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Model Problem

The framework covers a range of equations.

Poisson Equation.  Find u : Q — R such that
—V-aVu=f InQ, wu=0o0nof)

where a(z) > ag > 0 bounded with multiscale features, f € L?,
and Q is a domainin R%, d = 1,2, 3

Weak Form. Find u € Hj(Q) such that

a(u,v) = (aVu, Vo) = (f,v) forallve Hy(Q),

where (v, w) = [ v - wdz.
|
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Variational Multiscale Method

We introduce two spaces V. and V¢ such that

V. ® V= Hy(Q)

* ), is a finite dimensional approximation of Hj (). (finite
element space)
° V, can be chosen in different ways
© Hierarchical basis
o L?(Q)-orthogonal to V..

o Wavelet modified hierarchical basis
|
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Construction of Symmetric VMS

Starting from the model problem: find «» € V such that
a(u,v) =1l(v) forallveV

and setting

U= U+ U V=7V,+ Vg

we get: find u. + uy € V. ® V¢ such that
a(ue +ug,v. +vs) =l(v. +vp) foralv.+vy e V.8V
Note that u; € V; satisfies the equation
a(ur,ve) = l(ve) — a(ue,ve) forallvy € Vy
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Fine Scale Equations

Given the fine scale equation
a(ur,ve) =U(vy) — a(ue,ve) forallve € Vy

we let
Uf = Uf]+ Ufec

with
° uy¢; € Vy the contribution from the right hand side

a(urg,ve) =l(vy) forallve € Vy
° uyr. € Vy the contribution from the coarse scale part

a(ufe,vy) = —a(ue,vye) forallvy € Vy
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Fine Scale Effects Coarse Scale

Let 7 : V. — V; denote the solution operator to

a(ure,vy) = —a(ue,vye) forallve € Vy

Ur e = 1 U

Using the resulting decomposition
W= U = VU - U

we get
a(uc+ Tuc+ upy, ve +vr) = (f, vc + vy)

forall v. € V. and vy € Vy.
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Symmetric VMS

Since uy; Is directly determined we get the following problem for
u.. find u. € V. such that

a(uc+ Tuc,ve +Tve) = (f,ve + Toe) —a(ugy, ve + Toe)

for all v. € V..
* Here we chose vy = 7. to get a symmetric formulation

* Note that in the standard VMS procedure one basically sets
vy = 0 In this step and thus the resulting problem is not

necessarily symmetric

* However, when the exact operator 7 is used, the methods
are equivalent.

° Note also that a(({ + 7T )v.,vf) = 0 i.e., the exact 7
decouples the problem.
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Symmetric VMS

Let
* 7 be a computable approximation of 7
* U, be a computable approximation of wu ¢

We get the method: find U, € V. such that
a(U. + TU,, v, + ’j'vc) = (f,vc + ’j'vc) —a(Uy,ve + j’vc)
for all v, € V..

On matrix form this leads to,

Kmod Uc — bmod

Given U, Uy, and T, U; can be computed.
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Construction of 7~'

Recall that u. = > . u.;N.; with {N.,} a basis in V. and let

a(TN.;,vr) = —a(N.;,vr) forallve eV

By linearity
Tuc — Z uc,iTNc,i

and thus we are led to computing 7 N, for each coarse

basis function N ;.
We define 7 by solving these problems approximately by

* Restricting to a localized patch problem supp(NV.;) C w;
* Discretizing using a fine subgrid on w;
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Refinement and Layers
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One and two layer stars. Typically homogeneous Dirichlet bound-

ary condition are used.
|
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Construction of Uy

Recall that u¢; € V; solves
a(usi,ve) =1l(vy) forallvy € Vy

Using a partition of unity ¢, we can split the right hand side
as follows I(vs) = > . l(pivs) tO get,

Ufr = Zuf,l,i
)
a(ugu, vy) = L(pivy)

Again we find an approximation by restricting to patches
and discretizing the subgrid.

|
SIAM Computational Science and Engineering, Miami, USA, 2nd March 2009 — p.12/27



Localized Fine Scale Solution

Typical local solutions Uy; = UC,JNZ- + Uy, using 1, 2, and 3
layer stars on triangles. The right hand side has support in the

center and the solution is forced to be zero in coarse nodes.
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Parallel Structure

* No communication between subgrid problems
* Multiple levels possible

* Different physics in subgrid model possible. Need transfer
operator.
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Adaptive VMS

The Adaptive Variational Multiscale Method (AVMS) builds on
the following ingredients:

* Error estimation framework

* Adaptive strategy for tuning of critical discretization
parameters

The method Is designed so that:

error - Owhen h — 0and L — oo

* A priori error estimates in progress.

* To circumvent difficulties with choosing discretization

parameters h and L we use an adaptive algorithm based on
a posteriori error estimates
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Energy Norm Error Estimate

|vavel? <) CillHR(U.)]

1€C

+ 3 C (IVHES U0 I3, + I1BR:(Uy,)
1eF

2
W

2
Wi

* The first term measures the coarse mesh error

* The second term is the normal derivative of the fine scale
solutions on dw; and measures the error due to restriction to
subdomains

* The third term measures the fine scale error caused by
discretization
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Adaptive Strategy

IVaVel|> <) Gl HR(U) |2,

1€C

+ 36 (IVHS U0 |3, + I1Ri(Uf,)
1€F

2
Wi

Compute the solution U.
Calculate residuals for each i € {C F}. Mark large entries.
For marked i € C, let h = H/2 and L = 1 for these entries.

For marked i € F, eitherlet L:= L+ 1o0r h:=h/2
depending on the indicators.

5. Returnto 1.

S SR
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Application to a Mixed Problem

Poisson equation on mixed form:

[ lo—Vu=0 inQ

T —V:-o=f InQ
n-oco=0 onl

\

where the permeabillity a is taken from the SPE data set
(upperness in log-scale),
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Splitting Based on RT-elements

We use lowest order RT basis functions together with constants.

* Let 7. Is the RT-interpolant onto V. and P. be the
L?-projection onto W,

* We define o = n.0 + (I — n.)o and thus
or=I—mn)o o.=m.0.

° Further we define u = P.u. + (1 — Po)u = uc + uy.

e Thus we are using an L?-orthogonal splitting in the scalar
variable.

Hierarchical split for lagrangian elements leads to nodal exact-
ness in the coarse solution while here we get exactness of aver-

age values on coarse elements.
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Approximate Fine Scales

* We apply the abstract framework

* Divide the fine scale problem into contributions from the
coarse scale part o. and right hand side f

° LetX. =) . 3.0, Where ¢, are the Raviart-Thomas basis
functions. Solve the local problem driven by the basis
functions (one problem for each basis function)

* Localize by restricting the problem to a patch and using
homogeneous Neumann conditions

* Discretize using a suitable subgrid
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Example of Convergence

We solve the SPE problem.
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To the left we see the flux and to the right the pressure. We use
220 x 60 elements for the reference solution, f = 1 in the lower

left corner and f = —1 In the upper right corner.
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Example of convergence
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55 x 15 coarse elements and h = H/4. We get exponential

decay in max norm error compared with reference solution

when increasing the number of layers!
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A Posteriori Error Estimate

The following energy norm bound holds

where

1o *
Ro, = |1 (Sih, + Bp,) = VUG

h |
+ H—(fwz- +V - (Sl +35) |12,
- U i 110w
H \/* f, H8 i\

U* is a post proc version of U, C, ~ ||v/al| ()
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Adaptivity Example: Layers and Refinements
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Black circle is one, blue is two and red is three
layers/refinements (layers top, refs bottom). Remember,
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Relative Error in Energy Norm

Galerkin 105.6% and one iteration 15.8%.

Two Iterations 10.1% and three iterations 7.6%.
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Conclusions from Example

* The error indicators finds critical areas

* More computational effort in these areas decreases the
global error quickly

* To get an equally good approximation without adaptivity we
need to use three refinements on two layer patches

* |In the example above we still have 70% of the patches using
one layer and one refinement
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Summary

The AVMS provides:

* Systematic technique for construction of a computable
approximation of the fine scale part of the solution using
decoupled localized subgrid problems.

* A posteriori error estimation framework (also for goal
functionals)

* Adaptive algorithms for automatic tuning of critical
discretization parameters
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