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Thesis objectives

• Develop a new multiscale method for solving
PDE’s (with fine scale features) where error
estimation and adaptivity is an integrated part
of the method.

• Develop a framework for error estimation and
adaptivity for multi-physics problems.

• Implement and test the algorithms on
practically relevant test cases.
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Main results of the thesis

• A new adaptive variatonal multiscale method
based on energy norm error estimation.

• Error estimation based on duality.
• A posteriori error estimation for mixed finite

element methods.
• An extension of the adaptive variational

multiscale method to a mixed setting.
• Framework for adaptivity in multi-physics.
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The new multiscale method

Model problem: The Poisson equations with
coefficient a > 0,

−∇ · a∇u = f in Ω,

u = 0 on Γ.

Weak form: Find u ∈ V = H1
0(Ω) such that,

a(u, v) = l(v) for all v ∈ H1

0(Ω),

where a(v, w) =
∫

Ω
a∇v · ∇w dx, l(v) =

∫

Ω
fv dx,

f ∈ L2(Ω) and Ω is a domain in R
d, d = 1, 2, 3.
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The permeability a

Figure 1: The permeability a (in log scale).
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Why multiscale method?

• If we for the moment assume a to be periodic
a = a(x/ε) we have (Hou),

‖∇u−∇U‖ ≤ C
H

ε
‖f‖.

• H > ε will give unreliable results even with
exact quadrature.

• H < ε will be to computationally expensive to
solve on a single mesh.

• Parallelized local problems must be solved.
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The variational multiscale method

Find uc ∈ Vc and uf ∈ Vf , Vc ⊕ Vf = V such that,

a(uc + uf , vc + vf) = l(vc + vf),

for all vc ∈ Vc and vf ∈ Vf .

a(uc, vc) + a(uf , vc) = l(vc) for all vc ∈ Vc,

a(uf , vf ) = (R(uc), vf ) for all vf ∈ Vf .

where we introduce the residual distribution
R : V → V ′, (R(v), w) = l(w) − a(v, w), for all
v, w ∈ V .
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The variational multiscale method
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Figure 2: uc, uf , and uc + uf .
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Approximation

We derive the method in two steps.
• We decouple the fine scale equations by

introducing a partition of unity
∑

i∈N ϕi = 1,

a(uf,i, vf ) = (ϕiR(uc), vf ) for all vf ∈ Vf .

• For each i ∈ N we discretize Vf and solve the
resulting problem on a patch ωi rather then Ω,

a(Uf,i, vf ) = (ϕiR(Uc), vf ) for all vf ∈ V h
f (ωi).
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The patch ωi
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To the right we see a mesh star to the left what
we call a two layer mesh star. The coarse mesh
size is denoted H and the fine mesh size is
denoted h.
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The new vms

The resulting method reads: find Uc ∈ Vc and
Uf =

∑

i∈N Uf,i where Uf,i ∈ V h
f (ωi) such that

a(Uc, vc) + a(Uf , vc) = l(vc),

a(Uf,i, vf) = (ϕiR(Uc), vf ),

for all vc ∈ Vc, vf ∈ V h
f (ωi), and i ∈ N .

The patch is chosen such that
supp(ϕi) ⊂ ωi ⊂ Ω.

PhD defence, Göteborg, 2005-09-30 – p. 11



The local solution Uf,i
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The solution improves as the patch size
increases.
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Motivation of the method

Why do we expect the method to work?
• The right hand side of the fine scale

equations has support on a coarse mesh star,
ϕiR(Uc).

• The fine scale solution Uf,i ∈ V h
f (ωi) which is

a slice space.

This makes Uf,i decay rapidly, which makes it
possible to get a good approximation using small
patches.
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How do we choose the patchsize and h?

Our aim is to create a method that tunes critical
parameters by itself.

• A posteriori error estimation bounds the error
from above in terms of known quantities.

• Based on this we formulate an adaptive
algorithm.

• The algorithm tunes the critical parameters
automatically.

PhD defence, Göteborg, 2005-09-30 – p. 14



Energy norm estimate, ‖e‖2
a = a(e, e)

‖e‖a ≤
∑

i∈C
Ci‖HR(Uc)‖ωi

+
∑

i∈F
Ci

(

‖
√
HΣ(Uf,i)‖∂ωi

+ ‖hRi(Uf,i)‖ωi

)

• The first term is the coarse scale mesh error.
• The second term is the error committed by

restriction to patches Σ(Uf,i) ≈ n · a∇Uf,i.
• The third term is the fine scale mesh error.
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The local solution Uf,i
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The term n · a∇Uf,i decreases on the boundary
∂ωi as the patch size increases.
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Adaptive strategy

‖e‖a ≤
∑

i∈C
Ci‖HR(Uc)‖ωi

+
∑

i∈F
Ci

(

‖
√
HΣ(Uf,i)‖∂ωi

+ ‖hRi(Uf,i)‖ωi

)

• We calculate these for each i ∈ {coarse fine}.
• Large values i ∈ coarse → more local

problems.
• Large values i ∈ fine → more layers or

smaller h.
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Error estimation for a linear functional

Given a distribution ψ we have,

(e, ψ) =
∑

i∈C
(ϕiR(Uc), φf)

+
∑

i∈F
((ϕiR(Uc), φf) − a(Uf,i, φf)) ,

where φf is the fine scale part of the dual
solution: find φ ∈ V such that,

a(v, φ) = (v, ψ) for all v ∈ V .
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Extension to a mixed setting

In Paper IV we have extended this theory to the
mixed formulation of the Poisson equation,











1

aσ −∇u = 0 in Ω,

−∇ · σ = f in Ω,

n · σ = 0 on Γ.

We give error estimates in energy norm
‖ 1√

a
(σ − Σ)‖ and for a linear functional

(σ − Σ, ω).
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Numerical examples from Paper IV
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Figure 3: 2D slice of the permeability a (in log
scale) taken from the tenth SPE comparative so-
lution project.
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Reference solutions
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Figure 4: Above we see the reference solution,
(left) flux −Σ and (right) pressure u.
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Convergence
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Figure 5: Max norm error (compared to reference
solution) in log scale versus number of layers.
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Example using the adaptive algorithm

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 6: 35% of the patches increased in each
iteration.
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Example using the adaptive algorithm
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Figure 7: 35% of the fine scale meshes refined in
each iteration.
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Relative error in energy norm
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Figure 8: Relative error in energy norm: 106%,
16%, 10%, and 8%.
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Adaptivity in multi-physics

We seek the water concentration c that solves
the system,











1

aσ −∇u = 0 in Ω,

−∇ · σ = f in Ω,

n · σ = 0 on Γ,











ċ+ ∇ · (σc) − ε4c = g in Ω × (0, T ],

n · ∇c = 0 on Γ,

c = c0 for t = 0.
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Meshes
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Figure 9: The mesh for the flow problem is de-
noted Q and the transport problem K.
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Adaptivity in multi-physics
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Figure 10: The solution to the transport problem.
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Error estimates based on duality

We introduce the dual problems:










−φ̇− Σ · ∇φ− ε4φ = ψ in Ω × (0, T ],

n · ∇φ = 0 on Γ,

φ = 0 for t = T,











1

aχ −∇η =
∫ T

0
c∇πφ̄ dx in Ω,

−∇ · χ = 0 in Ω,

n · χ = 0 on Γ,
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Error estimates based on duality

∫ T

0

(e, ψ) dt ≤
∑

K∈K

∫ T

0

ρK(C)(4t‖φ̇‖K + h‖∇φ‖K) dt

+
∑

K∈Q
(‖∇U ∗ − 1

a
Σ‖K + h−1/2‖[U ∗]‖∂K\Γ)‖χ‖K

+
∑

K∈Q
h‖∇ · Σ + f‖K‖∇η‖K ,

ρK(C) = ‖Ċ+∇·(ΣC)−ε4C−g‖K+h−1/2‖ε[n·∇C]‖∂K .
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Adaptive algorithm

• Calculate the solutions Σ and U to the flow
problem on Q.

• Calculate the solution to the transport
problem C on K.

• Calculate an approximate solution to the dual
transport problem Φ, given ψ, on K.

• Calculate an approximation to
∫ T

0
c∇φ dx from

C and Φ.
• Calculate the approximate solutions to the

dual flow problem χ and η on the mesh Q.
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Adaptive algorithm
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Figure 11: Information flow between solvers and
data base.
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Adaptive algorithm

• Calculate error indicators,










IK
1 =

∫ T

0
ρK(C)(4t‖φ̇‖K + h‖∇φ‖K) dt,

IK
2 = (‖∇U ∗ − 1

aΣ‖K + h−1/2‖[U ∗]‖∂K\Γ)‖χ‖K

+h‖∇ · Σ + f‖K‖∇η‖K .

• If I1 =
∑

K∈K I
K
1 and I2 =

∑

K∈Q I
K
2 ok stop.

• If I1 >> I2 refine K, I2 >> I1 refine Q, return.
• If non of these hold we refine both K and Q

and return.
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Error indicators
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Figure 12: The error indicators I1 and I2. We use
15 and 100 % refinement level.

PhD defence, Göteborg, 2005-09-30 – p. 34



Adaptive meshes
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Figure 13: Mesh after each of the five iterations.
Rectangular mesh for the flow problem.
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Solution after five iterations

Figure 14: The final solution to the transport prob-
lem after five iterations.

PhD defence, Göteborg, 2005-09-30 – p. 36



Specific output quantity
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Figure 15: The water concentration at the pro-
ducer at different times for approximations after
one, three, and five iterations.
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Convergence to reference solution
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Figure 16: Convergence to reference solution
(last iterate).
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Paper I

• A new multiscale method based on solving
localized Dirichlet problems on patches.

• Energy norm a posteriori error estimation for
this method.

• Adaptive algorithm based on the error
estimate.

• Numerical examples.
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Paper II

• An extension of Paper I.
• Linear functional a posteriori error estimation

based on solving a dual problem.
• Adaptive algorithm based on the estimate.
• Numerical examples.
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Paper III

• A posteriori error estimate for mixed finite
element methods where we use
postprocessing for the pressure.

• Extension to stabilized methods.
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Paper IV

• Extend the multiscale method to mixed finite
elements now based on solving localized
Neumann problems.

• Energy norm and linear functional a posteriori
error estimation for this method.

• Adaptive algorithms based on the error
estimates.

• Numerical examples in oil reservoir
simulation.
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Paper V

• A duality based a posteriori error estimate for
a coupled set of PDE’s that can serve as a
framework for error estimation in
multi-physics.

• An adaptive algorithm based on the estimate.
• Numerical examples in oil reservoir

simulation.
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Future work

• Use more then two scales and consider more
extreme scale separation.

• Make an evaluation of how the method
performs compared to other methods.

• Prove a priori error estimates for the
multiscale method.

• Extend the multiscale method to the transport
equation and to even more challenging
problems, for instance the Navier-Stokes
equations. Extension to 3D.
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