Domain decomposition methods

Axel Målqvist

Department of Mathematical Sciences Chalmers University of Technology and University of Gothenburg Fraunhofer Chalmers Centre

2025-03-14

Målqvist (Chalmers and GU)

Domain decomposition

Motivating example: Simulation of paperboard

- Mechanical properties (tensile/bending strength)
- Collaboration with Fraunhofer Chalmers Centre (FCC), paper making industry (Stora Enso) and packaging (Tetra Pak)

Motivating example: Simulation of paperboard

- Paper fibres are hollow flattened slender cylinders
- Model: network of connected beams
- The displacement solves a linear system Au = f
- A is SPD, sparse but large (200M dofs) and ill-conditioned
- Direct solvers overload memory, iterative solvers (AMG, PCG) fail to converge

How to develop an efficient robust solver for this problem?

- Motivating example
- Obmain decomposition
- Simulation of paperboard
- Emil's contribution

Domain decomposition (DD)¹

• Au = f is solved iteratively over the subdomains $\Omega = \bigcup_{i=1}^{n} \Omega_i$

$$A_i u_i = f_i, \text{ in } \tilde{\Omega}_i$$

- Non-overlapping (Ω̃_i = Ω_i) or overlapping (Ω̃_i ⊃ Ω_i) domains?
 How to pass information between domains?
- Decompose into subdomain before or after discretization?
- DD as a solver or as a preconditioner?

¹Alternating Schwarz 1870, numerical solution of PDEs 1950, and a soluti

Nonoverlapping vs. overlapping

- Nonoverlapping: less overhead, transmission condition on the interface (DN, NN, RR) with a parameter s
- Overlapping: freedom in geometry of subdomains, interface conditions, overlap parameter δ

Choice of parameters (s, δ) affects performance.

Continuous, discretized, or algebraic level

 $-\Delta u = f$ $A_h u_h = f_h$ Ax = b

- A DD algorithm is optimal if the rate of convergence is independent the size of the system.
- A DD algorithm is scalable if the convergence does not deteriorate when the number of subdomains grows.

DD as a solver or as a preconditioner

- Solve Au = f by iteration with transmission condition
- Rewrite as an equation on Γ : $Su_{\Gamma} = g_{\Gamma}$
- DD can be formulated as a preconditioned Richardson iteration: $u_{\Gamma}^{n+1} = u_{\Gamma}^{n} + B(g_{\Gamma} Su_{\Gamma}^{n})$
- Convergence depends on the condition number $\kappa(BS)$
- Optimal but typically not scalable

- Solve Au = f with the conjugate gradient method
- Convergence rate depends on $\kappa(A) \gg 1$
- Instead BAu = Bf is considered with $B \sim A^{-1}$ and $\kappa(BA) \sim 1$
- CG: given some v we need to compute the action BAv
- The action of B can again be an iteration of a DD algorithm

Additive Schwarz preconditioner

- Solve one coarse grid problem $A_H z_0 = Av$ in Ω (for scalability)
- Solve overlapping local problems $A_i z_i = Av$, in $\tilde{\Omega}_i$, i = 1, ..., n
- Let $B(Av) = z_0 + z_1 + \cdots + z_n$ (additive)
- B(f) can be constructed in a similar way
- Optimal and scalable $\kappa(BA) \sim 1$

- Motivating example
- 2 Domain decomposition
- Simulation of paperboard
- Emil's contribution

Example: Simulation of paperboard

- Preconditioned conjugate gradient method
- Additive Schwarz preconditioner: overlapping subdomains
 (δ ~ H) with coarse grid correction
- Subproblems $A_i u_i = f_i$ solved using a direct solver
- Optimal convergence under assumptions on the underlying graph
- Rapid convergence (50-100) iterations, very robust

Example: Simulation of paperboard

- Simulation of tensile strength and bending strength
- Numerical simulation agrees with experiments²

DD was crucial for the efficient solution of these problems

² M. Görtz,	PhD thes	is, 2024
------------------------	----------	----------

Målqvist (Chalmers and GU)

Domain decomposition

Example: Conclusion and future challenges

- DD is still relevant
- Well understood for linear problems

- Applications: large scale deformation, compression, folding, crack propagation, ...
- Nonlinear models
- DD for evolution problems: elastic wave propagation

Domain decomposition

- Motivating example
- 2 Domain decomposition
- Simulation of paperboard
- Emil's contribution

Emil's contributions

- Theoretical foundation for non-overlapping DD for non-linear elliptic problems
- Theoretical foundation for non-overlapping DD for non-linear parabolic problems
- Investigation of the main techniques (DN, NN, RR) and their performance, including parameter studies