On Adaptive Finite Element Methods Based on A Posteriori Error Estimates

Axel Målqvist

axel@math.chalmers.se

Department of Computational Mathematics Chalmers

Outline

- The Finite Element Method
- A Posteriori Error Estimation
- Adaptive Algorithms
- Paper I
- Paper II
- Paper III

Abstract Model Problem

Strong form. Find $u \in H_0^1(\Omega)$ such that

$$\mathcal{A}u=f$$
 in Ω , $u=0$ on $\partial\Omega$.

where A is a second order differential operator.

Weak form. Let $a(v,w)=(\mathcal{A}v,w)$ for all $v,w\in H^1_0.$ The weak form reads: Find $u\in H^1_0(\Omega)$ such that

$$a(u,v)=(f,v)$$
 for all $v\in H_0^1(\Omega)$.

Discretization

Let $V_h = span\{\varphi_i\} \subset H^1_0(\Omega)$ be the finite dimensional space of piecewise linear polynomials on a triangulation $\mathcal{K} = \{K\}$ with mesh parameter h.

The Finite Element Method

Weak form. Find $u \in H_0^1(\Omega)$ such that

$$a(u,v)=(f,v) \quad \text{for all } v\in H^1_0(\Omega).$$

Finite Element Method. Find $U \in V_h$ such that

$$a(U,v)=(f,v)$$
 for all $v\in V_h$.

We subtract the two equations and introduce the error e=u-U.

A Posteriori Error Estimation

Galerkin Orthogonality.

$$a(e, v) = 0$$
 for all $v \in V_h$.

Error Representation Formula. We can proceed with the following calculation for an arbitrary function $\phi \in H_0^1$,

$$a(e,\phi) = a(e,\phi - \pi\phi) = (\mathcal{A}e,\phi - \pi\phi) = (f - \mathcal{A}U,\phi - \pi\phi)$$

Energy Norm Estimate

We choose $\phi = e$ to get,

$$||e||_a^2 = a(e, e) = (f - \mathcal{A}U, e - \pi e)$$

$$\leq C||hR(U)|||\nabla e|| \leq C||hR(U)|||e||_a,$$

which is possible if

$$\|\nabla e\| \le C\|e\|_a.$$

We get

$$||e||_a \le C||hR(U)||$$

Linear Functional Estimate

If we instead let $\phi \in H_0^1$ solve the following dual problem,

$$(v, \mathcal{A}^*\phi) = (v, \psi), \quad \text{for all } v \in H_0^1,$$

we get

$$(e, \psi) = (e, \mathcal{A}^* \phi) = (\mathcal{A}e, \phi)$$
$$= a(e, \phi) = (f - \mathcal{A}U, \phi - \pi \phi)$$
$$= (R(U), \phi - \pi \phi)$$

Adaptive Algorithm

We study the energy norm estimate,

$$||e||_a^2 \le C||hR(U)||^2 = C \sum_{K \in \mathcal{K}} ||hR(U)||_K^2$$
$$= C \sum_{K \in \mathcal{K}} \rho_K(U),$$

where we refer to ρ_K as element indicators.

Adaptive Algorithm

- Use FEM to calculate the solution U.
- Calculate the element indicators ρ_K .
- Refine elements where $\rho_K(U)$ is large and return to one, or stop if $\sum_{K \in \mathcal{K}} \rho_K(U)$ is sufficiently small.

Paper I

A Posteriori Error Analysis of the Boundary Penalty Method

The Model Problem

The Dirichlet problem:

$$\begin{cases} -\triangle u = f & \text{in } \Omega, \\ u = g & \text{on } \Gamma, \end{cases}$$

Boundary penalty method:

$$\begin{cases} -\triangle u_{\epsilon} = f & \text{in } \Omega, \\ -\partial_n u_{\epsilon} = \epsilon^{-1}(u_{\epsilon} - g) & \text{on } \Gamma. \end{cases}$$

Motivation

$$-\partial_n u = \epsilon(x)^{-1}(u - g_D(x)) + g_N(x)$$

- One form can represent Dirichlet, Neumann and Robin boundary condition simply by changing the parameter $\epsilon(x)$.
- The method is used in various FEM codes.
- It can be used on interior boundaries in non-matching grid problems.
- A simpler compliment to Nitsche's method.

Motivation

How do we choose ϵ to impose Dirichlet conditions weakly?

- To small ϵ will give large condition numbers.
- We need to choose ϵ as large as possible without increasing the error.

Previous Work

Earlier a priori work by I. Babuška, J. W. Barrett and C. M. Elliott among others shows

$$||u - u_{\epsilon}||_{0} \le C\epsilon ||u||_{2}$$

and if we refer to the boundary penalty solution as U we have

$$||e||_1 = ||u - U||_1 \le Ch||u||_2$$

for piecewise linears with $\epsilon=h$.

Our Contributions

- A posteriori error estimates in the energy norm.
- A posteriori error estimates in the $L^2(\Omega)$ norm.
- Adaptive strategy to choose h and ϵ .
- Examples with simple and more complicated boundary conditions where this strategy works.

The Boundary Penalty Method

Finite Element Method. Find $U \in V$ such that

$$(\nabla U, \nabla v) + (\epsilon^{-1}U, v)_{\Gamma} = (f, v) + (\epsilon^{-1}g, v)_{\Gamma} \quad \forall v \in V.$$

Green's formula yields the following identity,

$$(\nabla u, \nabla v) - (\partial_n u, v)_{\Gamma} = (f, v) \quad \forall v \in H^1(\Omega),$$

Error Representation Formula.

$$(\nabla e, \nabla v) + (\epsilon^{-1}e, v)_{\Gamma} = (\partial_n u, v)_{\Gamma} \quad \forall v \in V.$$

A Posteriori Error Estimate

Energy Norm.

$$\|\nabla e\| \le C \left(\|hR(U)\| + \|g - U\|_{1/2,\Gamma} \right)$$

 $L^2(\Omega)$ Norm.

$$||e|| \le C \left(||h^2 R(U)|| + ||g - U||_{-1/2,\Gamma} \right)$$

A Posteriori Error Estimate

Energy Norm.

$$||g - U||_{1/2,\Gamma} \le C||g - Pg||_{1/2,\Gamma}$$

$$+ \epsilon C \left(||P(\partial_n U)||_{1/2,\Gamma} + \sum_{\partial K \cap \Gamma \neq \emptyset} ||R(U)||_K \right)$$

 $L^2(\Omega)$ Norm.

$$||g - U||_{-1/2,\Gamma} \le C||g - Pg||_{-1/2,\Gamma} + \epsilon C \left(||P(\partial_n U)||_{-1/2,\Gamma} + ||\nabla e|| + ||hR(U)|| \right)$$

Adaptive Strategy

We have the a posteriori estimate in energy norm with two terms

$$\|\nabla e\| \le C(r_1 + r_2)$$

where
$$r_1 = (\|hR(U)\| + \|g - Pg\|_{\Gamma})$$
, $r_2 = \epsilon(\|P(\partial_n U)\|_{1/2,\Gamma} + \sum_{\partial K \cap \Gamma \neq \emptyset} \|R(U)\|_K)$.

- Solve problem with $\epsilon_0 = h$, calculate r_i .
- Do h-refinement if r_1 is to big.
- Let $\epsilon = \epsilon_0 r_1/r_2$ (weighted if h is refined).

We let g = 0 on Γ and we choose f such that u = x(1-x)y(1-y).

707 nodes

We compare true and estimated error.

We second plot is for h = 0.025 we see a slight over estimate in r_1 which is due to the estimation.

We study how $\epsilon_0 \in [10^{-7}, 10^{-1}]$ affects ϵ and how ϵ depends on h.

Why did we get oscillations for really small ϵ ?

This will make $U \approx Pg$. Solution using adaptive algorithm to the left.

Paper II

A Posteriori Error Analysis of Stabilized Finite Element Approximations of the Helmholtz Equation on unstructured grids

One Dimensional Model Problem

Helmholtz Equation.

$$\begin{cases} -u'' - k^2 u = 0 & \text{in } \Omega, \\ u'(0) = ik, \\ u'(\pi) = ik u(\pi), \end{cases}$$

where $\Omega=[0,\pi]$ and analytic solution $u(x)=e^{ikx}$. Weak Form. Find $u\in H^1(\Omega)$ such that

$$(u',v')-k^2\,(u,v)-ik\,u(\pi)v(\pi)^*=-ik\,v(0)^*,$$
 for all $v\in H^1(\Omega),$

Motivation

 Discretization gives an inaccurate numerical wave number (pollution).

 The Helmholtz equation is very important in acoustics and electro-magnetics.

Previous Work

- Analysis in one dimension that gives correct numerical wave number using the Galerkin least-squares method by Hughes et. al. and Generalized finite element method by Babuška et. al.
- Analysis in two dimensions on structured grids by Harari et. al.
- A gain in accuracy was detected by Wu et. al. when solving Helmholtz equation in two and three dimensions on unstructured grids.

Our Contributions

- A posteriori error analysis of the GLS method in one and two dimensions.
- Analysis of how stochastic perturbations in the mesh affects the numerical wave number in one and two dimensions.
- Suggestions of how existing method for structured meshes can be modified to suite an unstructured mesh.
- Unstructured meshes are of course of great interest in practice. (isotropic)

Galerkin Least-Squares

Find $u \in H^1(\Omega)$ such that

$$(U', v') - k^2 (U, v) + (\tau \mathcal{A}U, \mathcal{A}v)_{\tilde{\Omega}} - ik U(\pi)v(\pi)^*$$
$$= -ik v(0)^*, \text{ for all } v \in V_h,$$

where $\mathcal{A}=-\partial^2/\partial x^2-k^2$, τ is the method parameter, and $\tilde{\Omega}$ is the union of element interiors.

For piecewise linears $(\mathcal{A}U, \mathcal{A}v)_K = k^4(U, v)_K$ which gives...

Galerkin Least-Squares

Find $U \in V_h$ such that

$$(U', v') - k^2 (1 - \tau k^2) (U, v) - ik U(\pi)v(\pi)^*$$

= $-ik v(0)^*$, for all $v \in V_h$,

or with $p = 1 - \tau k^2$, find $U \in V_h$ such that

$$(U', v') - pk^2(U, v) - ik U(\pi)v(\pi)^*$$

= $-ik v(0)^*$, for all $v \in V_h$.

A Posteriori Error Analysis

Error Representation formula.

$$(e, \psi) = (k^2 U, \phi - \pi \phi) + (\tau k^4 U, \pi \phi).$$

We choose τ such that $(e, \psi) = 0$ i.e.

$$\tau = -\frac{(k^2 U, \phi - \pi \phi)}{(k^4 U, \pi \phi)}$$

$$p = 1 - \tau k^2 = \frac{(U, \phi)}{(U, \pi \phi)}$$

Unstructured Mesh

We introduce perturbations on the mesh.

$$\begin{cases} x_0 = 0 \\ x_i = \frac{i\pi}{n} + \delta_i, & \text{for } i = 1, \dots, n-1, \\ x_n = \pi, \end{cases}$$

where $\delta_i \in U([-\frac{\delta\pi}{2n}, \frac{\delta\pi}{2n}])$.

$$\hat{p}(\{\delta_i\}) = 1 - \tau k^2 = \frac{(U, \phi)}{(U, \pi \phi)}$$

Unstructured Mesh

Given δ we show that $E[\hat{p}] = 1 + C(hk)^2(1 + \frac{\delta^2}{2})$ makes $E[\bar{e}_{\psi}] = 0$ where $\bar{e}_{\psi} \approx (e, \psi)$.

Error Estimate

With this choice of p we show (Chebyshev gives $P(|e| > \epsilon) \le \text{Var}(e)/\epsilon^2$) that for each ϵ there exists a constant C such that

$$P(|\bar{e}_{\psi}| \le C\delta h^{5/2}k^3) > 1 - \epsilon.$$

Numerical tests gives the even better

$$P(|\bar{e}_{\psi}| \le C\delta h^{7/2}k^4) > 1 - \epsilon.$$

This means that the mean i correct but the variance grows with k.

Two Dimensional Model Problem

We use a model problem from Harari with inhomogeneous Robin boundary conditions chosen such that the solution u is equal to $e^{i\mathbf{k}\cdot x}$.

$$\begin{cases} -\triangle u - k^2 u = 0 & \text{in } \Omega, \\ -\partial_n u = -ik(u - g) & \text{on } \Gamma, \end{cases}$$

Unstructured Grid

Error Estimate

A similar calculation as in one dimension gives

$$(e, \psi_{\Omega}) - ik(e, \psi_{\Gamma})_{\Gamma} = (R_{\Omega}(U), \phi - \pi \phi)$$
$$- (R_{\Gamma}(U), \phi - \pi \phi)_{\Gamma} + (\tau \mathcal{A}U, \mathcal{A}\pi \phi)_{\tilde{\Omega}},$$

again we choose τ such that

$$(e,\psi_\Omega)-ik(e,\psi_\Gamma)_\Gamma=0$$
 i.e.

$$\tau = -\frac{(R_{\Omega}(U), \phi - \pi\phi) - (R_{\Gamma}(U), \phi - \pi\phi)_{\Gamma}}{(\mathcal{A}U, \mathcal{A}\pi\phi)_{\tilde{\Omega}}}$$

Two Dimensional Results

For plane waves on stochastically perturbated grids we numerically detect that

$$P\left(|(e, I_{\Gamma_o})_{\Gamma}| \le C(hk)^5\right) \ge 1 - \epsilon,$$

where I_{Γ_o} is the indicator function on the out flow boundary.

Again the mean is correct and this time we detect no pollution.

We also get $E[\tau] \sim 1 + C\delta^2$ both in theory and numerics.

Conclusions

- We derive a posteriori error estimates based on duality arguments for the GLS method.
- We explain how perturbations in the mesh affects the optimal numerical wavenumber.
- We note that for plane waves in two dimensions the contributions to the error seems to "even out" over the boundary so we do not get any pollution. $(\text{Var}(\int_{I_o} e) \approx \text{Var}(\sum_i^n e_i h) \sim h^2 n \text{Var}(e_i) \sim h \text{Var}(e_i))$.

Paper III

Adaptive Variational Multiscale Method Based on A Posteriori Error Estimates

The Model Problem

Poisson Equation. Find $u \in H_0^1(\Omega)$ such that

$$-\nabla \cdot a\nabla u = f \quad \text{in } \Omega, \quad u = 0 \text{ on } \partial\Omega.$$

where $f \in H^{-1}(\Omega)$, a > 0 bounded, and Ω is a domain in \mathbf{R}^d , d = 1, 2, 3.

Weak form. Find $u \in H_0^1(\Omega)$ such that

$$a(u,v)=(f,v)$$
 for all $v\in H^1_0(\Omega)$.

Multiscale Problems

Below are three examples of multiscale problems.

The first one represents difficulties in the domain (cracks, holes, ...) the second one oscillations in a and the third one oscillations in f.

Motivation

- Very important applications.
- The problems are very computationally challenging so error estimation and efficient algorithms are crucial.
- Attempts on using adaptive algorithms are not common in the literature.

Variational Multiscale Method

- See for instance T.J.R. Hughes (1995).
- $H_0^1=V_c\oplus V_f$, $u=u_c+u_f$, and $v=v_c+v_f$.

Find $u_c \in V_c$ and $u_f \in V_f$ such that

$$a(u_c, v_c) + a(u_f, v_c) = (f, v_c)$$
 for all $v_c \in V_c$,
 $a(u_f, v_f) = (f, v_f) - a(u_c, v_f)$
 $:= (R(u_c), v_f)$ for all $v_f \in V_f$.

Variational Multiscale Method

Figure 1: u_c , u_f , and $u_c + u_f$.

Variational Multiscale Method

- The fine scale is driven by the coarse scale residual.
- Approximation to fine scale solution solved on each element analytically (Green's functions).
- Fine scale information is then used to modify the coarse scale equation.

$$a(u_c, v_c) + a(\hat{A}_f^{-1}R(U_c), v_c) = (f, v_c) \ \forall v_c \in V_c.$$

Our Basic Idea

- Discretization of V_f by (W)HB-functions (V_f^h) .
- Solve localized fine scale problems for each coarse node (or some coarse nodes).
- Possibility to do this in parallel.
- A posteriori error estimation framework.
- Adaptive strategy for this setting.

Decouple Fine Scale Equations

Remember the fine scale equations:

$$a(U_f, v_f) = (R(U_c), v_f), \text{ for all } v_f \in V_f^h.$$

Include a partition of unity,

$$a(U_f, v_f) = (R(U_c), v_f) = \sum_{i=1}^{n} (R(U_c), \varphi_i v_f),$$

let
$$U_f = \sum_{i=1}^n U_{f,i}$$
 where $a(U_{f,i}, v_f) = (R(U_c), \varphi_i v_f)$.

Approximate Solution

Find $U_c \in V_c$ and $U_f = \sum_i^n U_{f,i}$ where $U_{f,i} \in V_f^h(\omega_i)$ such that

$$a(U_c, v_c) + a(U_f, v_c) = (f, v_c)$$
 for all $v_c \in V_c$, $a(U_{f,i}, v_f) = (R(U_c), \varphi_i v_f)$ for all $v_f \in V_f^h(\omega_i)$.

• Since φ_i has support on a star S_i^1 in node i we solve the fine scale equations approximately on ω_i with $U_{f,i}=0$ on $\partial \omega_i$.

Refinement and Layers

One and two layer stars.

Localized Fine Scale Solution

Energy Norm Estimate

$$\|\sqrt{a}\nabla e\| \leq \sum_{i\in\mathcal{C}} C_i \|H\mathcal{R}(U_c)\|_{\omega_i}$$

$$+ \sum_{i\in\mathcal{F}} C_i \left(\|\sqrt{H}\Sigma(U_{f,i})\|_{\partial\omega_i} + \|h\mathcal{R}_i(U_{f,i})\|_{\omega_i} \right)$$

- The first term is coarse mesh error.
- The second term is the normal derivative of the fine scale solutions on $\partial \omega_i$.
- The third term is fine scale error.

Adaptive Strategy

$$\|\sqrt{a}\nabla e\| \leq \sum_{i\in\mathcal{C}} C_i \|H\mathcal{R}(U_c)\|_{\omega_i}$$

$$+ \sum_{i\in\mathcal{F}} C_i \left(\|\sqrt{H}\Sigma(U_{f,i})\|_{\partial\omega_i} + \|h\mathcal{R}_i(U_{f,i})\|_{\omega_i} \right)$$

- We calculate these for each $i \in \{\text{coarse fine}\}$.
- Large values i ∈ coarse → more local problems.
- Large values $i \in \text{fine} \to \text{more layers or}$ smaller h.

We start with a unit square containing a crack.

We let the coefficient a=1 and solve, $-\triangle u=f$ with u=0 on the boundary including the crack.

We solve the problem by using the adaptive algorithm.

We plot the difference between our solution and a reference solution.

In this example we study a discontinuous coefficient a in $-\nabla \cdot a \nabla u = f$. a=1 (white) and a=0.05 (blue).

The number of layers seems to depend on the fine scale structure rather that the domain size.

Outlook

- Extended numerical tests in both 2D and 3D.
- Mixed formulation.
- Other equations (convection-diffusion, ...).
- More scales.
- Comparing results with classical Homogenization theory.