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Motivating example: Secondary oll recovery

Find pressure p and water concentration s such that:
—V-kXs)Vp=¢q, s+V-[f(s)v]=g, v=—kXs)Vp,

where k is permeability, \(s) the total mobility, v total velocity, f
fractional flow, and ¢, ¢ sink and source terms.
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Motivation for a multiscale approach

These three ideas can be found in most multiscale methods:
* Split the problem into two or more scales.
* Localize the fine scale computations in space.

* Use the fine scale information to modify (improve) the
coarse scale solution.

Why do we need it in this application?
* The permeability has multiscale features.
* The size of the system is huge, parallelism is needed.

* The diffusion coefficient changes in time, but only at the
water front. We can reuse most of the modifications made
on the fine scale.
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Multiscale methods

* Upscaling techniques: Durlofsky et al. 98, Nielsen et al. 98

* Variational multiscale method: Hughes et al. 95,
Larson-Malgvist 05, Nordbotten 09

* Multiscale finite element method: Hou-Wu 96,
Efendiev-Ginting 04, Aarnes-Lie 06

* Multiscale finite volume method: Jenny et al. 03

* Heterogeneous multiscale method: Engquist-E 03,
E-Ming-Zhang 04

* Equation free: Kevrekidis et al. 05

1. Convergence is typically only studied in the periodic case.

2. More work has been done for elliptic than hyperbolic
problems.
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A priori error analysis of a multiscale method

A. Malgvist
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Model problem

We consider the strong form:
—V-aVu=f, InQ, uwu=0 ono.

The weak form reads: find u € V := H} () such that,
(u,v) 1= / aVu-Vudr = / fvdx :=1(v), forallve.
Q Q

We assume f € L*(Q) and 0 < ag < o € L>®(9).
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Derivation of multiscale methods

We let 7y be a (coarse) mesh of 2 and 7; be the mesh after J
refinements. Let Vy C V; C V be corresponding spaces.

Reference solution u; € V; fulfills (u;, w) = [(w) for all w € V;.

Let 7o : VN C(Q2) = Voand Wy = {w € V; : mpw = 0}. Introduce
the a-orthogonal map I + T’y with T’y : Vy — W; fulfilling,

(vo + Tyvg,w) =0, forall vg € Vy,w € Wj.

We let ug = mou; and write u; = ug + Tjug + u; 7. Then
Uy g = (1 — T — TJT(‘())UJ € Wy solves,

(ug, g, w) =l(w), forallwe Wy,

Find ug € V) S.t. <UO R TJUO,U0> — l(vo) o <UZ’J,’UO>, for all vg € V.
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Three multiscale methods

VMS:  (ug + 17 uo, vo) = I(vo) — (u; 'y, vo),
(vo + T7™vg,v) = 0,

(ugy s v) = 1(v),

MSFEM:  (ug 4+ TT®Mug, vg + TT®M0g) = I(vg + TTMeg),
<v0_|_Tmfem 01 >% O,

SYym-AVMS: (ug + Thug,vo + THvo) = l(vo + THvo) — (uf 1,00 + Thup),
(vo + T}"fuo,v} =~
(u%,v) ~ [(v),

for all vg € Vy and v € W;. Note that (vg + T jvg, ws) = 0.

SIMULA, Oslo, Norway, 17th June, 2011 —p. 9/38



Approximation of /'y and Uy, j In Sym-AVMS

We localize the fine scale equations. Let Vy = span({¢;}) and,
(p; + Ty¢;,v)y =0, forallwe Wy,

(U, g4,v) = l(piv), forallw e Wy,

We introduce a patch w? around supp(¢;):

Now let W (wF) = {v € Wy : supp(v) C wF}.
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Sym-AVMS

1 1

Let T%¢; € Wy(wF) and uﬁj c W;(wF) be given by,

d; +Th¢i,v) =0, forallw e Wy(wh),

uijj-v — [(¢dv), forallw e Wi(wh).

7

The method reads: Find uf € V, such that

k k k k
ut +TRuf  vg+THv) = 1(vg+THvg) — uy 7, vo+15v0), Yoo € Wo.
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Observation about decay in VV (Fourier)

Consider the Poisson equation,
—Au=¢; InQ, wu=0o0nof),

where ¢; has local support in €2. The weak form reads: find
u € Z such that, (u,v) = (¢;,v) forallv € Z.

Solution on 3 layers Solution using interpolation on 3 layers
x10° x10™
20
15

10

=
[eclé)] o o
i

To the left Z =V (log decay) and right Z = W (exp decay).

Constraints are realized using Lagrangian multipliers.
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Convergence analysis: basis functions 1';¢;

We sketch the convergence proof below. We start with the
decay of T';¢;.

Let {x;};em, be a hierarchical basis for W;. Let A = (x;, x;),
l,j € M. Furtherlet T;¢; = } ;e\, ajx;- We use CG with
&p = 0 and right hand side b; = —(¢;, x;). We have,

m

k(A) — 1
la—a™|; < 2 o] 4 :=2p™|al 5, Where |v]% = vl Aw.

Note that y/k(A) ~ J in 2D and y/x(A) ~ 27 in 3D.
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Convergence analysis: local solutions 1';¢;

We have T';¢; = Z]EMJ ajx 4, With corresponding vector «,
where M ; iIs the set non-coarse nodes on level J.

Since b, has support on a coarse 1-ring and the HB only
spreads information within w? in 2k iterations we have,

agrP = Y = Y gy —alP < a—a® P

JEM 7 (Q\wy) JEM 7 (Q\wy)

where agq, .+ only contains the node values outside wr.

Furthermore \ag\wk < Cla — 2=Cp WhICh means

that the coefficients in « decays away from node » and more
precisely [|Ts¢illo\wr < Co* I T5¢s]l, with [lo]lZ, = (v,v).
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Convergence analysis: local solutions T}“gbi — 150,

We have (T;¢; — ijqbi,w> =0 for all w € Wy (wF).
Now let w = 37 vy ey (@ — ) xi € Wr(wf), with
corresponding vectors «a,,» and o*. We get,

o — ozk] = (a — awk)TA(cv — cvk)

A
— ag\ka(oz — o)

< ’&Q\w’f‘fx’& _ Gfk’jp
But now |a — o] ; < Cp?*|al; or,

ITs6i=Tieill < Co* I Tseill  and  Jlug,zi—wg 5l < Cp* [l zall:
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Convergence analysis: system

Let Vo s = span({¢; + Tyoi}), V(’)‘“,J = span({¢; + T%¢;}). We
introduce projections Py : V — Vg s and Py : V — Vg ; such that,

<PJ(UJ—’U/[’J>,U> = <UJ—UZ’J,U>, for a”?)EVO,J,

(P¥(uy — uﬁj),w = (ujy — uﬁj,fU), for all v € V(]ij.
Since (ug + Tyuog, vo + Tyvg) = (f,vo + Tyvo) — (w7, v0 + Trvp).
We have v = Pj(us — ) ;) +uf yand uy = Py(uy — ug,s) + uy,g.
Algebraic manipulation gives

UJ—PF(UJ—ZLZﬁ—uﬁJ:(1—Pﬁ)PJUJ—I—P]]C(PJUJ—Ful’J—UJ>

+ (1= PY) (g —ufy) = (1 — Pf?)PJUJJrZ(l — P§)(ur, 55 — uf 1;)-
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Convergence analysis: main result

Lemma 1 It holds ||(1 — P%)Pyus| < Cllusl|p=(ayp®/ho.

Let w = Z UZ'<TJ¢7; — T]]ﬂgbz), with V; = 7T0UJ(£IZ7;). Since P(]]{ IS a
projection ||Pyu; — PjPyuy|| < [lwll < CllulL~)p*/ho.

Theorem 2 Let u; be the reference solution and «” the
Sym-AVMS approximation. Then,

Jus = ujll < C (llusllz=@y/ho + 1 fllz2y) 2"

Y

where p \/LA)H and4/x(A) ~ J in 2D andy/k(A) ~ 27 in 3D.
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Numerical examples

y
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(z,y)

(z,y)

¢ as(zr,y) =0.1409x%rand, (z, y)ET foraIIT€7'1,
(z,y) =
(z,y) =

1—1
L, OJGSLIB@ .7) for 120 <z < 1207 120 < y < 1207

g
aspe (4, ), for 2 120 <z < 135, 120 <y < 135>

Q
&y

L,
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Convergence of local solution T}“gbi

We let i = 435, J = 3, and hg = 1/30, using rectangular mesh.

error in energy norm

Relative error in energy norm (left). We get exponential
convergence in k.

Corresponding error using 2k cg iterations (right) = slower
convergence for high condition numbers.

Preconditioner that works in the argument?
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Convergence of global solution

Again J = 3 and hg = 1/30. We plot the error u; — u’j In energy
norm (relative).
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How does the error depend on hy?

Remember

s — w3l < C (lwgllze(@y/ho + 1 fllz2@) 07,

Welet J =2 and k = 3.

50
1/h,

The bound is probably not sharp in terms of hy.
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Summary of this paper

1. We prove an a priori error bound and thereby convergence
as k — oo for Sym-AVMS, for fix hy and J.

2. The bound reveals that for fix hy and J we get exponential
decay in the number of layers k.

3. Numerics experiments confirms this and furthermore
reveals that a very small value £ ~ 2 is needed for 2D
examples in practise.

4. The numerics indicates that for high ratios 22 2(2) giract

min, a(x)
computation of the linear systems on the patches is
preferable to using a few iterations of cg.

5. There are still improvements needed in the analysis in the
case when 22 2@ s |arge and in the dependency on hy.

min, a(x)

Preconditioner and/or wavelet basis might resolve this.
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A discontinuous Galerkin multiscale method for first order
hyperbolic equations

M. G. Larson, A. Malqvist, and R. Soéderlund

SIMULA, Oslo, Norway, 17th June, 2011 —p. 23/38



Model problem

We let I = (0, 7] and €2 be a domain with boundary
oN=T_uUly,wherel'_ ={z €90 :n-0 <0} is inflow.

1
VAVAV Y,
vavg) &

>
o
-
<]
Pl

4
4

ATAYAY

0 0.2 0.4 0.6 0.8 1

Strong form: Given u(0) = ug find u(t), t € I such that

u+V-(ou)=f, inQxI,

u=¢g onl'_xI, n-Vu=0 onl, x[.
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Discontinuous Galerkin (dG1) formulation

We let 7; be amesh for Q and V; = {v : v|g € P1(K),VK € T;}.
Further let £; U &r be the set of edges, [v] = v — v,
(v) = (vt +v7)/2, and the upwind value

p=v", n-o>0,
v=v , n-o<0,
v=(v), mn-o0=0.

Find v ;(t) € Vs such that,

(uJ,v)+q(uJ,v)::Z Uy, —Z uy,o- V) K—I—Zn oy, |V

KeT; KeT; EcE\T_

= (f,v) — Z (n-o,gv)g:=1w), Yo e Vs, t €.

Eel'_

Brezzi, Marini, and Suli, DG methods for first-order hyperbolic systems, 2004.
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Variational multiscale framework

Let0 =ty <t; < - <ty =7T.Givenu’ ' we get u” as the
solution to,

(?.LJ,”I}) T Q(UJ,U) — l(”U), Vo € VJ) t € (tn—latn]a

(us(tn-1),v) = (' v), VveVy.

We let 7y be a coarse mesh with space VyandletV; =V, & W;
using L*(Q) orthogonal split.

Find ug € Vp and wj; = vy — ug € YWy such that,

(o + wy,v0 +v7) + qlug +wy,vg +vy) = l(vg +vy),

(uo(tn-1) + wy(tn—1),v0 +vy) = (ug~ ' +w ", vo +vy),

for all vg € Vo, vy € Wy, and t € (t,—1,ty].
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Coarse and fine scale equations

We consider the non-symmetric version of AVYMS and split the
coarse and the fine scale using the L?-orthogonality.

for all vg € Vo, v € Wy, and t € (t,,—1, tn].

Again we split the fine scale contribution into different parts. Let
wy =g+ Trug + uo, s, Where u; y is associated with [(v), Tjug

with ¢(uo, v), and ug y with (v, v).
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Split of fine scale equations and coarse scale equation

Let Vo = span({¢;}) and let v, j;, Ty, uo 5; € Wy Solve

(W, v0) + q(ui,gi,v7) = Upivg),
(u1,7,i(tn—1),vs) = 0,

(T3, v5) + a(Tyhi, J): q(Pi, vg),
(Tyi(tn-1),vs) =

(0,15 v7) + q(uo,745 vg) =
(w0,7,i(tn—1), v ):(szu V)5

for all vg € Vo, vy € Wy, and t € (ty,—1,1t,]. Letug = > . ay¢; and
Tyup = ), o Tr¢;. We get the following coarse scale system,

(0, v0) + q(uo + Tyug, vo) = l(vo) — q(uz,7 + uo,7,v0);

(uo(tn—1),v0) = (ug ™", vo).
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Solving fine scale problems on patches

We now consider two types of patches.

0.4

0.35[

0.3

0.25

0.2

0.15f

0.1f

I I I I I I I I I
0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7

We solve localized fine scale problems in W;(w¥), let uf solve,

l(vo) — q(uf y + ug 5, v0),

k _
(uk (tn-1),v0) = (ug™ ", v).

(4§, vo) + q(uf + Tiugd, vo)

We only consider uniform fine time step for all equations.
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Sketch of algorithm

for s =1to N do
Compute T'j¢; and u;’ ;, on patches, given data o, f,Q

Compute to moments q(T%¢;, ;) and q(uf ; ., &;).

end for
while do ¢, <T
fori=1to N do
Compute ug’y; given ug™y; ", T, uf ;. and g™,

Compute moments q(uO 75 ®5)-

end for

Compute u.™" given ¢(T%¢;, ¢;), q(uy +uOJ,¢]) and

k.n—1
uo . |
end while
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Numerical examples

We let Q = [0, 1] x [0, 1] consider two different problems,

(Casel) I'_ =10,1] x {0},

(Case2) T'_ =0,

0 — OSPE,

o =10,1],

f=1
J= Xinj — Xprod-

g =0,
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We use backward Euler for the time discretization.
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Convergence of local solutions

We consider T%¢;(t,), where ¢; has support in the black
triangles, u} ;. and u§ ;. behave in a very similar way.

* Case 1 (left) dt = 0.005, ¢ = 216.
* Case 2 (right) dt =1, : = 210.

We now plot T§¢i using both symmetric and directed patches.
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L ocal solutions

Case 1 above and case 2 below.
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Convergence local solutions

Relative error compared to reference solution in H'-norm for

symmetric (green) and directed (blue) patches. Case 1 (left) and
case 2 (right). Note x-axis is dofs in local problems.

* The time step (dt) will affect how much T%¢; spreads out
over the domain.

* We would like to have a coarse time step (dt) which leads to
a reasonable size of the patches and then a fine time step

used to compute T%¢;(t,—1 + dt).
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Reference solutions

We first plot reference solutions for the two problems:
Case 1.
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Convergence of global solution

Relative error compared to reference solution in H'-norm at final
time.

Case 1 (left) and case 2(right). We again see that the directed
patches are much more efficient and that we get exponential
decay in (average) degrees of freedom in the local sub
problems.

The large relative error for small patches is the result of
accumulation over time.
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Summary of this paper

1. We have extended the AVMS framework to hyperbolic
problems.

2. We have implemented an efficient way of choosing the
shape of the patches.

3. We provide numerical examples that show very promising
results.

4. A lot of work is still needed for the time discretization. Both
simple and more complicated problems.

5. We have not yet done any error analysis. A posteriori error
estimates would give us a possibility to refine and increase
the size of the patches adaptively. We would also be able to
choose the time step adaptively.
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Other recent results and future directions

We have also studied

® a posteriori error estimation for Poisson equation, CG, DG,

RT

* adaptive algorithms for local mesh patch size refinement

convection dominated stationary problems

Future projects include

Improving the convergence result

adaptive algorithm for the hyperbolic method
convergence of adaptive algorithms

solving the coupled system using RT and DG
multiscale in time

Implement AMVS on parallel machines, 3D
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