Numerical simulation of beam network models

Axel Målqvist

Morgan Görtz, Moritz Hauck, Fredrik Hellman, and Andreas Rupp

Department of Mathematical Sciences Chalmers University of Technology and University of Gothenburg Fraunhofer Chalmers Centre

2025-05-02

Målqvist (Chalmers and GU)

Numerical simulation of network beam models

2025-05-02

Motivation: Simulation of paperboard

- Collaboration with Fraunhofer Chalmers Centre (FCC)¹ and packaging company Tetra Pak
- Simulation of mechanical properties (tensile/bending strength)

¹Görtz, Numerical homogenization of network models and micro-mechanical simulation of paperboard, PhD thesis, 2024

Motivation: Simulation of paperboard

- Wood fibres modelled by hollow flattened slender cylinders
- Simplification: Timoshenko beams with rigid joints
- The displacement solves a linear system of equations Au = F
- A is SPD, sparse but large and ill-conditioned
- Direct methods are used (FCC)

Main goal: derive and analyze an efficient iterative method

The Timoshenko beam model

- e Hybridized formulation
- Iteration by subspace decomposition
- Oumerical examples
- Multiscale approach
- Onclusion and future work

The Timoshenko² beam model

- 1D model of the elastic deformation of a 3D beam
- Assumption: the cross sections remains plain after deformation
- Takes shear deformation into account
- Six degrees of freedom (centreline displacement and cross-section rotation)

Målqvist (Chalmers and GU)

²Timoshenko, On the correction for shear of the differential equation for transverse vibrations of prismatic bars, London Edinburgh Philos. Mag. and J. Sci., 1921

Governing equation³ (single beam)

$$\begin{aligned} -C_{\boldsymbol{n}}(\partial_{\boldsymbol{x}}\boldsymbol{u}_{\boldsymbol{e}}+\boldsymbol{i}_{\boldsymbol{e}}\times\boldsymbol{r}_{\boldsymbol{e}}) &= \boldsymbol{n}_{\boldsymbol{e}} & -C_{\boldsymbol{m}}\partial_{\boldsymbol{x}}\boldsymbol{r}_{\boldsymbol{e}} &= \boldsymbol{m}_{\boldsymbol{e}} \\ \partial_{\boldsymbol{x}}\boldsymbol{n}_{\boldsymbol{e}} &= \boldsymbol{f}_{\boldsymbol{e}} & \partial_{\boldsymbol{x}}\boldsymbol{m}_{\boldsymbol{e}}+\boldsymbol{i}_{\boldsymbol{e}}\times\boldsymbol{n}_{\boldsymbol{e}} &= \boldsymbol{g}_{\boldsymbol{e}} \end{aligned}$$

- Unit vector in direction of $e, i_e : e \to \mathbb{R}^3$
- Centre line displacement, $\boldsymbol{u}_{e}: e \rightarrow \mathbb{R}^{3}$
- Cross-section rotation, $\boldsymbol{r}_{e}: e \rightarrow \mathbb{R}^{3}$
- Stress from normal and shear forces: $\mathbf{n}_{e} : e \rightarrow \mathbb{R}^{3}$
- Moment from torsion and bending, $\boldsymbol{m}_{e}: e \rightarrow \mathbb{R}^{3}$
- Material parameter, C_n, C_m symmetric ℝ³ × ℝ³ depending on Young's modulus, Shear modulus, and cross-section.
- Distributed force $f_e : e \to \mathbb{R}^3$ and moment $g_e : e \to \mathbb{R}^3$

³Carrera et. al., Beam Structures, Wiley 2011

Continuity and balance conditions⁴

The network is represented by a graph $\mathcal{G} = (\mathcal{N}, \mathcal{E})$.

- **)** Continuity of solution: $\boldsymbol{u}_{e}(n) = \boldsymbol{u}_{n}$ and $\boldsymbol{r}_{e}(n) = \boldsymbol{r}_{n}$
- 3 Dirichlet boundary nodes: $\boldsymbol{u}_{n} = \boldsymbol{u}_{n}^{D}$ and $\boldsymbol{r}_{n} = \boldsymbol{r}_{n}^{D}$, $n \in \mathcal{N}_{D}$
- **3** Balance equations: Let $\llbracket \cdot \rrbracket_n$ be a summation at \mathfrak{n} and $\nu_e = \pm 1$:

$$\llbracket \boldsymbol{n}_{\boldsymbol{e}} \boldsymbol{\nu}_{\boldsymbol{e}} \rrbracket_{\boldsymbol{n}} = \boldsymbol{f}_{\boldsymbol{n}} \qquad \llbracket \boldsymbol{m}_{\boldsymbol{e}} \boldsymbol{\nu}_{\boldsymbol{e}} \rrbracket_{\boldsymbol{n}} = \boldsymbol{g}_{\boldsymbol{n}}$$

⁴Lagnese et. at. Modeling, analysis and control of dynamic elastic multi-link structures, Birkhäuser Boston, 1994

The Timoshenko beam model

e Hybridized formulation

- Iteration by subspace decomposition
- Oumerical examples
- Multiscale approach
- Conclusion and future work

- Primal variables: $\bar{\boldsymbol{u}}_{e}, \bar{\boldsymbol{r}}_{e} \in V_{h,p}^{e} \coloneqq (\mathbb{P}_{h,p}(e))^{3}$ for all edges $e \in \mathcal{E}$
- Dual variables: $\bar{n}_{e}, \bar{m}_{e} \in V_{h,p}^{e}$ for all edges $e \in \mathcal{E}$
- Hybrid variables: $\bar{\boldsymbol{u}}_{n}, \bar{\boldsymbol{r}}_{n} \in \mathbb{R}^{3}$ for all $n \in \mathcal{N} \setminus \mathcal{N}_{D}$

⁶Rupp et. al. PDEs on hypergraphs and networks of surfaces, M2AN, (2022) 🚊 🔖 🛓 🥏

⁵Cockburn et. al. Unified hybridization of discontinuous Galerkin, mixed, and continuous Galerkin methods for second order elliptic problems, SINUM, (2009)

- Primal variables: $\bar{\boldsymbol{u}}_{e}, \bar{\boldsymbol{r}}_{e} \in V_{h,p}^{e} \coloneqq (\mathbb{P}_{h,p}(e))^{3}$ for all edges $e \in \mathcal{E}$
- Dual variables: $\bar{n}_{e}, \bar{m}_{e} \in V_{h,p}^{e}$ for all edges $e \in \mathcal{E}$
- Hybrid variables: $\bar{\boldsymbol{u}}_{n}, \bar{\boldsymbol{r}}_{n} \in \mathbb{R}^{3}$ for all $n \in \mathcal{N} \setminus \mathcal{N}_{D}$ For all $\bar{\boldsymbol{p}}, \bar{\boldsymbol{q}}, \bar{\boldsymbol{v}}, \bar{\boldsymbol{w}} \in V_{h,p}^{e}$:

 $\begin{aligned} -\left(C_{\boldsymbol{n}}^{-1}\bar{\boldsymbol{n}}_{e},\bar{\boldsymbol{p}}\right)_{e} &+\left(\bar{\boldsymbol{u}}_{e},\partial_{\boldsymbol{x}}\bar{\boldsymbol{p}}\right)_{e} -\left(\boldsymbol{i}_{e}\times\bar{\boldsymbol{r}}_{e},\boldsymbol{p}\right)_{e} = \langle \bar{\boldsymbol{u}}_{n},\bar{\boldsymbol{p}}_{\boldsymbol{V}e}\rangle_{e} \\ &-\left(C_{\boldsymbol{m}}^{-1}\bar{\boldsymbol{m}}_{e},\bar{\boldsymbol{q}}\right)_{e} &+\left(\bar{\boldsymbol{r}}_{e},\partial_{\boldsymbol{x}}\bar{\boldsymbol{q}}\right)_{e} &=\langle \bar{\boldsymbol{r}}_{n},\bar{\boldsymbol{q}}_{\boldsymbol{V}e}\rangle_{e} \\ &\left(\partial_{\boldsymbol{x}}\bar{\boldsymbol{n}}_{e},\bar{\boldsymbol{v}}\right)_{e} &=\left(\boldsymbol{f}_{e},\bar{\boldsymbol{v}}\right)_{e} \\ &\left(\boldsymbol{i}_{e}\times\bar{\boldsymbol{n}}_{e},\bar{\boldsymbol{w}}\right)_{e} +\left(\partial_{\boldsymbol{x}}\bar{\boldsymbol{m}}_{e},\bar{\boldsymbol{w}}\right)_{e} &=\left(\boldsymbol{g}_{e},\bar{\boldsymbol{w}}\right)_{e} \end{aligned}$

⁵Cockburn et. al. Unified hybridization of discontinuous Galerkin, mixed, and continuous Galerkin methods for second order elliptic problems, SINUM, (2009)

⁶Rupp et. al. PDEs on hypergraphs and networks of surfaces, M2AN, (2022) 🚊 🔖 👍 🛬 🚽

- Primal variables: ū_e, r_e ∈ V^e_{h,p} := (P_{h,p}(e))³ for all edges e ∈ ε
- Dual variables: $\bar{n}_{e}, \bar{m}_{e} \in V_{h,p}^{e}$ for all edges $e \in \mathcal{E}$
- Hybrid variables: $\bar{\boldsymbol{u}}_{\mathfrak{n}}, \bar{\boldsymbol{r}}_{\mathfrak{n}} \in \mathbb{R}^3$ for all $\mathfrak{n} \in \mathcal{N} \setminus \mathcal{N}_D$ For all $\bar{\boldsymbol{p}}, \bar{\boldsymbol{q}}, \bar{\boldsymbol{v}}, \bar{\boldsymbol{w}} \in V_{h,p}^{e}$: (penalty parameter $\tau_{e} > 0$)

 $\begin{aligned} -\left(C_{\mathbf{n}}^{-1}\bar{\mathbf{n}}_{e},\bar{\mathbf{p}}\right)_{e} &+\left(\bar{\mathbf{u}}_{e},\partial_{x}\bar{\mathbf{p}}\right)_{e} - \left(\mathbf{i}_{e}\times\bar{\mathbf{r}}_{e},\mathbf{p}\right)_{e} = \langle \bar{\mathbf{u}}_{\mathfrak{n}},\bar{\mathbf{p}}_{Y_{e}}\rangle_{e} \\ &-\left(C_{\mathbf{m}}^{-1}\bar{\mathbf{m}}_{e},\bar{\mathbf{q}}\right)_{e} &+\left(\bar{\mathbf{r}}_{e},\partial_{x}\bar{\mathbf{q}}\right)_{e} &=\langle \bar{\mathbf{r}}_{\mathfrak{n}},\bar{\mathbf{q}}_{Y_{e}}\rangle_{e} \\ &\left(\partial_{x}\bar{\mathbf{n}}_{e},\bar{\mathbf{v}}\right)_{e} &+\tau_{e}\langle \bar{\mathbf{u}}_{e},\bar{\mathbf{v}}\rangle_{e} &=\left(\mathbf{f}_{e},\bar{\mathbf{v}}\right)_{e} +\tau_{e}\langle \bar{\mathbf{u}}_{\mathfrak{n}},\bar{\mathbf{v}}\rangle_{e} \\ &\left(\mathbf{i}_{e}\times\bar{\mathbf{n}}_{e},\bar{\mathbf{w}}\right)_{e} +\left(\partial_{x}\bar{\mathbf{m}}_{e},\bar{\mathbf{w}}\right)_{e} &+\tau_{e}\langle \bar{\mathbf{r}}_{e},\bar{\mathbf{w}}\rangle_{e} &=\left(\mathbf{g}_{e},\bar{\mathbf{w}}\right)_{e} +\tau_{e}\langle \bar{\mathbf{r}}_{\mathfrak{n}},\bar{\mathbf{w}}\rangle_{e} \end{aligned}$

⁵Cockburn et. al. Unified hybridization of discontinuous Galerkin, mixed, and continuous Galerkin methods for second order elliptic problems, SINUM, (2009)

⁶Rupp et. al. PDEs on hypergraphs and networks of surfaces, M2AN, (2022) 🚊 🛌 🛓 👘

- Primal variables: $\bar{\boldsymbol{u}}_{e}, \bar{\boldsymbol{r}}_{e} \in V_{h,p}^{e} \coloneqq (\mathbb{P}_{h,p}(e))^{3}$ for all edges $e \in \mathcal{E}$
- Dual variables: $\bar{n}_{e}, \bar{m}_{e} \in V_{h,p}^{e}$ for all edges $e \in \mathcal{E}$
- Hybrid variables: $\bar{\boldsymbol{u}}_{n}, \bar{\boldsymbol{r}}_{n} \in \mathbb{R}^{3}$ for all $n \in \mathcal{N} \setminus \mathcal{N}_{D}$

The discrete balance equations reads

$$\llbracket \bar{\boldsymbol{n}}_{\mathrm{e}} \boldsymbol{\nu}_{\mathrm{e}} + \tau_{\mathrm{e}} (\bar{\boldsymbol{u}}_{\mathrm{e}} - \bar{\boldsymbol{u}}_{\mathrm{n}}) \rrbracket_{n} = \boldsymbol{f}_{\mathrm{n}}, \qquad \llbracket \bar{\boldsymbol{m}}_{\mathrm{e}} \boldsymbol{\nu}_{\mathrm{e}} + \tau_{\mathrm{e}} (\bar{\boldsymbol{r}}_{\mathrm{e}} - \bar{\boldsymbol{r}}_{\mathrm{n}}) \rrbracket_{n} = \boldsymbol{g}_{\mathrm{n}}$$

⁶Rupp et. al. PDEs on hypergraphs and networks of surfaces, M2AN, (2022) 🚊 🔖 🧃 👘 🦉

⁵Cockburn et. al. Unified hybridization of discontinuous Galerkin, mixed, and continuous Galerkin methods for second order elliptic problems, SINUM, (2009)

HDG discretization

Global system:

$$A\bar{z}_h=F,$$

where $\bar{z}_h = (\bar{u}_n, \bar{r}_n)$ with 6 dofs per joint.

- Independent local solves on edges are needed to form A and F
- F contains applied forces, moments and boundary data
- A is sparse, SPD but ill-conditioned
- Spectral equivalence for the continuous formulation:

$$\alpha \mathbf{v}^{\mathsf{T}} \mathbf{L} \mathbf{v} \leq \mathbf{v}^{\mathsf{T}} \mathbf{A} \mathbf{v} \leq \beta \mathbf{v}^{\mathsf{T}} \mathbf{L} \mathbf{v} \quad \forall \mathbf{v}$$

where $v^{\top}Lv = \frac{1}{2}\sum_{x\sim y} \frac{|v(x)-v(y)|^2}{|x-y|}$ (weighted graph laplacian)

• For future reference: $v^{\top}Mv = \frac{1}{2}\sum_{x \sim y}(|v(x)|^2 + |v(y)|^2)|x - y|$ (weighted mass-type matrix)

A priori error bound⁷⁸

Theorem (Convergence of HDG method)

If $\tau_e \sim h_e^s$ for some $s \in \{-1, 0, 1\}$ and $\boldsymbol{u}_e, \boldsymbol{r}_e, \boldsymbol{n}_e, \boldsymbol{m}_e \in H^{p+1}(e)$ for all $e \in \mathcal{E}$, then it holds

$$\left[\sum_{e\in\mathcal{E}}\left[\|\boldsymbol{u}_{e}-\bar{\boldsymbol{u}}_{e}\|_{e}^{2}+\|\boldsymbol{r}_{e}-\bar{\boldsymbol{r}}_{e}\|_{e}^{2}\right]^{1/2} \lesssim h^{p+1-s^{+}},$$
$$\sum_{e\in\mathcal{E}}\left[\|\boldsymbol{n}_{e}-\bar{\boldsymbol{n}}_{e}\|_{e}^{2}+\|\boldsymbol{m}_{e}-\bar{\boldsymbol{m}}_{e}\|_{e}^{2}\right]^{1/2} \lesssim h^{p+1-|s|},$$

where $s^+ \coloneqq \max(s, 0)$.

⁷Celiker, Cockburn, Shi, Hybridizable DG methods for Timoshenko beams, JSC (2010)

⁸Rupp, Hauck, M., Arbitrary order approximations at constant cost for Timoshenko beam network models, arXiv:2407.14388

Målqvist (Chalmers and GU)

Numerical simulation of network beam models

2025-05-02

11/29

- The Timoshenko beam model
- e Hybridized formulation
- Iteration by subspace decomposition
- Oumerical examples
- Multiscale approach
- Onclusion and future work

Geometric coarsening⁹

- \mathcal{T}_H is a mesh of boxes
- \hat{V}_H is Q1-FEM with basis $\{\varphi_y\}_y$
- $V_H \subset \hat{V}_H$ satisfy the boundary conditions
- Clément type interpolation operator

$${\mathcal{I}}_{{\mathcal{H}}}{\mathbf{v}} = \sum_{\text{free DoFs } y} \bar{{\mathbf{v}}}_{U(y)} \varphi_y \in V_{{\mathcal{H}}}$$

Lemma (Stability and approximability of I_H)

For all $v \in V$ and for $H \ge R_0 > 0$,

$$H^{-1}|\mathbf{v}-\mathcal{I}_H\mathbf{v}|_M+|\mathcal{I}_H\mathbf{v}|_L\leq C|\mathbf{v}|_L,$$

where $C = C_{d\mu} \sqrt{\sigma}$. (V and V_H will have 3 components here)

⁹Görtz, Hellman, M., Iterative solution of spatial network models by subspace decomposition, Math. Comp. (2024)

Målqvist (Chalmers and GU)

Numerical simulation of network beam models

Network homogeneity

The network must resemble a homogeneous material on coarse scales $H \ge R_0$.

• *Homogeneity:* Let $B_H(x)$ be a box at x of side length H, with $H \ge R_0$. We assume limited density variation

$$1 \le rac{\max_{x} |1|^{2}_{M,B_{H}(x)}}{\min_{x} |1|^{2}_{M,B_{H}(x)}} \le \sigma(R_{0})$$

Limited density variation on scales larger than R_0 .

Network connectivity

2 Connectivity: For all $H \ge R_0$ and $x \in \Omega$ there is a connected subgraph G' that contains

- all edges with one endpoint in $B_H(x)$
- only edges with endpoints contained in $B_{H+R_0}(x)$

Network connectivity

2 *Connectivity:* For all $H \ge R_0$ and $x \in \Omega$ there is a connected subgraph G' that contains

- all edges with one endpoint in $B_H(x)$
- only edges with endpoints contained in $B_{H+R_0}(x)$

Consider $L'\phi = \lambda M'\phi$, $\lambda_1 = 0$, $\lambda_2 > 0$ (Algebraic connectivity¹⁰):

$$|v - \bar{v}|_{M,B_{H}} \le |v - \bar{v}|_{M'} \le \lambda_{2}^{-1/2} |v - \bar{v}|_{L'} \le \lambda_{2}^{-1/2} |v|_{L,B_{H+B_{0}}}$$

If \mathcal{G}' fulfills an iso-perimetric inequality $\lambda_2 \sim H^{-2}$ and therefore

$$\lambda_2^{-1/2} = \mu(R_0)H$$

¹⁰Chung, Spectral graph theory, AMS, 1997

Example: Connectivity $\lambda_2^{-1/2} \approx \mu H$

Finite length fibers r = 0.05 and $|1|_{M}^{2} = 1000$, $\Omega = [0, 1]^{2}$

H varies from 2^{-2} to 2^{-6} . Here $R_0 \sim 2^{-6}$.

Målqvist (Chalmers and GU)

2025-05-02

Subspace decomposition preconditioner¹¹

Let $V = V_0 + V_1 + \cdots + V_m$ with

 $V_0 \coloneqq V_H$

$$V_i := \{ \boldsymbol{v} \in V : \operatorname{supp}(\boldsymbol{v}) \subset U_i \}$$

Define $P_i: V \times V \rightarrow V_i \times V_i$ such that

$$(AP_iv,w)=(Av,w)$$

for all *w* and form $P \coloneqq P_0 + P_1 + \cdots + P_m$.

- BAz = BF, with preconditioner P = BA
- Preconditioned conjugate gradient method.
- Semi-iterative: direct method on decoupled problems

2025-05-02

¹¹Kornhuber & Yserentant, Numerical homogenization of elliptic multiscale problmes by subspace decomposition, MMS, 2016

Lemma (Properties of the decomposition)

If the interpolation bound holds and $A \sim L$ with constants α and β , then for $H \ge 2R_0$ at least one decomposition $v = \sum_{j=0}^{m} v_j$ satisfies:

$$\sum_{j=0} |v_j|_A^2 \leq C_1 |v|_A^2, \quad C_1 = C_d \beta \alpha^{-1} \sigma \mu^2$$

and every decomposition satisfies $|v|_A^2 \leq C_2 \sum_{j=0}^m |v_j|_A^2$ with $C_2 = C_d$.

Theorem (Convergence of PCG)

With $\kappa = C_1 C_2$, $H > 2R_0$, it holds

$$|z-z^{(\ell)}|_A \leq 2\left(\frac{\sqrt{\kappa}-1}{\sqrt{\kappa}+1}\right)^{\ell}|z-z^{(0)}|_A.$$

Målqvist (Chalmers and GU)

- The Timoshenko beam model
- e Hybridized formulation
- Iteration by subspace decomposition
- Numerical examples
- Multiscale approach
- Onclusion and future work

Example: Elastic deformation of paper

- 4 mm x 4 mm paper
- 615K edges and 424K nodes
- We study stretching of the paper caused by Dirichlet boundary conditions (upper right)
- HDG discretization with p = 5 and $\tau = 1$
- Preconditioner with 8 × 8 × 1 element in coarse space

Målqvist (Chalmers and GU)

Numerical simulation of network beam models

Example: Elastic deformation of paper

Figure: Convergence of PCG: constant material parameters (black) and realistic (orange).

Engineering application (FCC/Stora Enso)

- Three-ply paperboard
- Grammage: 400g/m²
- Measure: (tensile) 4mm × 4mm (bending) 50mm × 4mm
- Dofs: (tensile) 16M (bending) 200M

Engineering application (FCC/Stora Enso)

- Solver converges in 60 iterations (practical purposes)
- Validated on various commercial paperboards
- Results consistent with experimental data¹²

Målqvist (Chalmers and GU)

Numerical simulation of network beam models

¹²Görtz et. al., Iterative method for large-scale Timoshenko beam models assessed on commercial-grade paperboard, Computational Mechanics (2025)

- The Timoshenko beam model
- e Hybridized formulation
- Iteration by subspace decomposition
- Oumerical examples
- Multiscale approach
- Conclusion and future work

Multiscale approach

Given a symmetric positive bilinear form defined by

$$a(v,w) = (Av,w)$$

and an interpolant $I_H : \mathcal{V} \to \mathcal{V}_H$ we can formulate an LOD method. Let $\mathcal{W} = \ker(I_H)$ and

$$\mathcal{V}_{H}^{\mathsf{ms}} = \{ v \in \mathcal{V} : a(v, w) = 0 \text{ for all } w \in \mathcal{W} \}.$$

We seek $z_H^{ms} \in \mathcal{V}_H^{ms}$ such that

$$a(z_H^{\mathrm{ms}},v)=F(v), \quad \text{for all } v\in \mathcal{V}_H^{\mathrm{ms}}.$$

• k-layer patches are used to localize computations to form $\mathcal{V}_{H}^{ms,k}$

• Elementwise localization of rhs by $A = \sum_{T \in \mathcal{T}_H} A_T$

Convergence

Decay is proven using the optimality of the preconditioner in the W space¹³¹⁴ or by classical cut-off argument¹⁵.

Theorem (Convergence of LOD)

With $\kappa = C_1 C_2$, $H > 2R_0$, it holds

$$|z-z_H^{ms,(k)}|_A \leq C(H+e^{-ck})|z|_A.$$

¹⁴Edelvik et. al., Numerical homogenization of spatial network models, CMAME (2024)

15 Hauck et. al., An algebraic multiscale method for spatial network-models, preprint 💿 🛌 🡳

Målqvist (Chalmers and GU)

Numerical simulation of network beam models

¹³Kornhuber et. al. An analysis of a class of variational multiscale methods based on subspace decomposition, Math. Comp. (2018)

Fibre network application

Euler-Bernoulli beam model¹⁶, pure boundary displacement. Unit square, 20k randomly places sticks of length 0.05, 320k dofs.

- \hat{u} is the reference solution: $K\hat{u} = 0$ with Dirichlet bc $\hat{u}(\Gamma) = g$
- \hat{u}_{H}^{k} is the LOD approximation with *k*-layer patches, $H = 2^{-5}$
- K is the system matrix
- M is a diagonal mass matrix

- The Timoshenko beam model
- e Hybridized formulation
- Iteration by subspace decomposition
- Oumerical examples
- Multiscale approach
- Conclusion and future work

Conclusions and future works

Robust iterative approach to solve spatial network models with applications in the paper industry

- Görtz, Hellman, M., Iterative solution of spatial network models by subspace decomposition, Math. Comp. 93 (2024)
- Rupp, Hauck, M., Arbitrary order approximations at constant cost for Timoshenko beam network models, arXiv:2407.14388
- Görtz, Kettil, M., Fredlund, and Edelvik, Iterative method for large-scale Timoshenko beam models assessed on commercial-grade paperboard, Computational Mechanics 75 (2025)
- Edelvik, Görtz, Hellman, Kettil and M., Numerical homogenization of spatial network models, Comput. Methods Appl. Mech. Engrg. 418 (2024)

Robust iterative approach to solve spatial network models with applications in the paper industry

Future work: δ -overlap in DD, algebraic coarsening, algebraic LOD applied to the HDG setting, elastic wave propagation, and large (local) deformations

Målqvist (Chalmers and GU)

Numerical simulation of network beam models