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An application

The figure illustrates data taken from a model oil reservoir.

The size of the reservoir is about 368m× 671m× 52m. The prob-

lem features many different scales. We see the x-component of

the permeability a.
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An application

We seek the water concentration c that solves the system of a
flow and a transport equation,

(∗)











1
a
σ −∇u = 0 in Ω,

−∇ · σ = f in Ω,

n · σ = 0 on Γ,











ċ+ ∇ · (σc) − ǫ△c = g in Ω × (0, T ],

n · ∇c = 0 on Γ,

c = c0 for t = 0.

This is a simple model, e.g. there is only one way coupling, in

general a will depend on c.
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The model problem

Model problem: The Poisson equations with coefficient
a > 0,

−∇ · a∇u = f in Ω,

u = 0 on Γ.

Weak form: Find u ∈ V = H1
0 (Ω) such that,

a(u, v) = l(v) for all v ∈ H1
0 (Ω),

where a(v,w) =
∫

Ω
a∇v · ∇w dx, l(v) =

∫

Ω
fv dx, f ∈ L2(Ω) and

Ω is a domain in R
d, d = 1, 2, 3. We will also use the notation

(v,w) for dual pairing between v and w, in most cases (v,w) =
∫

Ω
vw dx.
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Why multiscale method?

• If we assume a to oscillate at a characteristic scale ǫ we
have (Hou),

‖∇u−∇U‖ ≤ C
H

ǫ
‖f‖.

• H > ǫ will give unreliable results even with exact quadrature.
• H < ǫ will be to computationally expensive to solve on a

single mesh.
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Conclusion of the simple estimate

We need to solve PDE:s on a scale that captures the oscillations
but we can not afford to do it on the entire domain.
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Coarse H > ǫ and fine h < ǫ mesh. This will not be done by

meshrefinement but by solving local problems decoupled from

each other and from the coarse mesh.
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Various multiscale methods

• Upscaling techniques: Durlofsky et al, Nielsen et al. Here
an effective permeability ā is computed by local solves and
then a coarse scale equation is solved.

• Multiscale finite element method: Hou et al.,
Efendiev-Ginting, Aarnes-Lie. Here local solves are used to
modify coarse basis functions.

• Multiscale finite volume method: Jenny et al. As above.
• Variational multiscale method: Hughes et al. , Arbogast,

Larson-Målqvist. Here the weak form is modified with new
stabilizing terms. It can sometimes also be viewed as
modification of basis functions.
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The variational multiscale method

Find uc ∈ Vc and uf ∈ Vf , Vc ⊕ Vf = V such that,

a(uc + uf , vc + vf ) = l(vc + vf ),

for all vc ∈ Vc and vf ∈ Vf .

a(uc, vc) + a(uf , vc) = l(vc) for all vc ∈ Vc,

a(uf , vf ) = (R(uc), vf ) for all vf ∈ Vf .

where we introduce the residual distribution R : V → V ′,

(R(v), w) = l(w) − a(v,w), for all v,w ∈ V . Here Vc is a coarse

finite element space of piecewise linear basis functions and Vf is

therefore zero in all coarse nodes.
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The variational multiscale method
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Example on what uc, uf , and uc + uf may look like.
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Approximation (our version)

We derive the method in two steps. Remember the fine scale
equations, a(uf , vf ) = (R(uc), vf ).

• We decouple the fine scale equations by introducing a
partition of unity

∑

i∈N ϕi = 1 (typically consists of coarse
basis functions),

a(uf,i, vf ) = (ϕiR(uc), vf ) for all vf ∈ Vf .

• For each i ∈ N we discretize Vf and solve the resulting
problem on a patch ωi rather then Ω,

a(Uf,i, vf ) = (ϕiR(Uc), vf ) for all vf ∈ V h
f (ωi).

We use homogeneous Dirichlet bc.
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The patch ωi
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To the right we see a mesh star to the left what we call a two
layer mesh star. The coarse mesh size is denoted H and the
fine mesh size is denoted h.

This leads to an overlapping method.
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Our method

The resulting method reads: find Uc ∈ Vc and Uf =
∑

i∈N Uf,i

where Uf,i ∈ V h
f (ωi) such that

a(Uc, vc) + a(Uf , vc) = l(vc),

a(Uf,i, vf ) = (ϕiR(Uc), vf ),

for all vc ∈ Vc, vf ∈ V h
f (ωi), and i ∈ N .

The patch is chosen such that supp(ϕi) ⊂ ωi ⊂ Ω.

An iterative approach where we start with a given Uc is possible

but we will instead consider a direct solution approach.
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The local solution Uf,i
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The solution improves as the patch size increases.
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Motivation for the method

Why do we expect the method to work?
• The right hand side of the fine scale equations has support

on a coarse mesh star, ϕiR(Uc).

• The fine scale solution Uf,i ∈ V h
f (ωi) which is a slice space.

This means that Uf,i = 0 in all coarse nodes.

This makes Uf,i decay rapidly, which makes it possible to get a

good approximation using small patches.
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Implementation

We have: find Uf,i ∈ V h
f (ωi) such that

a(Uf,i, vf ) = (f, vfϕi) − a(Uc, vfϕi)

for all vf ∈ V h
f (ωi). Instead we solve: find χk

i , ηi ∈ V h
f (ωi) such

that
{

a(χk
i , vf ) = −a(ϕk, vfϕi)

a(ηi, vf ) = (f, vfϕi).

for all vf ∈ V h
f (ωi) and supp(ϕk) ∩ supp(ϕi) 6= ∅. In the first

equation we replace f by 0 and Uc =
∑

Uk
c ϕk by ϕk (coarse basis

function) and in the second equation we keep f and replace Uc

by 0.
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Implementation

This means that:
∑

k∈N Uk
c χ

k
i + ηi solves:

a(
∑

k∈N

Uk
c χ

k
i + ηi, vf ) = (f, vfϕi) − a(Uc, vfϕi),

so Uf,i =
∑

k∈N Uk
c χ

k
i + ηi and

Uf =
∑

i∈N

∑

k∈N

Uk
c χ

k
i + ηi =

∑

k∈N

Uk
c χ

k + η,

where χk =
∑

i∈N χk
i and η =

∑

i∈N ηi. All this works because

the equation is linear.
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Implementation

We include this in the coarse scale equations: Find
Uc =

∑

i∈N U i
cϕi such that,

(f, ϕj) =a(Uc, ϕj) + a(Uf , ϕj)

= a(
∑

i∈N

U i
cϕi, ϕj) + a(

∑

i∈N

U i
cχ

i + η, ϕj),

for all j ∈ N or

∑

i∈N

U i
ca(ϕi + χi, ϕj) = (f, ϕj) − a(η, ϕj),

which gives a modified system. The degrees of freedom is

the same but more non-zero elements compared to Galerkin on

coarse mesh.
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Implementation

This can now be written on matrix form as,

(A+ T )U = b− d

where,


















Amn = a(ϕm, ϕn),

Tmn = a(χm, ϕn),

bn = (f, ϕn),

dn = a(η, ϕn).

or alternatively a symmetric formulation,











Amn + Tmn = a(ϕm + χm, ϕn + χn),

bn = (f, ϕn + χn),

dn = a(η, ϕn + χn).
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Implementation

Implementing the method comes down to calculating T and d on
patches ωi, T =

∑

i∈N T i and d =
∑

i∈N di, where

T i
mn = a(χm

i , ϕn)

and
di

n = a(ηi, ϕn).

1. Compute A and b.

2. Compute T i and di on the patches ωi.

3. Solve (A+ T )U = b− d.

4. Estimate error in U and improve resolution if necessary.

Given the vector U , {χm}N
m=1, and η we can reconstruct the fine

scale solution locally.
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How do we choose patchsize and h?

Our aim is to create a method that tunes critical parameters by
itself.

• A posteriori error estimation bounds the error from above in
terms of known quantities.

• Based on this we formulate an adaptive algorithm.
• The algorithm tunes the critical parameters, such as coarse

mesh size, fine mesh size, and patch sizes, automatically.
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Energy norm estimate: ‖e‖2
a = a(e, e)

We introduce the coarse and fine scale error ec = uc − Uc,
ef,i = uf,i − Uf,i, and e = ec +

∑

i∈N ef,i. We have the following
orthogonality properties,

a(ec, vc) + a(ef , vc) = 0, for all vc ∈ Vc

and
a(ef,i, vf ) + a(ec, ϕivf ) = 0, vf ∈ V h

f (ωi).

and estimate,

‖e‖2
a ≤

∑

i∈C

Ca‖HR(Uc)‖2
ωi

+
∑

i∈F

Ca

(

‖hRi(Uf,i)‖2
ωi

+ ‖
√
HΣ(Uf,i)‖2

∂ωi

)
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Energy norm estimate

The boundary part ‖
√
HΣ(Uf,i)‖2

∂ωi

, where Σ(Uf,i) is an
approximation of a∂nUf,i, decays rapidly as the patch increases.
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Here the patches are one, two, and three layer stars. The term

R(Uc) is a bound of the coarse scale residual ("f − ∇ · a∇Uc")

and Ri(Uf,i) is a bound of the fine scale residual.
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Adaptive algorithm based on error estimate

‖e‖2
a ≤

∑

i∈C

Ca‖HR(Uc)‖2
ωi

+
∑

i∈F

Ca

(

‖hRi(Uf,i)‖2
ωi

+ ‖
√
HΣ(Uf,i)‖2

∂ωi

)

1. Start with given H, r, and L where h = H/2r.

2. Calculate U using AVMS.

3. Calculate Ei
H = ‖HR(Uc)‖2

ωi
, Ei

r = ‖hRi(Uf,i)‖2
ωi

, and

Ei
L = ‖

√
HΣ(Uf,i)‖2

∂ωi

.

4. Stop if Ei
H , Ei

h, and Ei
L are small enough else if Ei

H is big
start solving local problems there with r = L = 1, if Ei

h > Ei
L

let rnew := r + 1 and if Ei
L > Ei

h let Lnew = L+ 1 end return
to 2.
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Summary of the main idea

• We want to avoid to refine a given coarse mesh
• Still the problem makes it necessary to use better resolution
• We have a method for solving decoupled fine scale

problems that are used to modify the coarse scale equation
• We have an error estimate that tells us where and how

accurate these fine scale problems need to be solved
• We have an adaptive algorithm that makes these decisions

automatically.

We now study other equations and some applications.
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Extension to a mixed setting with application

We have also extended this theory to the mixed formulation of
the Poisson equation (which is used in oil reservoir simulation),











1
a
σ −∇u = 0 in Ω,

−∇ · σ = f in Ω,

n · σ = 0 on Γ.

Find σc ∈ V c, σf ∈ V f , uc ∈Wc, and uf ∈Wf such that,



















( 1
a
σc,vc) + ( 1

a
σf ,vc) + (uc,∇ · vc) + (uf ,∇ · vc) = 0

−(∇ · σc, wc) − (∇ · σf , wc) = (f,wc)

( 1
a
σf ,vf ) + (uf ,∇ · vf ) = −( 1

a
σc,vf ) − (uc,∇ · vf )

−(∇ · σf , wf ) = (f,wf ) + (∇ · σc, wf )

for all vc ∈ V c, vf ∈ V f , wc ∈Wc, and wf ∈Wf .
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Basis for Vc, Vf , Wc, and Wf .

• For Vc and Wc: Lowest order Raviart-Thomas elements on
rectangles together with piecewise constants.

• For Vf and Wf : Hierarchical extension.

−0.2 0 0.2 0.4 0.6 0.8 1 1.2
−0.2

0

0.2

0.4

0.6

0.8

1

We note, (wc,∇ · vf ) =
∑

K wK
c

∫

∂K
n · vf dx = 0 where wK

c

is the constant at coarse element K, (wf ,∇ · vc) =
∑

K ∇ ·

vK
c

∫

K
wf dx = 0.
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Variational multiscale method

Find σc ∈ V c, σf ∈ V f , uc ∈Wc, and uf ∈Wf such that,



















( 1

a
σc,vc) + ( 1

a
σf ,vc) + (uc,∇ · vc) + (uf ,∇ · vc) = 0

−(∇ · σc, wc)−(∇ · σf , wc) = (f,wc)

( 1
a
σf ,vf ) + (uf ,∇ · vf ) = −( 1

a
σc,vf )−(uc,∇ · vf )

−(∇ · σf , wf ) = (f,wf )+(∇ · σc, wf )

for all vc ∈ V c, vf ∈ V f , wc ∈Wc, and wf ∈Wf .

If we let ϕi be a coarse Raviart-Thomas base function on rectan-

gles (bricks), ϕi =

[

ϕx
i

ϕy
i

]

, ϕi =

[

ϕx
i 0

0 ϕy
i

]

, will be a partition

of unity,
∑

i∈N ϕi = 1. We let ψi = 1/(2d) one the support of ϕi.
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Partition of unity

Find σc, uc, σf =
∑

i∈N σf,i, and uf =
∑

i∈N uf,i such that,



















( 1
a
σc,vc) + ( 1

a
σf ,vc) + (uc,∇ · vc) = 0,

−(∇ · σc, wc) = (f,wc),

( 1
a
σf,i,vf ) + (uf,i,∇ · vf ) = −( 1

a
σc, ϕivf ),

−(∇ · σf,i, wf ) = (f, ψiwf ),

for all vc ∈ V c, vf ∈ V f , wc ∈Wc, and wf ∈Wf .
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Local solutions
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The local solutions σf,i and uf,i for a = 1. We introduce patches
since,

• The right hand side has support on supp(ϕi) = supp(ψi).
• The equations are solved in a slice space where solutions

decay rapidly.
∫

E
n · σf,i dx = 0 and

∫

K
uf,i dx = 0.

The smallest patch now consist of two coarse elements since the

RT basis functions have support on two elements.
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Solving local Neumann problems

Find Σc ∈ V H , Σf,i ∈ V h(ωi), Uc ∈WH , and Uf,i ∈Wh(ωi)



















( 1
a
Σc,vc) + ( 1

a
Σf ,vc) + (Uc,∇ · vc) = 0,

−(∇ · Σc, wc) = (f,wc),

( 1

a
Σf,i,vf ) + (Uf,i,∇ · vf ) = −( 1

a
Σcϕi,vf ),

−(∇ · Σf,i, wf ) = (f,wfψi),

for all vc ∈ V H , vf ∈ V h(ωi), wc ∈WH , and wf ∈Wh(ωi).
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Energy norm estimate ‖v‖2
a = (1

av,v)

Next we present an estimate of the error.

‖σ − Σ‖2
a ≤

∑

i

Ca‖
1

a
(Σcϕi + Σf,i) −∇U∗

f,i‖2
ωi

+
∑

i

Ca‖h(fψi + ∇ · (Σcϕi + Σf,i))‖2
ωi
.

+
∑

i

Ca‖
1

2
√
h
U∗

f,i‖2
∂ωi\Γ

U∗ is a post processed version of U modified by information from

the flux according to paper by Stenberg et. al.
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Adaptive Strategy

• Calculate Σ.
• Calculate the error indicators on each patch,

Xi(h) = ‖1

a
(Σcϕi + Σf,i) −∇U∗

f,i‖2
ωi

Yi(h) = ‖h(fψi + ∇ · (Σcϕi + Σf,i))‖2
ωi

Zi(L) = ‖ 1

2
√
h
U∗

f,i‖2
∂ωi\Γ

• If indicators Xi(h) or Yi(h) are big on a patch we decrease
h.

• If indicator Zi(L) is big we increase the size of the patch.
• Go back to the first step or stop if the solution is good

enough.
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Numerical examples
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2D slice of the x-component of the permeability a (in log scale)

taken from the tenth SPE comparative solution project.
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Reference solutions
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Above we see the reference solution, (left) flux −Σ and (right)

pressure u.
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Convergence
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sus number of layers. The coarse mesh has 55×15 elements and
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TDB seminar 10 October 2007 – p.36/48



Example using the adaptive algorithm
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35% of the patches increased in each iteration and 35% of the

fine scale meshes refined in each iteration.
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Relative error in energy norm
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Relative error in energy norm: 106%, 16%, 10%, and 8%.

TDB seminar 10 October 2007 – p.38/48



Extension to convection dominated problem

Model problem: Convection-Diffusion problem with
multiscale features in b, ǫ > 0,

−ǫ△u+ ∇ · (bu) = f in Ω,

u = 0 on Γ.

Weak form: Find u ∈ V = H1
0 (Ω) such that,

a(u, v) = l(v) for all v ∈ H1
0 (Ω),

where a(v,w) =
∫

Ω
ǫ∇v · ∇w dx+

∫

Ω
∇ · (bv)w dx and

l(v) =
∫

Ω
fv dx.

We use the same method to approximate the solution.
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The local solution Uf,i
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The solution improves as the patch size increases.
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Duality based error analysis

Find φ ∈ V such that

(ǫ∇φ,∇w) − (b · ∇φ,w) = (ψ,w), for all w ∈ V,

note that we use the adjoint operator i.e.

a∗(φ,w) = (ψ,w).

We end up with the following error representation formula,

(e, ψ) = a∗(φ, e) = a(e, φ) = l(φ) − a(U, φ)

=
∑

i∈N

l(ϕiφ) − a(Uc, ϕiφ) − a(Uf,i, φ).
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Error representation formula

We continue the calculation using coarse and fine scale
Galerkin Orthogonality,

(e, ψ) = l(φ− πcφ) − a(U, φ− πcφ)

=
∑

i∈C

l(ϕi(φ− πcφ)) − a(Uc, ϕi(φ− πcφ))

+
∑

i∈F

l(ϕi(φf − π0
f,iφf )) − a(Uc, ϕi(φf − π0

f,iφf ))

− a(Uf,i, φf − π0
f,iφf ),

Where π0
f,i is the interpolant onto V h

f (ωi) i.e. zero on ∂ωi. Re-
member, any function in V h

f (ωi) can be subtracted.
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Error representation formula

We can also introduce πf,i as the nodal interpolant on the mesh
associated with V h

f (ωi) and express the error representation

formula in terms of πf,i and π0
f,i − πf,i.

(e, ψ) =
∑

i∈C

l(ϕi(φ− πcφ)) − a(Uc, ϕi(φ− πcφ))

+
∑

i∈F

l(ϕi(φf − πf,iφf )) − a(Uc, ϕi(φf − πf,iφf ))

− a(Uf,i, φf − πf,iφf )

+
∑

i∈F

l(ϕi(πf,iφf − π0
f,iφf )) − a(Uc, ϕi(πf,iφf − π0

f,iφf ))

− a(Uf,i, πf,iφf − π0
f,iφf ).

First depend on H second on h third on patch size.
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Numerical examples

We let ǫ = 0.01, f = I{x+y<0.05}, and B = rand(96),
b = [B(i, j), B(i, j)] for i/n < x < (i+ 1)/n and
j/n < y < (j + 1)/n.
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Solving the dual problem for adaptivity

Remember the dual problem: find φ ∈ V such that,

(ǫ∇φ,∇w) − (b · ∇φ,w) = (1, w), for all w ∈ V.

0 0.2 0.4 0.6 0.8 1
0

0.5

1

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

0

0.5

1

1.5

2

• Computing approximation Φ on the reference mesh or use
AVMS with more refinement → good approx. of the error.

• Computing Φ using the same method as the primal or
h = H/2 for all local problems → good indicator for
adaptivity.
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Numerical Examples

We let ψ = 1 and use a refinement level of 40%, h = 1/96,
H = 1/24.
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Refinements and Patchsizes chosen by the adaptive algorithm.
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Numerical Examples

We plot the relative error compared to a reference solution in the
quantity of interest (e, ψ). We solve the dual and the primal
using the same method.
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Future work

• Use more then two scales and consider more extreme scale
separation.

• Make an evaluation of how the method performs compared
to other methods.

• Prove a priori error estimates for the multiscale method.
• Numerics in 3D.
• Adaptive patch shapes for local problems in the convection

dominated problem.
• Consider more challenging equations, e.g. time dependent

and non-linear.
• Other interesting applications.
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