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Outline and Papers

Outline
• The Variational Multiscale Method (VMS)

• Symmetric VMS

• Error estimates and adaptivity

• Mixed formulation

• Numerical examples

• Conclusions

Papers
• M.G. Larson and A. Målqvist, Adaptive Variational Multiscale Methods Based on A

Posteriori Error Estimation: Energy Norm Estimates for Elliptic Problems, CMAME
2007

• M.G. Larson and A. Målqvist, A Mixed Adaptive Variational Multiscale Method with
Applications in Oil Reservoir Simulation M3AS 2009
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Model Problem

The framework covers a range of equations.

Poisson Equation. Find u : Ω → R such that

−∇ · a∇u = f in Ω, u = 0 on ∂Ω

where a(x) ≥ a0 > 0 bounded with multiscale features, f ∈ L2,
and Ω is a domain in R

d, d = 1, 2, 3

Weak Form. Find u ∈ H1
0 (Ω) such that

a(u, v) = (a∇u,∇v) = (f, v) for all v ∈ H1
0 (Ω),

where (v,w) =
∫

Ω v · w dx.
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Variational Multiscale Method

We introduce two spaces Vc and Vf such that

Vc ⊕ Vf = H1
0 (Ω)

• Vc is a finite dimensional approximation of H1
0 (Ω). (finite

element space)
• Vf can be chosen in different ways

◦ Hierarchical basis
◦ L2(Ω)-orthogonal to Vc

◦ Wavelet modified hierarchical basis
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Construction of Symmetric VMS

Starting from the model problem: find u ∈ V such that

a(u, v) = l(v) for all v ∈ V

and setting

u = uc + uf v = vc + vf

we get: find uc + uf ∈ Vc ⊕ Vf such that

a(uc + uf , vc + vf ) = l(vc + vf ) for all vc + vf ∈ Vc ⊕ Vf

Note that uf ∈ Vf satisfies the equation

a(uf , vf ) = l(vf) − a(uc, vf ) for all vf ∈ Vf
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Fine Scale Equations

Given the fine scale equation

a(uf , vf ) = l(vf ) − a(uc, vf ) for all vf ∈ Vf

we let
uf = uf,l + uf,c

with
• uf,l ∈ Vf the contribution from the right hand side

a(uf,l, vf ) = l(vf ) for all vf ∈ Vf

• uf,c ∈ Vf the contribution from the coarse scale part

a(uf,c, vf ) = −a(uc, vf ) for all vf ∈ Vf
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Fine Scale Effects Coarse Scale

Let T : Vc → Vf denote the solution operator to

a(uf,c, vf ) = −a(uc, vf ) for all vf ∈ Vf

i.e.
uf,c = T uc

Using the resulting decomposition

u = uc + T uc + uf,l

we get
a(uc + T uc + uf,l, vc + vf ) = (f, vc + vf )

for all vc ∈ Vc and vf ∈ Vf .

SIAM Computational Science and Engineering, Miami, USA, 2nd March 2009 – p.7/27



Symmetric VMS

Since uf,l is directly determined we get the following problem for
uc: find uc ∈ Vc such that

a(uc + T uc, vc + T vc) = (f, vc + T vc) − a(uf,l, vc + T vc)

for all vc ∈ Vc.

• Here we chose vf = T vc to get a symmetric formulation

• Note that in the standard VMS procedure one basically sets
vf = 0 in this step and thus the resulting problem is not
necessarily symmetric

• However, when the exact operator T is used, the methods
are equivalent.

• Note also that a((I + T )vc, vf ) = 0 i.e., the exact T
decouples the problem.
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Symmetric VMS

Let
• T̃ be a computable approximation of T
• Uf,l be a computable approximation of uf,l

We get the method: find Uc ∈ Vc such that

a(Uc + T̃ Uc, vc + T̃ vc) = (f, vc + T̃ vc) − a(Uf,l, vc + T̃ vc)

for all vc ∈ Vc.

On matrix form this leads to,

KmodUc = bmod

Given Uc, Uf,l, and T̃ , Uf can be computed.
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Construction of T̃
Recall that uc =

∑

i uc,iNc,i with {Nc,i} a basis in Vc and let

a(T Nc,i, vf ) = −a(Nc,i, vf ) for all vf ∈ Vf

By linearity

T uc =
∑

i

uc,iT Nc,i

and thus we are led to computing T Nc,i for each coarse
basis function Nc,i.
We define T̃ by solving these problems approximately by

• Restricting to a localized patch problem supp(Nc,i) ⊂ ωi

• Discretizing using a fine subgrid on ωi
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Refinement and Layers
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One and two layer stars. Typically homogeneous Dirichlet bound-

ary condition are used.
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Construction of Uf,l

Recall that uf,l ∈ Vf solves

a(uf,l, vf ) = l(vf ) for all vf ∈ Vf

Using a partition of unity ϕi we can split the right hand side
as follows l(vf) =

∑

i l(ϕivf ) to get,

uf,l =
∑

i

uf,l,i

a(uf,l,i, vf ) = l(ϕivf )

Again we find an approximation by restricting to patches

and discretizing the subgrid.
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Localized Fine Scale Solution
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Typical local solutions Uf,i = Uc,iT̃ Ni + Uf,l,i using 1, 2, and 3

layer stars on triangles. The right hand side has support in the

center and the solution is forced to be zero in coarse nodes.
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Parallel Structure

• No communication between subgrid problems
• Multiple levels possible
• Different physics in subgrid model possible. Need transfer

operator.
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Adaptive VMS

The Adaptive Variational Multiscale Method (AVMS) builds on
the following ingredients:

• Error estimation framework
• Adaptive strategy for tuning of critical discretization

parameters

The method is designed so that:

error → 0 when h → 0 and L → ∞

• A priori error estimates in progress.
• To circumvent difficulties with choosing discretization

parameters h and L we use an adaptive algorithm based on
a posteriori error estimates
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Energy Norm Error Estimate

‖
√

a∇e‖2 ≤
∑

i∈C

Ci‖HR(Uc)‖2
ωi

+
∑

i∈F

Ci

(

‖
√

HΣ(Uf,i)‖2
∂ωi

+ ‖hRi(Uf,i)‖2
ωi

)

• The first term measures the coarse mesh error
• The second term is the normal derivative of the fine scale

solutions on ∂ωi and measures the error due to restriction to
subdomains

• The third term measures the fine scale error caused by
discretization
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Adaptive Strategy

‖
√

a∇e‖2 ≤
∑

i∈C

Ci‖HR(Uc)‖2
ωi

+
∑

i∈F

Ci

(

‖
√

HΣ(Uf,i)‖2
∂ωi

+ ‖hRi(Uf,i)‖2
ωi

)

1. Compute the solution U .

2. Calculate residuals for each i ∈ {C F}. Mark large entries.

3. For marked i ∈ C, let h = H/2 and L = 1 for these entries.

4. For marked i ∈ F , either let L := L + 1 or h := h/2
depending on the indicators.

5. Return to 1.
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Application to a Mixed Problem

Poisson equation on mixed form:











1
a
σ −∇u = 0 in Ω

−∇ · σ = f in Ω

n · σ = 0 on Γ

where the permeability a is taken from the SPE data set
(upperness in log-scale),
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Splitting Based on RT-elements

We use lowest order RT basis functions together with constants.
• Let πc is the RT-interpolant onto Vc and Pc be the

L2-projection onto Wc

• We define σ = πcσ + (I − πc)σ and thus
σf = (I − πc)σ σc = πcσ.

• Further we define u = Pcuc + (1 − Pc)u = uc + uf .

• Thus we are using an L2-orthogonal splitting in the scalar
variable.

Hierarchical split for lagrangian elements leads to nodal exact-

ness in the coarse solution while here we get exactness of aver-

age values on coarse elements.
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Approximate Fine Scales

• We apply the abstract framework
• Divide the fine scale problem into contributions from the

coarse scale part σc and right hand side f

• Let Σc =
∑

i Σc,iφi where φi are the Raviart-Thomas basis
functions. Solve the local problem driven by the basis
functions (one problem for each basis function)

• Localize by restricting the problem to a patch and using
homogeneous Neumann conditions

• Discretize using a suitable subgrid
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Example of Convergence

We solve the SPE problem.

−0.2 0 0.2 0.4 0.6 0.8 1 1.2
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

0
0.2

0.4
0.6

0.8
1

0

0.5

1
−2

−1

0

1

2

3

x 10
−6

To the left we see the flux and to the right the pressure. We use

220 × 60 elements for the reference solution, f = 1 in the lower

left corner and f = −1 in the upper right corner.
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Example of convergence
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55 × 15 coarse elements and h = H/4. We get exponential

decay in max norm error compared with reference solution

when increasing the number of layers!
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A Posteriori Error Estimate

The following energy norm bound holds

‖σ − Σ‖2
a ≤ C2

a

∑

i

R2
ωi

+R2
∂ωi

where

Rωi
= ‖1

a
(Σi

cφi + Σf,i) −∇U∗
f,i‖2

ωi

+ ‖h
a
(fψi + ∇ · (Σi

cφi + Σf,i))‖2
ωi

R∂ωi
= ‖ 1

2
√
h
U∗

f,i‖2
∂ωi\Γ

U∗ is a post proc version of U , Ca ∼ ‖√a‖L∞(ωi).

SIAM Computational Science and Engineering, Miami, USA, 2nd March 2009 – p.23/27



Adaptivity Example: Layers and Refinements
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Relative Error in Energy Norm

Galerkin 105.6% and one iteration 15.8%.
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Two iterations 10.1% and three iterations 7.6%.
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Conclusions from Example

• The error indicators finds critical areas
• More computational effort in these areas decreases the

global error quickly
• To get an equally good approximation without adaptivity we

need to use three refinements on two layer patches
• In the example above we still have 70% of the patches using

one layer and one refinement
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Summary

The AVMS provides:
• Systematic technique for construction of a computable

approximation of the fine scale part of the solution using
decoupled localized subgrid problems.

• A posteriori error estimation framework (also for goal
functionals)

• Adaptive algorithms for automatic tuning of critical
discretization parameters
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