Localization of multiscale problems

Axel Malqvist'
Seminar at the University of Mlnster

Mdinster, Germany

2018-11-29

Chalmers University of Technology and University of Gothenburg
Malqvist Localization of multiscale problems 2018-11-29 1/31



Multiscale problems

We consider applications such as

> composite materials > flow in a porous medium

that require numerical solution of partial differential equations with
rough data (module of elasticity, conductivity, or permeability).

Two topics: high contrast and parameter dependent diffusion.
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@ Elliptic model problem
@ Introduction to LOD

@ High contrast data

@ Parameter dependent data
@ Final comments
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The finite element method

The Poisson equation
-V-AVu=f inQ u=0 on o
On weak form: find u € V := H}(Q) such that
a(u,v) := f(AVu)~Vvdx = f f-vdx forallveV.
Q Q

FE approximation: find u, € V}, C V such that
a(up, v) == f(AVuh) -Vvdx = f f-vdx forallve V.
Q Q

Error bound if u € H?(Q):
lu = unlll == IAT2V (U = Up)llL2@) ~ C(A")h.
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Multiscale methods

Objectives:
@ Find a subspace V/J° C V,, for which u® € V]7° solving

a(up®,v) = fQ(AVu,T,S) -Vvdx = fo- vdx forallve VJ®,

fulfills
llun — upPlll < CH,
with C independent of A" and dim(V[}®) < dim(V,).

@ Show that a basis for V/}° can be constructed by local parallel
computations.

@ Reuse the coarse representation in applications.
@ Multiscale methods: VMS, MsFEM, HMM, GFEM, GMsFEM...
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Orthogonal decompositions

@ (coarse) FE mesh 7 with parameter H > h
@ P1-FE space V, :={ve V|VT e T,v|r € Py(T)}
@ 37 : V — V, some interpolation operator

Decomposition
V=VyeV with V' :=kernel3 ={veV|JIrv=0}

@ For each v € V, define finescale projection Qv € V' by

a(Qv,w) = a(v,w) forallwe V'

a-Orthogonal Decomposition
V=VeV wih V' = (Vy- QW)
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|deal multiscale representation

Given the space V/}° we construct a Galerkin approximation:

Ideal method
Find u}}® € VJ° such that

a(ug®,v) = (f,v), Yve V5.

We have that u — u®* = ur € V' since u]}® is the a-orthogonal
projection of u onto V7. Therefore

Cs
Nudl? = a(u, ur) = (f, uf) = (f, ur — Juy) < 1/2”Hf”L2(Q)|Huf|”-
For V7 to be useful we need a discrete local basis.
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Modified nodal basis

@ ¢, € Vy denotes classical nodal basis function (x € N)
@ Q¢, € V' denotes the finescale correction of ¢, (x € N)

Ideal multiscale FE space
Virs = span {g, — Q¢y | X € N}

Example

¢x — Qpx € V[I® Py € Vy Qi eV
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Localization

@ Define nodal patches of ¢-th order wr, about T € 7

A

w1 wT2
o Correctors Q€T¢X € Vf(wT,t’) ={ve % | VlQ\(UT./ = 0} solve
a(Q/ ¢x.w) = fAV¢x -Vwadx forallwe Vi(wry,)
.

Localized multiscale FE spaces

Vi = span{¢y ZmelxeN}

TeT
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Fine scale discretization

@ Finescale mesh

mesh refinement
T ~> Thwithh<H
@ Reference FE space

Vi i={ve VIVT eT(Q),vlr € P{(T)}

@ Reference FE solution u, € V, solves
a(up,v) = (f,v) forallveV,
@ Fully discrete correctors Qghgbx € Vi(wry) == Vi(wre) N Vi :

a(Qthﬁx, w) = (AVay, Vw)r forall w e V,‘;(wm)
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Localized Orthogonal Decomposition (LOD)

Fully discrete multiscale FE spaces

Vij5" = spanig, - Z Qx| x € N}

TeT

. . . . ms,h ms,h
Fully discrete multiscale approximation u,;" € Vi,

a(ufs".v) = (f,v) forallve V5"

Remarks:
o dim V[}5" = IN| = dim V4
@ The basis functions have local support, with overlap depending
on ¢, and are independent.
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Localized Orthogonal Decomposition (LOD)

Fully discrete multiscale FE spaces

Vij5" = spanig, - Z Qx| x € N}

TeT

Petrov-Galerkin version u7}3" e V"

a(uﬂj’”, v) = (f,v) forallve Vy

Remarks:
@ The inf-sup constant will depend on ¢.

@ This version of the method reduces overlap between basis
functions.
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A priori error analysis

Lemma (Truncation error)

1QhVH = Qenvilll < CHy IIQRVAIIL  VVh € Viy
Cy <o andy < 1 depends on 3/« but not A’.

By choosing ¢ = C, log(H™") with appropriate C, we guarantee that
the truncation leads to a higher order perturbation:

Theorem (A priori error bound)

llun — Uil < C(a. B)H,

with C independent of A’.

M. & Peterseim, Localization of elliptic multiscale problems, 2014.
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High contrast data (with Hellman)

Poisson equation:
-V-AVu=f inQ u=0 ono.

A =1inQy (black), A = ain Q,, @ < 1, and f = x1/43/4-

@ High contrast data with channels leads to non-local behaviour.

@ The decay rate of the basis functions determines the accuracy
of LOD.

@ The choice of interpolant I7-v = ),y V-, @« affects the decay.
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Numerical example: High contrast

High contrast data Three examples: H

Weleta = 1071,..
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Heuristic motivation for lack of decay

Fine scale equation: Correctors QTvy € V' = ker(3;) solve
a(Q vy, w) = fAVvH -Vwdx forallwe V'
T

Decay because localized rhs and 37-(Q'vy) = 0 — QTvy(x) ~ 0.

If we define g := Q' vylsT we note that Q" vy minimizes

1
129 AT ; 1/2 2
”A / vQ VH”LZ (\T) min _”A / va”LZ(Q\T)'
VfEVf:V|6T:g

° H|gh derivatives in 2, are penalized.

@ With 37v = 3 cn Vi, #x @nd o containing both €4 and €2,
37(Q"vy) = 0 still allows large values (and small derivatives)
in 24 and high derivatives in €,.

@ To make QTvy decay in Q; we need o, C Q.
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Scott-Zhang type interpolation

Nodal variables:
Let x € N be nodes of 7 and o, C QQ associated domains. We
define a L?(o)-dual basis y, € Vj fulfilling,

¢’x¢y - 6xy-
Let the nodal variable N ( f YV and,

J7v = Z Ny (V)

XeN

@ o, does not need to be full elements T or vertex patches U (x).

@ The stability of [N, (V)| < [I¥ll.2(o)IVIIL2(e,) depends on the size
and shape of oy and its distance to x.
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Geometry dependent interpolation

@ The interpolant 37v = ',y V.-, ¢x defines V; and V]J°.
@ We need to force correctors to be small in the channels!

Q If x € Q, let oy = wy, vertex patch
Q If x € Qq let oy C wy N 4, connected
© We need sufficiently many nodes in Q4 (separation ~ H)

The we can prove decay independent of a.
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Numerical example: High contrast

High contrast data Three examples: H = 274, h = 2719,

¥
4 ’f
..

We let @ = 10",...,107® and plot [||uy — uf)3"lll vs. k with 392,
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Hellman & M., Contrast independent localization, 2017.
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Parameter dependent data (Hellman, Keil)

The Poisson equation with a parameter

~V-AMNVU(t) =f inQ

@ Random defects (faults in composite material)
@ Perturbations (tolerance in manufacturing)
@ Time (moving front in porous media flow)
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Effect of perturbed diffusion

On each patch use a perturbation Ar of A(t) in the construction of
the basis: find Qv € V/(wr,) such that

(ArVvQ]v,Vw) = (ArVv,Vw)r

forall w e Vf(a)'r’g). Let \7?]8 =Vy- ég V4 where ég = ZTE‘T é{:l'
We seek 0™ € V™ such that

a(ur®,v)=(f,v), Vve Vy,
(a Petrov-Galerkin formulation) where

&(u,v) = ) (ArV37u, V)1 - (ArVQ] 370, Vv).

TeT

We use the perturbed coefficient also in the assembly of the global
stiffness matrix.
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A priori error analysis

For any v € Vi we have with z = Q] v - Q] v € V/(wr,)

lI1zlI? = (AVZ,V2),,, = (AVv,Vz)r — (AVQ] v, V2)
(Ar = A)VVQ/V,V2),,, — ((Ar — A)Vv,Vz);
I(Ar = A)A™2(x 7YV = VQI V)l 12l

<
< erliivilirliizIll,

—_ o~

er:= max |I(Ar — A)A T2 (yrVw - VI W)ll2(0r -

weVh:lliwllir=1

Theorem (A priori error bound)
It holds

llun = TNl < C(H + maxer).
’ TeT
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Local error indicators

er(A,Ar) =  max [I(Ar = A)ATE(yrVw = VO W)llL2(0r,)-

weViy:llwlllr=1

@ w|r has few degrees of freedom and the max can be computed
by solving a small eigenvalue problem.

@ Errorin Ar — A away from T gets multiplied with exponentially
decaying function.

e If error is large update A = A(t) leading to modified entries in
a few columns of the global stiffness matrix &(¢y, ¢y ).

@ Only local recomputations are needed (FEM: ||,Z\ = AllLs())-

Hellman & M., Numerical homogenization of PDE similar coeff., 2018.
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Reuse of LOD basis in parameter space

er(A,Ar) =  max [I(Ar = A)ATE(yrVw = VO W)llL2(0r,)-

weViy:llwlllr=1

Simple approach: Given A = A(t),t€ S,and TOL. For T € 7:
@ Pick fo € S, let Ay = A(ty) compute
aro(éx. dy) = (ATV¢y’ V)T - (ATVQ€¢y’ Vy).
@ Find parameter set Sy = {t € S : er(A(t),A(f)) < TOL}.
o LetAr = A(tn), th & U Sk, compute entries ar ,(¢x. ¢,) and
find S, ={teS:er(A (t) A(t,)) < TOL}.
@ Works for a discrete set of parameters S.

For T and t, we store matrix entries {ar x(¢x. ¢y )};_,- To add new
parameters, more details needs to be stored.
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Example: random diffusion

Poisson equation:

-V -A(w)Vu(w)=f inD u(w)=0 ondD, wel

On each element T find {w;}]_, such that S c U], §; off-line.
On-line assemble global LOD matrix by picking right entries from
each T and solve coarse problem for each sample.

A few configurations need to be stored for each T € 7. Periodicity
can be exploited.
In FEM the full problem is solved for each sample.
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Comments and issues

@ The possibility to apply Ar independently on each T should be
exploited. No communication with other elements.

@ Parametrized rep. of the LOD matrix entries from each element
is the output, not the full parametrized LOD basis.

@ Few parameters may be active on each patch (exponential
decay).

@ Periodicity can be exploited.

@ Storage is reasonable, not even LOD basis have to be stored
simultaneously.

@ How to find good wy and regions
Sk = {w: er(A(w) — A(wk)) < TOL} is open. Note that er is
computable, only local information is needed and it is off-line.

@ Techniques from the RBM community should be useful.
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Connection to RBM-LOD

@ The goal is to reduce solves for the training set in RBM.
@ Q(t)¢y is parametrized and reduced basis computed.

@ Error analysis bounds |||Q;(t)¢x — Qg(t)¢x||| leading to H™" term
in global error and therefore larger patches.

@ PG formulation is not used: multiplication of parametrized
basis is needed. Affects communication and storage.

@ The assumption A(t) = S5_, 6k(t)Ax(x) is crucial and
performance depends on K.

Abdulle & Henning, A reduced basis LOD, JCP 2015.
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Comments and conclusion

@ Thin high conductivity channels are challenging and important.

@ Global fine scale connections are equally problematic for
iterative methods (Multigrid, DD).

@ The choice of interpolant is crucial.
@ LOD can be tuned to handle modeling error in the diffusion.

@ PG formulation, elementwise localization and error indicators
allows us to attack parametrized problems.

@ Possibility to collaborate on RBM-LOD.

Thank you for your attention!

Malqvist Localization of multiscale problems 2018-11-29 31/31



