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Abstract Model Problem

Strong form. Find u ∈ H1
0(Ω) such that

Au = f in Ω, u = 0 on ∂Ω.

where A is a second order differential operator.

Weak form. Let a(v, w) = (Av, w) for all
v, w ∈ H1

0 . The weak form reads: Find u ∈ H1
0(Ω)

such that

a(u, v) = (f, v) for all v ∈ H1

0(Ω).
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Discretization

Let Vh = span{ϕi} ⊂ H1
0(Ω) be the finite

dimensional space of piecewise linear
polynomials on a triangulation K = {K} with
mesh parameter h.

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1
0

0.2

0.4

0.6

0.8

1

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Department of Computational Mathematics Chalmers – p. 4



The Finite Element Method

Weak form. Find u ∈ H1
0(Ω) such that

a(u, v) = (f, v) for all v ∈ H1

0(Ω).

Finite Element Method. Find U ∈ Vh such that

a(U, v) = (f, v) for all v ∈ Vh.

We subtract the two equations and introduce the
error e = u− U .
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A Posteriori Error Estimation

Galerkin Orthogonality.

a(e, v) = 0 for all v ∈ Vh.

Error Representation Formula. We can proceed
with the following calculation for an arbitrary
function φ ∈ H1

0 ,

a(e, φ) = a(e, φ−πφ) = (Ae, φ−πφ) = (f−AU, φ−πφ)
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Energy Norm Estimate

We choose φ = e to get,

‖e‖2

a = a(e, e) = (f −AU, e− πe)

≤ C‖hR(U)‖‖∇e‖ ≤ C‖hR(U)‖‖e‖a,

which is possible if

‖∇e‖ ≤ C‖e‖a.
We get

‖e‖a ≤ C‖hR(U)‖
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Linear Functional Estimate

If we instead let φ ∈ H1
0 solve the following dual

problem,

(v,A∗φ) = (v, ψ), for all v ∈ H1

0 ,

we get

(e, ψ) = (e,A∗φ) = (Ae, φ)

= a(e, φ) = (f −AU, φ− πφ)

= (R(U), φ− πφ)
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Adaptive Algorithm

We study the energy norm estimate,

‖e‖2

a ≤ C‖hR(U)‖2 = C
∑

K∈K
‖hR(U)‖2

K

= C
∑

K∈K
ρK(U),

where we refer to ρK as element indicators.
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Adaptive Algorithm

• Use FEM to calculate the solution U .
• Calculate the element indicators ρK .
• Refine elements where ρK(U) is large and

return to one, or stop if
∑

K∈K ρK(U) is
sufficiently small.
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Paper I

A Posteriori Error Analysis of the Boundary
Penalty Method

777 nodes
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The Model Problem

The Dirichlet problem:
{

−4u = f in Ω,

u = g on Γ,

Boundary penalty method:
{

−4uε = f in Ω,

−∂nuε = ε−1(uε − g) on Γ.

Department of Computational Mathematics Chalmers – p. 12



Motivation

−∂nu = ε(x)−1(u− gD(x)) + gN(x)

• One form can represent Dirichlet, Neumann
and Robin boundary condition simply by
changing the parameter ε(x).

• The method is used in various FEM codes.
• It can be used on interior boundaries in

non-matching grid problems.
• A simpler compliment to Nitsche’s method.
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Motivation

How do we choose ε to impose Dirichlet
conditions weakly?
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• To small ε will give large condition numbers.
• We need to choose ε as large as possible

without increasing the error.
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Previous Work

Earlier a priori work by I. Babuška, J. W. Barrett
and C. M. Elliott among others shows

‖u− uε‖0 ≤ Cε‖u‖2

and if we refer to the boundary penalty solution
as U we have

‖e‖1 = ‖u− U‖1 ≤ Ch‖u‖2

for piecewise linears with ε = h.
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Our Contributions

• A posteriori error estimates in the energy
norm.

• A posteriori error estimates in the L2(Ω) norm.
• Adaptive strategy to choose h and ε.
• Examples with simple and more complicated

boundary conditions where this strategy
works.
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The Boundary Penalty Method

Finite Element Method. Find U ∈ V such that

(∇U,∇v)+(ε−1U, v)Γ = (f, v)+(ε−1g, v)Γ ∀v ∈ V.

Green’s formula yields the following identity,

(∇u,∇v) − (∂nu, v)Γ = (f, v) ∀v ∈ H1(Ω),

Error Representation Formula.

(∇e,∇v) + (ε−1e, v)Γ = (∂nu, v)Γ ∀v ∈ V.
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A Posteriori Error Estimate

Energy Norm.

‖∇e‖ ≤ C
(

‖hR(U)‖ + ‖g − U‖1/2,Γ

)

L2(Ω) Norm.

‖e‖ ≤ C
(

‖h2R(U)‖ + ‖g − U‖−1/2,Γ

)
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A Posteriori Error Estimate

Energy Norm.

‖g − U‖1/2,Γ ≤ C‖g − Pg‖1/2,Γ

+ εC



‖P (∂nU)‖1/2,Γ +
∑

∂K∩Γ 6=∅
‖R(U)‖K





L2(Ω) Norm.

‖g − U‖−1/2,Γ ≤ C‖g − Pg‖−1/2,Γ

+ εC
(

‖P (∂nU)‖−1/2,Γ + ‖∇e‖ + ‖hR(U)‖
)
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Adaptive Strategy

We have the a posteriori estimate in energy norm
with two terms

‖∇e‖ ≤ C(r1 + r2)

where r1 = (‖hR(U)‖ + ‖g − Pg‖Γ),
r2 = ε(‖P (∂nU)‖1/2,Γ +

∑

∂K∩Γ 6=∅ ‖R(U)‖K).

• Solve problem with ε0 = h, calculate ri.
• Do h-refinement if r1 is to big.
• Let ε = ε0r1/r2 (weighted if h is refined).
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Numerical Examples

We let g = 0 on Γ and we choose f such that
u = x(1 − x)y(1 − y).

707 nodes
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Numerical Examples

We compare true and estimated error.
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We second plot is for h = 0.025 we see a slight
over estimate in r1 which is due to the estimation.

Department of Computational Mathematics Chalmers – p. 22



Numerical Examples

We study how ε0 ∈ [10−7, 10−1] affects ε and how
ε depends on h.
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Numerical Examples

Why did we get oscillations for really small ε?
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This will make U ≈ Pg. Solution using adaptive
algorithm to the left.
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Paper II

A Posteriori Error Analysis of Stabilized Finite
Element Approximations of the Helmholtz
Equation on unstructured grids
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One Dimensional Model Problem

Helmholtz Equation.










−u′′ − k2 u = 0 in Ω,

u′(0) = ik,

u′(π) = ik u(π) ,

where Ω = [0, π] and analytic solution u(x) = eikx.
Weak Form. Find u ∈ H1(Ω) such that

(u′, v′) − k2 (u, v) − ik u(π)v(π)∗ = −ik v(0)∗,
for all v ∈ H1(Ω),
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Motivation

• Discretization gives an inaccurate numerical
wave number (pollution).
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• The Helmholtz equation is very important in
acoustics and electro-magnetics.
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Previous Work

• Analysis in one dimension that gives correct
numerical wave number using the Galerkin
least-squares method by Hughes et. al. and
Generalized finite element method by
Babuška et. al.

• Analysis in two dimensions on structured
grids by Harari et. al.

• A gain in accuracy was detected by Wu et. al.
when solving Helmholtz equation in two and
three dimensions on unstructured grids.
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Our Contributions

• A posteriori error analysis of the GLS method
in one and two dimensions.

• Analysis of how stochastic perturbations in
the mesh affects the numerical wave number
in one and two dimensions.

• Suggestions of how existing method for
structured meshes can be modified to suite
an unstructured mesh.

• Unstructured meshes are of course of great
interest in practice. (isotropic)
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Galerkin Least-Squares

Find u ∈ H1(Ω) such that

(U ′, v′) − k2 (U, v)+(τ AU,Av)
Ω̃
− ik U(π)v(π)∗

= −ik v(0)∗, for all v ∈ Vh,

where A = −∂2/∂x2 − k2, τ is the method
parameter, and Ω̃ is the union of element
interiors.
For piecewise linears (AU,Av)K = k4(U, v)K
which gives...
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Galerkin Least-Squares

Find U ∈ Vh such that

(U ′, v′) − k2(1 − τ k2) (U, v) − ik U(π)v(π)∗

= −ik v(0)∗, for all v ∈ Vh,

or with p = 1 − τ k2, find U ∈ Vh such that

(U ′, v′) − pk2(U, v) − ik U(π)v(π)∗

= −ik v(0)∗, for all v ∈ Vh.
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A Posteriori Error Analysis

Error Representation formula.

(e, ψ) = (k2 U, φ− πφ) + (τ k4U, πφ).

We choose τ such that (e, ψ) = 0 i.e.

τ = −(k2 U, φ− πφ)

(k4U, πφ)

p = 1 − τk2 =
(U, φ)

(U, πφ)
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Unstructured Mesh

We introduce perturbations on the mesh.










x0 = 0

xi = iπ
n + δi, for i = 1, . . . , n− 1,

xn = π,

where δi ∈ U([−δπ
2n ,

δπ
2n ]).

p̂({δi}) = 1 − τk2 =
(U, φ)

(U, πφ)
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Unstructured Mesh

Given δ we show that E[p̂] = 1 + C(hk)2(1 + δ2

2
)

makes E[ēψ] = 0 where ēψ ≈ (e, ψ).
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Error Estimate

With this choice of p we show (Chebyshev gives
P (|e| > ε) ≤ Var(e)/ε2) that for each ε there exists
a constant C such that

P (|ēψ| ≤ Cδh5/2k3) > 1 − ε.

Numerical tests gives the even better

P (|ēψ| ≤ Cδh7/2k4) > 1 − ε.

This means that the mean i correct but the
variance grows with k.
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Two Dimensional Model Problem

We use a model problem from Harari with
inhomogeneous Robin boundary conditions
chosen such that the solution u is equal to eik·x.

{

−4u− k2 u = 0 in Ω,

−∂nu = −ik(u− g) on Γ,
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Unstructured Grid

δ=0 δ=0.1

δ=0.2 δ=0.3
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Error Estimate

A similar calculation as in one dimension gives

(e, ψΩ) − ik(e, ψΓ)Γ = (RΩ(U), φ− πφ)

− (RΓ(U), φ− πφ)Γ + (τAU,Aπφ)
Ω̃
,

again we choose τ such that
(e, ψΩ) − ik(e, ψΓ)Γ = 0 i.e.

τ = −(RΩ(U), φ− πφ) − (RΓ(U), φ− πφ)Γ

(AU,Aπφ)
Ω̃
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Two Dimensional Results

For plane waves on stochastically perturbated
grids we numerically detect that

P
(

|(e, IΓo
)Γ| ≤ C(hk)5

)

≥ 1 − ε,

where IΓo
is the indicator function on the out flow

boundary.
Again the mean is correct and this time we detect
no pollution.
We also get E[τ ] ∼ 1 + Cδ2 both in theory and
numerics.
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Conclusions

• We derive a posteriori error estimates based
on duality arguments for the GLS method.

• We explain how perturbations in the mesh
affects the optimal numerical wavenumber.

• We note that for plane waves in two
dimensions the contributions to the error
seems to “even out” over the boundary so we
do not get any pollution. (Var(

∫

Io
e) ≈

Var(
∑n

i eih) ∼ h2nVar(ei) ∼ hVar(ei)).
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Paper III

Adaptive Variational Multiscale Method Based on
A Posteriori Error Estimates
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The Model Problem

Poisson Equation. Find u ∈ H1
0(Ω) such that

−∇ · a∇u = f in Ω, u = 0 on ∂Ω.

where f ∈ H−1(Ω), a > 0 bounded, and Ω is a
domain in R

d, d = 1, 2, 3.

Weak form. Find u ∈ H1
0(Ω) such that

a(u, v) = (f, v) for all v ∈ H1

0(Ω).
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Multiscale Problems

Below are three examples of multiscale
problems.
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The first one represents difficulties in the domain
(cracks, holes, ...) the second one oscillations in
a and the third one oscillations in f .
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Motivation

• Very important applications.
• The problems are very computationally

challenging so error estimation and efficient
algorithms are crucial.

• Attempts on using adaptive algorithms are
not common in the literature.
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Variational Multiscale Method

• See for instance T.J.R. Hughes (1995).
• H1

0 = Vc ⊕ Vf , u = uc + uf , and v = vc + vf .

Find uc ∈ Vc and uf ∈ Vf such that

a(uc, vc) + a(uf , vc) = (f, vc) for all vc ∈ Vc,

a(uf , vf) = (f, vf ) − a(uc, vf )

:= (R(uc), vf ) for all vf ∈ Vf .
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Variational Multiscale Method
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Figure 1: uc, uf , and uc + uf .
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Variational Multiscale Method

• The fine scale is driven by the coarse scale
residual.

• Approximation to fine scale solution solved on
each element analytically (Green’s functions).

• Fine scale information is then used to modify
the coarse scale equation.

a(uc, vc) + a(Â−1

f R(Uc), vc) = (f, vc) ∀vc ∈ Vc.
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Our Basic Idea

• Discretization of Vf by (W)HB-functions (V h
f ).

• Solve localized fine scale problems for each
coarse node (or some coarse nodes).

• Possibility to do this in parallel.
• A posteriori error estimation framework.
• Adaptive strategy for this setting.
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Decouple Fine Scale Equations

Remember the fine scale equations:

a(Uf , vf ) = (R(Uc), vf ), for all vf ∈ V h
f .

Include a partition of unity,

a(Uf , vf ) = (R(Uc), vf ) =
n

∑

i=1

(R(Uc), ϕivf),

let Uf =
∑n

i Uf,i where a(Uf,i, vf ) = (R(Uc), ϕivf).
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Approximate Solution

Find Uc ∈ Vc and Uf =
∑n

i Uf,i where
Uf,i ∈ V h

f (ωi) such that

a(Uc, vc) + a(Uf , vc) = (f, vc) for all vc ∈ Vc,

a(Uf,i, vf ) = (R(Uc), ϕivf) for all vf ∈ V h
f (ωi).

• Since ϕi has support on a star S1
i in node i

we solve the fine scale equations
approximately on ωi with Uf,i = 0 on ∂ωi.
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Refinement and Layers
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Localized Fine Scale Solution

0
0.5

1

0

0.5

1
−10

−5

0

5

x 10−3
One layer

0
0.5

1

0

0.5

1
−10

−5

0

5

x 10−3
Two layers

0
0.5

1

0

0.5

1
−10

−5

0

5

x 10−3
Three layers

0
0.5

1

0

0.5

1
−10

−5

0

5

x 10−3
Entire domain

Department of Computational Mathematics Chalmers – p. 52



Energy Norm Estimate

‖√a∇e‖ ≤
∑

i∈C
Ci‖HR(Uc)‖ωi

+
∑

i∈F
Ci

(

‖
√
HΣ(Uf,i)‖∂ωi

+ ‖hRi(Uf,i)‖ωi

)

• The first term is coarse mesh error.
• The second term is the normal derivative of

the fine scale solutions on ∂ωi.
• The third term is fine scale error.
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Adaptive Strategy

‖√a∇e‖ ≤
∑

i∈C
Ci‖HR(Uc)‖ωi

+
∑

i∈F
Ci

(

‖
√
HΣ(Uf,i)‖∂ωi

+ ‖hRi(Uf,i)‖ωi

)

• We calculate these for each i ∈ {coarse fine}.
• Large values i ∈ coarse → more local

problems.
• Large values i ∈ fine → more layers or

smaller h.
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Numerical Examples

We start with a unit square containing a crack.

We let the coefficient a = 1 and solve, −4u = f
with u = 0 on the boundary including the crack.
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Numerical Examples

We solve the problem by using the adaptive
algorithm.

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1
0

1

2

3

4

5

6

x 10−3

Galerkin

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1
0

1

2

3

4

5

6

x 10−3

one iteration

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1
0

1

2

3

4

5

6

x 10−3

two iteration

We plot the difference between our solution and
a reference solution.
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Numerical Examples
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Numerical Examples

In this example we study a discontinuous
coefficient a in −∇ · a∇u = f . a = 1 (white) and
a = 0.05 (blue).
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Numerical Examples
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Truth−mesh solution.
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Galerkin solution.
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Numerical Examples
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The number of layers seems to depend on the
fine scale structure rather that the domain size.
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Outlook

• Extended numerical tests in both 2D and 3D.
• Mixed formulation.
• Other equations (convection-diffusion, ...).
• More scales.
• Comparing results with classical

Homogenization theory.
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