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Motivation: Simulation of paperboard

1Görtz, Numerical homogenization of network models and micro-mechanical simulation of
paperboard, PhD thesis, 2024
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Collaboration with Fraunhofer Chalmers Centre (FCC)1 and
packaging company Tetra Pak
Simulation of mechanical properties (tensile/bending strength)



Motivation: Simulation of paperboard
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Wood fibres modelled by hollow flattened slender cylinders
Simplification: Timoshenko beams with rigid joints
The displacement solves a linear system of equations Au = F
A is SPD, sparse but large and ill-conditioned
Direct methods are used (FCC)

Main goal: derive and analyze an efficient iterative method



Outline
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The Timoshenko2 beam model

2Timoshenko, On the correction for shear of the differential equation for transverse vibrations of
prismatic bars, London Edinburgh Philos. Mag. and J. Sci., 1921
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1D model of the elastic deformation of a 3D beam
Assumption: the cross sections remains plain after deformation
Takes shear deformation into account
Six degrees of freedom (centreline displacement and
cross-section rotation)



Governing equation3 (single beam)

3Carrera et. al., Beam Structures, Wiley 2011
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−Cn(∂xue + ie × re) = ne −Cm∂xre = me
∂xne = f e ∂xme + ie × ne = ge

Unit vector in direction of e, ie : e→ R3

Centre line displacement, ue : e→ R3

Cross-section rotation, re : e→ R3

Stress from normal and shear forces: ne : e→ R3

Moment from torsion and bending, me : e→ R3

Material parameter, Cn,Cm symmetric R3 × R3 depending on
Young’s modulus, Shear modulus, and cross-section.
Distributed force f e : e→ R3 and moment ge : e→ R

3



Continuity and balance conditions4

4Lagnese et. at. Modeling, analysis and control of dynamic elastic multi-link structures,
Birkhäuser Boston, 1994

Målqvist (Chalmers and GU) Numerical simulation of network beam models 2025-05-02 7 / 29

The network is represented by a graph G = (N ,E).

1 Continuity of solution: ue(n) = un and re(n) = rn
2 Dirichlet boundary nodes: un = uD

n and rn = rD
n , n ∈ ND

3 Balance equations: Let [[·]]
n

be a summation at n and νe = ±1:

[[neνe]]n = fn [[meνe]]n = gn
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HDG56 discretization

5Cockburn et. al. Unified hybridization of discontinuous Galerkin, mixed, and continuous Galerkin
methods for second order elliptic problems, SINUM, (2009)

6Rupp et. al. PDEs on hypergraphs and networks of surfaces, M2AN, (2022)
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Aim: reduce dofs in global solve to dofs at joints

Primal variables: ūe, r̄e ∈ V eh,p B (Ph,p(e))
3 for all edges e ∈ E

Dual variables: n̄e, m̄e ∈ V eh,p for all edges e ∈ E

Hybrid variables: ūn, r̄n ∈ R3 for all n ∈ N \ ND



HDG56 discretization

5Cockburn et. al. Unified hybridization of discontinuous Galerkin, mixed, and continuous Galerkin
methods for second order elliptic problems, SINUM, (2009)

6Rupp et. al. PDEs on hypergraphs and networks of surfaces, M2AN, (2022)
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Aim: reduce dofs in global solve to dofs at joints

Primal variables: ūe, r̄e ∈ V eh,p B (Ph,p(e))
3 for all edges e ∈ E

Dual variables: n̄e, m̄e ∈ V eh,p for all edges e ∈ E

Hybrid variables: ūn, r̄n ∈ R3 for all n ∈ N \ ND

For all p̄, q̄, v̄, w̄ ∈ V eh,p:

− (C−1
n n̄e, p̄)e + (ūe, ∂x p̄)e − (ie × r̄e,p)e = ⟨ūn, p̄νe⟩e

− (C−1
m m̄e, q̄)e + (r̄e, ∂x q̄)e = ⟨r̄n, q̄νe⟩e

(∂x n̄e, v̄)e = (f e, v̄)e

(ie × n̄e, w̄)e + (∂xm̄e, w̄)e = (ge, w̄)e



HDG56 discretization

5Cockburn et. al. Unified hybridization of discontinuous Galerkin, mixed, and continuous Galerkin
methods for second order elliptic problems, SINUM, (2009)

6Rupp et. al. PDEs on hypergraphs and networks of surfaces, M2AN, (2022)
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Aim: reduce dofs in global solve to dofs at joints

Primal variables: ūe, r̄e ∈ V eh,p B (Ph,p(e))
3 for all edges e ∈ E

Dual variables: n̄e, m̄e ∈ V eh,p for all edges e ∈ E

Hybrid variables: ūn, r̄n ∈ R3 for all n ∈ N \ ND

For all p̄, q̄, v̄, w̄ ∈ V eh,p: (penalty parameter τe > 0)

− (C−1
n n̄e, p̄)e + (ūe, ∂x p̄)e − (ie × r̄e,p)e = ⟨ūn, p̄νe⟩e

− (C−1
m m̄e, q̄)e + (r̄e, ∂x q̄)e = ⟨r̄n, q̄νe⟩e

(∂x n̄e, v̄)e + τe⟨ūe, v̄⟩e = (f e, v̄)e + τe⟨ūn, v̄⟩e

(ie × n̄e, w̄)e + (∂xm̄e, w̄)e + τe⟨r̄e, w̄⟩e = (ge, w̄)e + τe⟨r̄n, w̄⟩e



HDG56 discretization

5Cockburn et. al. Unified hybridization of discontinuous Galerkin, mixed, and continuous Galerkin
methods for second order elliptic problems, SINUM, (2009)

6Rupp et. al. PDEs on hypergraphs and networks of surfaces, M2AN, (2022)
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Aim: reduce dofs in global solve to dofs at joints

Primal variables: ūe, r̄e ∈ V eh,p B (Ph,p(e))
3 for all edges e ∈ E

Dual variables: n̄e, m̄e ∈ V eh,p for all edges e ∈ E

Hybrid variables: ūn, r̄n ∈ R3 for all n ∈ N \ ND

The discrete balance equations reads

[[n̄eνe + τe(ūe − ūn)]]n = fn, [[m̄eνe + τe(r̄e − r̄n)]]n = gn



HDG discretization

Målqvist (Chalmers and GU) Numerical simulation of network beam models 2025-05-02 10 / 29

Global system:
Az̄h = F ,

where z̄h = (ūn, r̄n) with 6 dofs per joint.
Independent local solves on edges are needed to form A and F
F contains applied forces, moments and boundary data
A is sparse, SPD but ill-conditioned
Spectral equivalence for the continuous formulation:

αv⊤Lv ≤ v⊤Av ≤ βv⊤Lv ∀v

where v⊤Lv = 1
2

∑
x∼y

|v(x)−v(y)|2

|x−y | (weighted graph laplacian)

For future reference: v⊤Mv = 1
2

∑
x∼y(|v(x)|2 + |v(y)|2)|x − y |

(weighted mass-type matrix)



A priori error bound78

7Celiker, Cockburn, Shi, Hybridizable DG methods for Timoshenko beams, JSC (2010)
8Rupp, Hauck, M., Arbitrary order approximations at constant cost for Timoshenko beam network

models, arXiv:2407.14388
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Theorem (Convergence of HDG method)
If τe ∼ hs

e for some s ∈ {−1, 0, 1} and ue, re,ne,me ∈ Hp+1(e) for all
e ∈ E, then it holds[∑

e∈E

[
∥ue − ūe∥2e + ∥re − r̄e∥2e

] ]1/2

≲ hp+1−s+ ,[∑
e∈E

[
∥ne − n̄e∥2e + ∥me − m̄e∥2e

] ]1/2

≲ hp+1−|s|,

where s+ B max(s, 0).



Outline

Målqvist (Chalmers and GU) Numerical simulation of network beam models 2025-05-02 12 / 29

1 The Timoshenko beam model
2 Hybridized formulation
3 Iteration by subspace decomposition
4 Numerical examples
5 Multiscale approach
6 Conclusion and future work



Geometric coarsening9

9Görtz, Hellman, M., Iterative solution of spatial network models by subspace decomposition,
Math. Comp. (2024)
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TH is a mesh of boxes
V̂H is Q1-FEM with basis {φy}y

VH ⊂ V̂H satisfy the boundary conditions
Clément type interpolation operator

IHv =
∑

free DoFs y

v̄U(y)φy ∈ VH

Lemma (Stability and approximability of IH)
For all v ∈ V and for H ≥ R0 > 0,

H−1|v − IHv |M + |IHv |L ≤ C |v |L ,

where C = Cdµ
√
σ. (V and VH will have 3 components here)



Network homogeneity
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The network must resemble a homogeneous material on coarse
scales H ≥ R0.

1 Homogeneity: Let BH(x) be a box at x of side length H, with
H ≥ R0. We assume limited density variation

1 ≤
maxx |1|2M,BH(x)

minx |1|2M,BH(x)

≤ σ(R0)

Limited density variation on scales larger than R0.



Network connectivity
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2 Connectivity: For all H ≥ R0 and x ∈ Ω there is a connected
subgraph G′ that contains

all edges with one endpoint in BH(x)

only edges with endpoints contained in
BH+R0(x)



Network connectivity

10Chung, Spectral graph theory, AMS, 1997
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2 Connectivity: For all H ≥ R0 and x ∈ Ω there is a connected
subgraph G′ that contains

all edges with one endpoint in BH(x)

only edges with endpoints contained in
BH+R0(x)

Consider L ′ϕ = λM′ϕ, λ1 = 0, λ2 > 0 (Algebraic connectivity10):

|v − v̄ |M,BH ≤ |v − v̄ |M′ ≤ λ
−1/2
2 |v − v̄ |L ′ ≤ λ

−1/2
2 |v |L ,BH+R0

If G′ fulfills an iso-perimetric inequality λ2 ∼ H−2 and therefore

λ−1/2
2 = µ(R0)H



Example: Connectivity λ−1/2
2 ≈ µH
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Finite length fibers r = 0.05 and |1|2M = 1000, Ω = [0, 1]2

H varies from 2−2 to 2−6. Here R0 ∼ 2−6.



Subspace decomposition preconditioner11

11Kornhuber & Yserentant, Numerical homogenization of elliptic multiscale problmes by subspace
decomposition, MMS, 2016
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Let V = V0 + V1 + · · ·+ Vm with

V0 B VH

Vi B {v ∈ V : supp(v) ⊂ Ui}

Define Pi : V × V → Vi × Vi such that

(APiv ,w) = (Av ,w)

for all w and form P B P0 + P1 + · · ·+ Pm.

BAz = BF , with preconditioner P = BA
Preconditioned conjugate gradient method.
Semi-iterative: direct method on decoupled problems



Convergence analysis
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Lemma (Properties of the decomposition)
If the interpolation bound holds and A ∼ L with constants α and β,
then for H ≥ 2R0 at least one decomposition v =

∑m
j=0 vj satisfies:

m∑
j=0

|vj |
2
A ≤ C1|v |2A , C1 = Cdβα

−1σµ2

and every decomposition satisfies |v |2A ≤ C2
∑m

j=0 |vj |
2
A with C2 = Cd .

Theorem (Convergence of PCG)
With κ = C1C2, H > 2R0, it holds

|z − z(ℓ)|A ≤ 2
( √
κ − 1
√
κ + 1

)ℓ
|z − z(0)|A .
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Example: Elastic deformation of paper
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4 mm x 4 mm paper
615K edges and 424K nodes
We study stretching of the paper caused by Dirichlet boundary
conditions (upper right)
HDG discretization with p = 5 and τ = 1
Preconditioner with 8 × 8 × 1 element in coarse space



Example: Elastic deformation of paper
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Figure: Convergence of PCG: constant material parameters (black) and
realistic (orange).



Engineering application (FCC/Stora Enso)
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Three-ply paperboard
Grammage: 400g/m2

Measure: (tensile) 4mm × 4mm (bending) 50mm × 4mm
Dofs: (tensile) 16M (bending) 200M



Engineering application (FCC/Stora Enso)

12Görtz et. al., Iterative method for large-scale Timoshenko beam models assessed on
commercial-grade paperboard, Computational Mechanics (2025)
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Solver converges in 60 iterations (practical purposes)
Validated on various commercial paperboards
Results consistent with experimental data12
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Multiscale approach
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Given a symmetric positive bilinear form defined by

a(v ,w) = (Av ,w)

and an interpolant IH : V → VH we can formulate an LOD method.
LetW = ker(IH) and

Vms
H = {v ∈ V : a(v ,w) = 0 for all w ∈ W}.

We seek zms
H ∈ V

ms
H such that

a(zms
H , v) = F(v), for all v ∈ Vms

H .

k -layer patches are used to localize computations to formVms,k
H

Elementwise localization of rhs by A =
∑

T∈TH
AT



Convergence

13Kornhuber et. al. An analysis of a class of variational multiscale methods based on subspace
decomposition, Math. Comp. (2018)

14Edelvik et. al., Numerical homogenization of spatial network models, CMAME (2024)
15Hauck et. al., An algebraic multiscale method for spatial network models, preprint
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Decay is proven using the optimality of the preconditioner in the W
space1314 or by classical cut-off argument15.

Theorem (Convergence of LOD)
With κ = C1C2, H > 2R0, it holds

|z − zms,(k)
H |A ≤ C(H + e−ck )|z|A .



Fibre network application

16Edelvik et. al., Numerical homogenization of spatial network models, CMAME (2024)
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Euler-Bernoulli beam model16, pure boundary displacement. Unit
square, 20k randomly places sticks of length 0.05, 320k dofs.

û is the reference solution: Kû = 0 with Dirichlet bc û(Γ) = g
ûk

H is the LOD approximation with k -layer patches, H = 2−5

K is the system matrix
M is a diagonal mass matrix
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Conclusions and future works
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Robust iterative approach to solve spatial network models with
applications in the paper industry

Görtz, Hellman, M., Iterative solution of spatial network models by subspace decomposition,

Math. Comp. 93 (2024)

Rupp, Hauck, M., Arbitrary order approximations at constant cost for Timoshenko beam

network models, arXiv:2407.14388

Görtz, Kettil, M., Fredlund, and Edelvik, Iterative method for large-scale Timoshenko beam

models assessed on commercial-grade paperboard, Computational Mechanics 75 (2025)

Edelvik, Görtz, Hellman, Kettil and M., Numerical homogenization of spatial network models,

Comput. Methods Appl. Mech. Engrg. 418 (2024)



Conclusions and future works
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Robust iterative approach to solve spatial network models with
applications in the paper industry

Future work: δ-overlap in DD, algebraic coarsening, algebraic LOD
applied to the HDG setting, elastic wave propagation, and large
(local) deformations


