \infty$

Prototypical self-adjoint eigenvalue problem (FE approximation): $u_h \in V_h \subset V$ and $\lambda_h \in \mathbb{R}$ such that

$$a(u_h, v) := \int_{\Omega} (\mathbf{A} \nabla u_h) \cdot \nabla v \, dx = \lambda_h \int_{\Omega} u_h \cdot v \, dx \text{ for all } v \in V_h$$

with data $0 < \alpha \le A \le \beta < \infty$

Prototypical self-adjoint eigenvalue problem (FE approximation): $u_h \in V_h \subset V$ and $\lambda_h \in \mathbb{R}$ such that

$$a(u_h, v) := \int_{\Omega} (\mathbf{A} \nabla u_h) \cdot \nabla v \, dx = \lambda_h \int_{\Omega} u_h \cdot v \, dx$$
 for all $v \in V_h$

with data $0 < \alpha \le A \le \beta < \infty$

Numerical error (piecewise linear continuous FE approximation)

• For an eigenpair $(u^{(k)}, \lambda^{(k)})$ with $u^{(k)} \subset H^2(\Omega)$ it holds

$$\begin{split} \lambda^{(k)} &\leq \lambda_h^{(k)} \leq \lambda^{(k)} + C(\alpha, \beta, A', k)h^2, \\ \| \| u^{(k)} - u_h^{(k)} \| \| &:= \| A^{1/2} \nabla (u^{(k)} - u_h^{(k)}) \|_{L^2(\Omega)} \leq C(\alpha, \beta, A', k)h. \end{split}$$

The mesh size *h* has to resolve the variations in *A*, e.g. *h* < *ϵ* if *A* is periodic.

LOD approximation

LOD: Find
$$u_{H,\ell}^{\text{ms},h} \in V_{H,\ell}^{\text{ms},h}$$
, $\lambda_{H,\ell}^{\text{ms},h} \in \mathbb{R}$
 $a(u_{H,\ell}^{\text{ms},h}, v) = \lambda_{H,\ell}^{\text{ms},h}(u_{H,\ell}^{\text{ms},h}, v) \text{ for all } v \in V_{H,\ell}^{\text{ms},h}$

Theorem

$$\begin{split} \lambda_h^{(k)} &\leq \lambda_{H,\ell}^{\text{ms},h,(k)} \leq \lambda_h^{(k)} + CH^4, \\ &|||u_h^{(k)} - u_{H,\ell}^{\text{ms},h,(k)}||| \leq CH^2, \end{split}$$

with C independent of A' and the regularity of the eigenfunctions and (λ_h, u_h) is the reference solution.

M. & Peterseim, Computation of eigenvalues by nume. upscaling, 2015.

Numerical example: eigenvalues

k	$\lambda_h^{(k)}$	$e^{(k)}(1/2\sqrt{2})$	$e^{(k)}(1/4\sqrt{2})$	$e^{(k)}(1/8\sqrt{2})$	$e^{(k)}(1/16\sqrt{2})$
1	21.4144522	5.472755371	0.237181706	0.010328293	0.000781683
2	40.9134676	-	0.649080539	0.032761482	0.002447049
3	44.1561133	-	1.687388874	0.097540102	0.004131422
4	60.8278691	-	1.648439518	0.028076168	0.002079812
5	65.6962136	-	2.071005692	0.247424446	0.006569640
6	70.1273082	-	4.265936007	0.232458016	0.016551520
7	82.2960238	-	3.632888104	0.355050163	0.013987920
8	92.8677605	-	6.850048057	0.377881216	0.049841235
9	99.6061234	-	10.305084010	0.469770376	0.026027378
10	109.1543283	-	-	0.476741452	0.005606426
11	129.3741945	-	-	0.505888044	0.062382302
12	138.2164330	-	-	0.554736550	0.039487317
13	141.5464639	-	-	0.540480876	0.043935515
14	145.7469718	-	-	0.765411709	0.034249528
15	152.6283573	-	-	0.712383825	0.024716759
16	155.2965039	-	-	0.761104705	0.026228034
17	158.2610708	-	-	0.749058367	0.091826207
18	164.1452194	-	-	0.840736127	0.118353184
19	171.1756923	-	-	0.946719951	0.111314058
20	179.3917590	-	-	0.928617606	0.119627862

Table: Errors
$$e^{(k)}(H) =: \frac{\lambda_H^{\text{ms.}(k)} - \lambda_h^{(k)}}{\lambda_h^{(k)}}$$
 and $h = 2^{-7} \sqrt{2}$.

More applications

Stationary/eigenvalue problems

- Semilinear, (Henning, M., Peterseim), 2014.
- Gross-Pitaevskii, (Henning, M., Peterseim), 2014.
- Helmholtz, (Gallistl & Peterseim), 2015.
- Reduced basis, (Abdulle & Henning), 2015.
- Quadratic eigenvalue problems, (M. & Peterseim), 2016.
- Elasticity, (Henning & Persson), 2016.
- High contrast, (Peterseim & Scheichl), 2016.
- Iterative solvers, (Kornhuber & Yserentant), 2017.

Time-dependent problems

- Thermoelasticity, (M. & Persson), 2017.
- Wave equation, (Abdulle & Henning), 2017.
- Two phase flow, (Hellman & M.), ongoing

- Elliptic problem: Homogenization and FEM
- Introduction to multiscale methods
- Applications
- Conclusions

- Homogenization is powerful but limited by strong assumptions on the data.
- FEM is general but suffers from high computational complexity for multiscale problems.
- Multiscale methods compute an effective stiffness matrix on a coarse scale. (numerical homogenization)
- Great reduction in computational cost when the basis is reused (load cases, eigenvalues, time dependent, non-linear, control).
- Future challenges: weakly random diffusion, efficient implementation (FEniCS?).

Thank you for your attention!