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Abstract Model Problem

Strong form. Find v € H}(Q) such that
Au=f inQ, wu=0o0no.

where A Is a second order differential operator.

Weak form. Let a(v,w) = (Av,w) for all

v,w € H}. The weak form reads: Find u € H;(Q)
such that

a(u,v) = (f,v) forallve Hj(Q).




Discretization

Let V), = span{p;} C H(Q) be the finite
dimensional space of piecewise linear
polynomials on a triangulation X = { K'} with
mesh parameter h.
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The Finite Element Method

Weak form. Find v € H}(Q) such that

a(u,v) = (f,v) forallve Hj(Q).

Finite Element Method. Find U € V,, such that
a(U,v) = (f,v) forallveV,.

We subtract the two equations and introduce the
errore=u—U.




A Posteriori Error Estimation

Galerkin Orthogonality.

a(e,v) =0 forallv e V.

Error Representation Formula. We can proceed
with the following calculation for an arbitrary

function ¢ € H},

CL(G, QS) — a(ea ¢_7T¢) — (A@, ¢_7T¢) — (f_AUa ¢_W¢)




Energy Norm Estimate

We choose ¢ = e to get,

lella = ale,e) = (f — AU, e — me)
< Cl[RR(U)|[[[Vell < ClIARU)][[le]la,

which is possible if
Vel < Cllella.

We get
lella < ClRRU)|
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Linear Functional Estimate

If we instead let ¢ € H; solve the following dual
problem,

(v, A*¢) = (v,v), forallve Hy,
we get
(e,9) = (e, A7¢) = (Ae, ¢)

= a(e,¢) = (f — AU, ¢ — 19)
— (R(U)7 qb o 7T¢)
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Adaptive Algorithm

We study the energy norm estimate,

lellz < ClRRU)IIP =C >  |hRU)|%
KeK
—C Y v

where we refer to px as element indicators.




Adaptive Algorithm

- Use FEM to calculate the solution U.
- Calculate the element indicators pg.

- Refine elements where pi (U) is large and
return to one, or stop if > . px(U) IS
sufficiently small.
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The Model Problem

The Dirichlet problem:

[ _Au=f inQ,
u=g¢g onl,

\

Boundary penalty method:

f

—Au.=f 1InQ,
—Optte = € 1(uc —g) onT.

\




—0hu = €e(x) " (u — gp(2)) + gn(2)

» One form can represent Dirichlet, Neumann
and Robin boundary condition simply by
changing the parameter ().

 The method is used in various FEM codes.

» It can be used on interior boundaries in
non-matching grid problems.

« A simpler compliment to Nitsche’s method.




Motivation

How do we choose ¢ to impose Dirichlet
conditions weakly?
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- To small ¢ will give large condition numbers.

» We need to choose ¢ as large as possible
without increasing the error.
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Previous Work

Earlier a priori work by |. Babuska, J. W. Barrett
and C. M. Elliott among others shows

lu = ucllo < Cellull;

and if we refer to the boundary penalty solution

as U we have

le

for piecewise

1= [Ju = Ully < Chlfulf

Inears with e = h.




Our Contributions

A posteriori error estimates in the energy
norm.

- A posteriori error estimates in the L*(Q2) norm.

- Adaptive strategy to choose h and .

- Examples with simple and more complicated
boundary conditions where this strategy
WOrks.




The Boundary Penalty Method

Finite Element Method. Find U € V' such that
(VU,Vu)+ (e U, v)r = (f,v)+ (e tg,v)r Yv eV
Green’s formula yields the following identity,

(Vu, Vo) — (Opu,v)r = (f,v) Yo e H(Q),

Error Representation Formula.

(Ve, Vv) + (e te,v)r = (Opu,v)r Yo €V




A Posteriori Error Estimate

Energy Norm.

|Vell < C ([[ARRU)[I+ lg = Ullyjor)

L*(€)) Norm.
lell < C (IP°RO)| +1lg = Ull-1/2r)




A Posteriori Error Estimate

Energy Norm.
lg = Ullijor < Cllg — Pgll1/2r

+eC [ IPOU)1or+ Y RU)|lx
OKNT#D

L*() Norm.

lg —Ull_12r < Cllg — Pgl|-1/21
+eC (|IP(0.U)|| 2121 + Vel + |RR(U) )
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Adaptive Strategy

We have the a posteriori estimate in energy norm
with two terms

HV@‘ § C(Tl —|—7“2)

where r; = (||hR(U)|| + |lg — Pg||r),
ro = €(|P(OnU)l1/2r + 2 oxrrsn 1 BU) |l x)-

-+ Solve problem with ¢, = h, calculate r;.

* Do h-refinement if r; is to big.
« Let e = eqry /7y (weighted if A is refined).




Numerical Examples

We let ¢ = 0 on I" and we choose f such that
u=2z(l—-2z)y(l—y)

707 nodes
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Numerical Examples

We compare true and estimated error.
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We second plot is for h = 0.025 we see a slight
over estimate in r; which is due to the estimation.
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Numerical Examples

We study how ¢, € [1077,107}] affects ¢ and how
e depends on h.

peld
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Numerical Examples

Why did we get oscillations for really small €?
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This will make U =~ Pg. Solution using adaptive
algorithm to the left.
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Paper 11

A Posteriori Error Analysis of Stabilized Finite
Element Approximations of the Helmholtz
Equation on unstructured grids
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One Dimensional Model Problem

Helmholtz Equation.

—u" —k*u=0 inq,
W (0) = ik,
uw(m) =ik u(m),
where Q = [0, 7] and analytic solution u(z) = e***.
Weak Form. Find u € H'(Q) such that
(v, v") — k* (u,v) — ik u(m)v(n)* = —ikv(0)*,
forallv € H'(Q),
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» Discretization gives an inaccurate numerical
wave number (pollution).

- The Helmholtz equation is very important in
acoustics and electro-magnetics.
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Previous Work

- Analysis in one dimension that gives correct
numerical wave number using the Galerkin
least-squares method by Hughes et. al. and
Generalized finite element method by
Babuska et. al.

 Analysis in two dimensions on structured
grids by Harari et. al.

- A gain in accuracy was detected by Wu et. al.
when solving Helmholtz equation in two and
three dimensions on unstructured grids.
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Our Contributions

A posteriori error analysis of the GLS method
iIn one and two dimensions.

» Analysis of how stochastic perturbations in
the mesh affects the numerical wave number
In one and two dimensions.

» Suggestions of how existing method for
structured meshes can be modified to suite
an unstructured mesh.

» Unstructured meshes are of course of great
Interest in practice. (isotropic)




Galerkin Least-Squares

Find u € H'(Q) such that

(U'0) = B (U, v)+ (7 AU, Av)g — ik U(m)v(r)’
= —ikv(0)", for all v € V},

where A = —9%/0x* — k?*, 7 is the method

parameter, and € is the union of element
interiors.

For piecewise linears (AU, Av)x = k*(U,v) g
which gives...




Galerkin Least-Squares

Find U € V,, such that
(U, V) = k*(1 =7k (U,v) — ik U(m)v(r)*

= —ikv(0)", for all v € V},
or withp =1 — 7 &%, find U € V}, such that

(U, ') — pk*(U,v) — ik U (r)v(r)*
= —tkv(0)",for all v € V},.




A Posteriori Error Analysis

Error Representation formula.

(e,9) = (KU, ¢ — 7¢) + (T K*U, m9).

We choose 7 such that (e, ) = 0 i.e.

T (kZ Uvgb_ﬂ-qb)
(KU me)
p= 1—7']€2 _ (U7¢)

(U, 79)




Unstructured Mesh

We introduce perturbations on the mesh.

Loy — 0
vi = T4, fori=1,....,n—1,
Ly — T,

where §; € U([—2, 27]).

2n’ 2n

(U, ¢)

]5({5@}) =1—7k" = (U, 7‘(‘¢)




Unstructured Mesh

Given 6 we show that E[p] = 1+ C(hk)2(1 + £)
makes Eley| = 0 where e, = (e, ).

555555
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Error Estimate

With this choice of p we show (Chebyshev gives
P(le| > €) < var(e)/€?) that for each ¢ there exists
a constant C' such that

P(|ley| < CoR°PE?) > 1 — .

Numerical tests gives the even better
P(ley| < CSh™?EY > 1 —e.

This means that the mean i correct but the
variance grows with k.




Two Dimensional Model Problem

We use a model problem from Harari with
innomogeneous Robin boundary conditions

chosen such that the solution u is equal to e’*~.

/

—Au—FKku=0 inQ,
| —Ohu = —ik(u —g) onT,




Unstructured Grid

8=0 6=0.1
NN
6=0.2 6=0.3
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Error Estimate

A similar calculation as in one dimension gives

(e,¥) — tk(e, ¢r)r = (Ra(U), ¢ — 79)
— (Br(U), ¢ —mo)r + (TAU, Amd)g,

again we choose 7 such that

(6, wg) — ik(e, wF)F =0 1.e.

(Ro(U),¢ — 7o) — (Rr(U), 9 — 7o)r
(AU, Am¢)q
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Two Dimensional Results

For plane waves on stochastically perturbated
grids we numerically detect that

P (|(e,Ir,)r| < C(hk)’) > 1 —¢,

where I is the indicator function on the out flow
boundary.

Again the mean is correct and this time we detect
no pollution.

We also get E[r] ~ 1 + C'§* both in theory and
numerics.




Conclusions

- We derive a posteriori error estimates based
on duality arguments for the GLS method.

- We explain how perturbations in the mesh
affects the optimal numerical wavenumber.

- We note that for plane waves in two
dimensions the contributions to the error
seems to “even out” over the boundary so we
do not get any pollution. (Var(/; e) ~

Var(> "7 e;h) ~ h*nVar(e;) ~ hVar(e;)).

(4




Paper 111

Adaptive Variational Multiscale Method Based on
A Posteriori Error Estimates

Truth-mesh solution.
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The Model Problem

Poisson Equation. Find v € H}(€Q) such that

—V-aVu=f 1InQ, wu=0o0no.

where f € H1(Q), a > 0 bounded, and Q is a
domainin R, d =1, 2, 3.

Weak form. Find v € H}(Q) such that

a(u,v) = (f,v) forallve Hj(Q).




Multiscale Problems

Below are three examples of multiscale
problems.

The first one represents difficulties in the domain
(cracks, holes, ...) the second one oscillations in
a and the third one oscillations in f.
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» Very important applications.

« The problems are very computationally
challenging so error estimation and efficient
algorithms are crucial.

- Attempts on using adaptive algorithms are
not common in the literature.




Variational Multiscale Method

- See for instance T.J.R. Hughes (1995).
g H& =V.® Vy, u=u.+ uys, and v = v, + vy.

Find u. € V. and u; € V; such that

a(ue, ve) + a(ur,ve) = (f,v.) forallv. €V,

CL(Uf,”Uf) — (favf) _a(u&vf)
= (R(u.),vy) forallvy e Vy.




Variational Multiscale Method

Figure 1: u,, us, and u. + uy.
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Variational Multiscale Method

» The fine scale is driven by the coarse scale
residual.

« Approximation to fine scale solution solved on
each element analytically (Green’s functions).

 Fine scale information is then used to modify
the coarse scale equation.

A

a(te, Ve) + a(A}lR(UC),vC) = (f,v.) Yv. €V.,.




Our Basic Idea

- Discretization of V; by (W)HB-functions (V).

 Solve localized fine scale problems for each
coarse node (or some coarse nodes).

 Possibility to do this in parallel.
A posteriori error estimation framework.
- Adaptive strategy for this setting.




Decouple Fine Scale Equations

Remember the fine scale equations:
a(Us,vp) = (R(U.),vs), forallvye th.

Include a partition of unity,

n

a(Us,vp) = (R(Ue),vp) =Y (R(Ue), pivy),

1=1

let Ur = > " Ur; where a(Uy;,ve) = (R(U,), pivy).




Approximate Solution

Find U. € V.and Uy = > Us,; where
Ui € th(wi) such that

a(U.,v.) +a(lUy,v.) = (f,v.) forallv. eV,
a(Uysi,vp) = (R(U,), pivy) forallvy th(wi).

- Since ; has support on a star S} in node :
we solve the fine scale equations
approximately on w; with U¢; = 0 on Ow;.




Refinement and Layers

One and two layer stars.
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L.ocalized Fine Scale Solution

One layer

Two layers

Three layers
x 10 S

[ A N

x 10

0 o0
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Energy Norm Estimate

|[VaVel| <> Cl|HR(U,)|.,

1eC

+2_C (H\/EZ(Uf,z‘)HaM + ||PRi(Uy,i)

1€F

)

» The first term is coarse mesh error.

 The second term is the normal derivative of
the fine scale solutions on Jw;.

» The third term Is fine scale error.




Adaptive Strategy

|Vavel| < ) CIHRU,)|.,

1eC

+2_C (H\/EZ(Uf,z‘)HaM + ||PRi(Uy,i)

1€F

)

- We calculate these for each i € {coarse fine}.

- Large values ¢ € coarse — more local
problems.

- Large values i € fine — more layers or
smaller h.
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Numerical Examples

We start with a unit square containing a crack.

We let the coefficient a« = 1 and solve, —Au = f
with © = 0 on the boundary including the crack.
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Numerical Examples

In this example we study a discontinuous
coefficienta in —V - aVu = f. a = 1 (white) and
a = 0.05 (blue).




Numerical Examples

Truth-mesh solution. Galerkin solution.
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Numerical Examples

The number of layers seems to depend on the
fine scale structure rather that the domain size.
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Outlook

» Extended numerical tests in both 2D and 3D.
» Mixed formulation.

- Other equations (convection-diffusion, ...).

» More scales.

- Comparing results with classical
Homogenization theory.
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