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Axel M ålqvist

axel.malqvist@it.uu.se

Division of Scientific Computing

Uppsala University

Applied Mathematics Seminar, University of Leicester, UK, 13th November 2008 – p.1/52



Motivation

• Important applications including materials with
microstructure, flow in porous media, etc

• These problems are computationally challenging and
calls for multiscale methods

• Understanding of propagation and amplification of
error in such multiscale methods are important

• Many discretization parameters creates a need for
adaptive algorithms for automatic tuning
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Outline and Papers

Outline
• Variational Multiscale Method (VMS)

• Adaptive VMS

• Symmetric VMS

• Extension to mixed problems

• Adaptive Symmetric VMS with application

• Conclusions and Outlook

Papers
• A. Målqvist, Adaptive Variational Multiscale Methods, PhD Thesis September

2005, Chalmers Universiy of Technology, Sweden

• M.G. Larson and A. Målqvist, Adaptive Variational Multiscale Methods Based on A
Posteriori Error Estimation: Energy Norm Estimates for Elliptic Problems, CMAME
2007

• M.G. Larson and A. Målqvist, A Mixed Adaptive Variational Multiscale Method with
Applications in Oil Reservoir Simulation M3AS 2008
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Model Problem

Poisson Equation. Find u : Ω → R such that

−∇ · a∇u = f in Ω, u = 0 on ∂Ω

where a(x) ≥ a0 > 0 bounded with multiscale features, f ∈ L2,
and Ω is a domain in R

d, d = 1, 2, 3

Weak Form. Find u ∈ H1
0 (Ω) such that

a(u, v) = (a∇u,∇v) = (f, v) for all v ∈ H1
0 (Ω),

where (v,w) =
∫

Ω v · w dx.
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Variational Multiscale Method

We introduce two spaces Vc and Vf such that

Vc ⊕ Vf = H1
0 (Ω)

• Vc is a finite dimensional approximation of H1
0 (Ω). (finite

element space)
• Vf can be chosen in different ways

◦ Hierarchical basis
◦ L2(Ω)-orthogonal to Vc

◦ Wavelet modified hierarchical basis
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Variational Multiscale Method
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Variational Multiscale Method

Find uc ∈ Vc and uf ∈ Vf such that

a(uc, vc) + a(uf , vc) = (f, vc) for all vc ∈ Vc

a(uf , vf ) = (f, vf ) − a(uc, vf )

:= (R(uc), vf ) for all vf ∈ Vf

Fine scale information is used to modify the coarse scale
equation: Find uc ∈ Vc such that

a(uc, vc) + a(T R(uc), vc) = (f, vc) ∀vc ∈ Vc

where T is the solution operator defined by

a(T R(uc), vf ) = (R(uc), vf ) for all vf ∈ Vf
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Adaptive VMS

The Adaptive Variational Multiscale Method (AVMS) builds on
the following ingredients:

• Systematic technique for computing uf . We approximate uf

by a sum

uf =
∑

i

uf,i

of solutions to localized (subdomain-subgrid) problems
• Error estimation framework
• Adaptive strategy for tuning of critical discretization

parameters
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Decoupled Fine Scale Equations

Recall the fine scale equations:

a(uf , vf ) = (R(uc), vf ), for all vf ∈ Vf

Include a partition of unity
∑n

i=1 ϕi = 1,

a(uf , vf ) = (R(uc), vf ) =

n
∑

i=1

(ϕiR(uc), vf )

let uf =
∑n

i=1 uf,i where

a(uf,i, vf ) = (ϕiR(uc), vf )

ϕi is typically a coarse basis function
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Solution on Subdomains

We approximate uf,i by

• Restricting to a localized patch ωi with supp(ϕi) ⊂ ωi

• Discretizing using a subgrid on ωi.
• We expect rapid decay of uf,i and therefore we use Dirichlet

conditions uf,i = 0 on ∂ωi.

We get the discrete problem: find Uf,i ∈ Vh
f (ωi) such that

a(Uf,i, vf ) = (ϕiR(Uc), vf ) for all vf ∈ Vh
f (ωi)
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Refinement and Layers
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Localized Fine Scale Solution
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The AVMS Method

Find Uc ∈ Vc and Uf =

n
∑

i=1

Uf,i with Uf,i ∈ Vh
f (ωi) such that

a(Uc, vc) + a(Uf , vc) = (f, vc) for all vc ∈ Vc

and
a(Uf,i, vf ) = (ϕiR(Uc), vf ) for all vf ∈ Vh

f (ωi)

Can be solved iteratively or directly by replacing Uc in RHS of fine

scale with ϕj .
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Parallel Structure of AVMS

• No communication between subgrid problems
• Multiple levels possible
• Different physics in subgrid model possible. Need transfer

operator.
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Error Estimates

The method is designed so that:

error → 0 when h → 0 and L → ∞

• A priori error estimates in progress.
• To circumvent difficulties with choosing discretization

parameters h and L we use an adaptive algorithm based on
a posteriori error estimates
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Energy Norm Error Estimate

‖
√

a∇e‖2 ≤
∑

i∈C

Ci‖HR(Uc)‖2
ωi

+
∑

i∈F

Ci

(

‖
√

HΣ(Uf,i)‖2
∂ωi

+ ‖hRi(Uf,i)‖2
ωi

)

• The first term measures the coarse mesh error
• The second term is the normal derivative of the fine scale

solutions on ∂ωi and measures the error due to restriction to
subdomains

• The third term measures the fine scale error caused by
discretization
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Adaptive Strategy

‖
√

a∇e‖2 ≤
∑

i∈C

Ci‖HR(Uc)‖2
ωi

+
∑

i∈F

Ci

(

‖
√

HΣ(Uf,i)‖2
∂ωi

+ ‖hRi(Uf,i)‖2
ωi

)

• Calculate residuals for each i ∈ {coarse fine}
• Large values i ∈ coarse → solve local problems
• Large values i ∈ fine → more layers or smaller h
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Microstructure Problem

Piece of microstructure.
• −∇ · a∇u = 1. a = 1 (white) and a = 0.05 (blue).
• Coarse grid has 129 × 129 ≈ 16 kDoF. 3 refinement levels

resolves lattice.
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Convergence of Residuals
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Symmetric VMS

Model problem. Find u ∈ V such that

a(u, v) = l(v) for all v ∈ V

Assume the problem is well posed. a(·, ·) a bilinear form and l(·)
linear form.

Splitting. We introduce two spaces Vc and Vf such that

V = Vc ⊕ Vf
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Symmetric VMS

Starting from the model problem: find u ∈ V such that

a(u, v) = l(v) for all v ∈ V

and setting

u = uc + uf v = vc + vf

we get: find uc + uf ∈ Vc ⊕ Vf such that

a(uc + uf , vc + vf ) = l(vc + vf ) for all vc + vf ∈ Vc ⊕ Vf

Note that uf ∈ Vf satisfies the equation

a(uf , vf ) = l(vf) − a(uc, vf ) for all vf ∈ Vf
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Symmetric VMS

We next write
uf = uf,RH + uf,c

with
• uf,RH ∈ Vf the contribution from the right hand side

a(uf,RH , vf ) = l(vf ) for all vf ∈ Vf

• uf,c ∈ Vf the contribution from the coarse scale part

a(uf,c, vf ) = −a(uc, vf ) for all vf ∈ Vf
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Symmetric VMS

Let T : Vc → Vf denote the solution operator to

a(uf,c, vf ) = −a(uc, vf ) for all vf ∈ Vf

i.e.
uf,c = T uc

Using the resulting decomposition

u = uc + T uc + uf,RH

we get

a(uc + T uc + uf,RH , vc + vf ) = (f, vc + vf )

for all vc ∈ Vc and vf ∈ Vf .

Applied Mathematics Seminar, University of Leicester, UK, 13th November 2008 – p.23/52



Symmetric VMS

Since uf,RH is directly determined we get the following problem
for uc: find uc ∈ Vc such that

a(uc + T uc, vc + T vc) = (f, vc + T vc) − a(uf,RH , vc + T vc)

for all vc ∈ Vc.

• Here we chose vf = T vc to get a symmetric formulation

• Note that in the standard VMS procedure one basically sets
vf = 0 in this step and thus the resulting problem is not
necessarily symmetric

• However, when the exact operator T is used, the methods
are equivalent.
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Symmetric VMS

Let
• T̃ be a computable approximation of T
• Uf,RH be a computable approximation of uf,RH

We get the method: find Uc ∈ Vc such that

a(Uc + T̃ Uc, vc + T̃ vc) = (f, vc + T̃ vc) − a(Uf,RH , vc + T̃ vc)

for all vc ∈ Vc.

On matrix form this leads to,

KmodUc = bmod

Given Uc and Uf,RH , Uf can be computed.
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Construction of T̃
Recall that uc =

∑

i ξiNc,i with {Nc,i} a basis in Vc and let

a(T Nc,i, vf ) = −a(Nc,i, vf ) for all vf ∈ Vf

By linearity

T uc =
∑

i

ξiT Nc,i

and thus we are led to computing T Nc,i for each coarse
basis function Nc,i.
We define T̃ by solving these problems approximately by

• Restricting to a localized patch problem supp(Nc,i) ⊂ ωi

• Discretizing using a fine subgrid on ωi
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Refinement and Layers
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Construction of Uf,RH

Recall that uf,RH ∈ Vf solves

a(uf,RH , vf ) = l(vf) for all vf ∈ Vf

Using a partition of unity ϕi we can split the right hand side
as follows

l(vf) =
∑

i

l(ϕivf )

and write

uf,RH =
∑

i

uf,RH,i

where

a(uf,RH,i, vf ) = l(ϕivf )
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Mixed Model Problem

Poisson equation on mixed form:











1
a
σ −∇u = 0 in Ω

−∇ · σ = f in Ω

n · σ = 0 on Γ

where the permeability a has multiscale features.

Typical application is the pressure equation in oil reservoir

simulation
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Weak Form

Find

σ ∈ V = {v ∈ H(div; Ω) : n · v = 0 on Γ}
u ∈ W = L2(Ω)/R

such that
( 1

a
σ,v) + (u,∇ · v) = 0

−(∇ · σ, w) = (f,w)

for all v ∈ V and w ∈ W .

Here (·, ·) denotes the L2(Ω) scalar product for vector and

scalar functions.
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Coarse and Fine Scales

We introduce splittings

V = V c ⊕ V f

W = Wc ⊕ Wf

where
• V c is a finite dimensional approximation of H(div; Ω). We

use lowest order Raviart-Thomas basis functions.
• Wc is an approximation of L2(Ω). We use piecewise

constants.
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Splitting Based on RT-elements

• The RT-elements are normal continuous but allow
tangential discontinuities .

• The RT-interpolator πc is defined by
∫

F

n · (σ − πcσ)ds = 0

for each face F ⊂ ∂K.

• We define

σ = πcσ ⊕ (I − πc)σ

and thus

σf = (I − πc)σ σc = πcσ
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Conservation

Due to the splitting in coarse and fine scales we have
∫

F

n · σfds = 0

Thus the integrated total flux through a coarse scale face is rep-

resented by the coarse scale flux σc!
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Splitting Based on Constants

• Let Pc be the L2-projection onto Wc, piecewise constants on
the coarse mesh

• Given v we have the splitting

v = Pcv ⊕ (I − Pc)v

• Thus we are using an L2-orthogonal splitting

• ∫

K
vf dx = 0, for coarse elements K
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Coarse and Fine Scales

Find σc ∈ V c, σf ∈ V f , uc ∈Wc, and uf ∈ Wf such that,






( 1
a
(σc + σf ),vc + vf ) + (uc + uf ,∇ · (vc + vf )) = 0

−(∇ · (σc + σf ), wc + wf ) = (f, wc + wf)

for all vc ∈ V c, vf ∈ V f , wc ∈Wc, and wf ∈Wf .

We want to approximate the red terms by solving de-

coupled local problems.
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Fine Scale Equations

If we let vc = 0 and wc = 0 we get the following relation
between the fine and coarse solutions: find σf ∈ V f and
uf ∈Wf such that,

( 1
a
σf ,vf ) + (uf ,∇ · vf ) = −( 1

a
σc,vf ) − (uc,∇ · vf )

−(∇ · σf , wf ) = (f, wf ) + (∇ · σc, wf )

for all vf ∈ V f and wf ∈Wf .

Using the properties of our splittings this problem can

be simplified!
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Orthogonality

We use a hierarchical basis of Raviart-Thomas functions
for the flux and piecewise constants for the pressure.

(wc,∇ · vf ) =
∑

K

(wc,∇ · vf )K =
∑

K

wK
c

∫

∂K

n · vf dx = 0

where wK
c is the constant at coarse element K.

(wf ,∇ · vc) =
∑

K

(wf ,∇ · vc)K =
∑

K

∇ · vK
c

∫

K

wf dx = 0

since ∇ · vK
c is constant on K.
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Simplified Fine Scale Equations

• Find σf ∈ V f and uf ∈Wf such that,

( 1
a
σf ,vf ) + (uf ,∇ · vf ) = −( 1

a
σc,vf ) − (uc,∇ · vf )

−(∇ · σf , wf ) = (f, wf ) + (∇ · σc, wf )

for all vf ∈ V f and wf ∈Wf .

• The red terms vanish and we end up with






( 1
a
σf ,vf ) + (uf ,∇ · vf ) = −( 1

a
σc,vf )

−(∇ · σf , wf ) = (f, wf)

• Thus there are no couplings from the coarse scale
pressure to the fine scale equations
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Approximate Fine Scales

• We apply the abstract framework
• Divide the problem into contributions from the coarse scale

part σc and right hand side f

• Σc =
∑

i Σc,iφi where φi are the Raviart-Thomas basis
functions. Solve the local problem driven by the basis
functions (one problem for each basis function)

• Localize by restricting the problem to a patch and using
homogeneous Neumann conditions

• Discretize using a suitable subgrid
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Local Fine Scale Solution
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Restriction to Patches

The equations are solved in a slice space where solutions decay
rapidly,

∫

E
n · σf,i dx = 0 and

∫

K
uf,i dx = 0.
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The patch ωi typically consists of coarse elements but could have

any geometry.
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Local Solutions on Patches
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Example

In the figure we display the bottom layer of the Upper Ness
formation
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We let f = 1 in the lower left corner and f = −1 in the upper right

corner. max a/min a = 8.8e6.
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Example

−0.2 0 0.2 0.4 0.6 0.8 1 1.2
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

0
50

100
150

200
250

0

10

20

30

40

50

60
−4

−2

0

2

4

6

x 10
−6
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220 × 60 elements for the reference solution.
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Example
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55 × 15 coarse elements and h = H/4. We get exponential de-

cay in max norm error compared with reference solution when

increasing the number of layers!
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A Posteriori Error Estimate

The following energy norm bound holds

‖v‖2
a ≤ C2

a

∑

i

R2
ωi

+R2
∂ωi

where

Rωi
= ‖1

a
(Σi

cφi + Σf,i) −∇U∗
f,i‖2

ωi

+ ‖h
a
(fψi + ∇ · (Σi

cφi + Σf,i))‖2
ωi

R∂ωi
= ‖ 1

2
√
h
U∗

f,i‖2
∂ωi\Γ

U∗ is a post proc version of U , Ca ∼ ‖√a‖L∞(ωi).
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Adaptive Strategy

• Start with one layer patches with one refinement in all local
problems

• Solve the problem
• Calculate the error indicators Rωi

and R∂ωi
on each patch

• If Rωi
(h) large refine h (25%)

• If R∂ωi
(L) increase L (25%)

• Repeat
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Layers and Refinements
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Relative Error in Energy Norm

Galerkin 105.6% and one iteration 15.8%.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Two iterations 10.1% and three iterations 7.6%.
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Conclusions from Example

• The error indicators finds critical areas
• More computational effort in these areas decreases the

global error quickly
• To get an equally good approximation without adaptivity we

need to use three refinements on two layer patches
• In the example above we still have 70% of the patches using

one layer and one refinement
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Summary

The AVMS provides:
• Systematic technique for construction of a computable

approximation of the fine scale part of the solution using
decoupled localized subgrid problems.

• A posteriori error estimation framework in both norms and
goal functionals

• Adaptive algorithms for automatic tuning of critical
discretization parameters
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Current Work and Outlook

• Implementation in 3D and more extensive numerical tests
• More scales and different types of physics
• Multiscale approach for transport problems
• DG would lead to a nicer splitting for the problem on

standard form
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