
A KRYLOV SUBSPACE METHOD FOR INFORMATIONRETRIEVAL.KATARINA BLOM� AND AXEL RUHEyAbstrat. An new algorithm for information retrieval is desribed. It is a vetor spae methodwith automati query expansion. The original user query is projeted onto a Krylov subspae gener-ated by the query and the term-doument matrix. Eah dimension of the Krylov spae is generatedby a simple vetor spae searh, �rst using the user query and then new queries generated by thealgorithm and orthognal to the previous query vetors.The new algorithm is losely related to latent semanti indexing, LSI, but it is a loal algorithmthat works on a new subspae of very low dimension for eah query. This makes it faster and moreexible than LSI. No preliminary omputation of the singular value deomposition, SVD, is neededand hanges in the data base ause no ompliation.Numerial tests on both small (Cran�eld) and larger (Finanial Times data from the TREColletion) data sets are reported. The new algorithm gives better preision at given reall levelsthan simple vetor spae and LSI in those ases that have been ompared.Key words. Information Retrieval, Vetor spae model, Query expansion, Latent Semantiindexing, Singular value deomposition, Lanzos algorithm, Krylov subspae.1. Introdution. The purpose of an information retrieval (IR) system is to seekthrough a large olletion of information items, or douments, to retrieve those relevantto information requests, or queries, stated by a user. In the present ontribution, wewill show how omputational tools from Numerial Linear Algebra an be helpful. Wewill use IR riteria to deide suess or failure of the algorithms developed. How largepart of the relevant douments are found, and how many of the retrieved doumentsare relevant to the user?The douments may be books in a library, douments in a data base of newstelegrams, sienti� papers in journals or web pages on the world wide web (WWW).Eah doument ontains terms, words that are signi�ant in some way. The query isalso formulated in terms of the same kind. We will look at the doument olletionas a huge matrix, where there is one row for eah term that ours anywhere in theolletion and eah olumn represents one doument. This term-doument matrix isdenoted A throughout this paper. We let the element aij in row i and olumn j ofA be nonzero if the i-th term is present in doument number j, zero otherwise. Theterm doument matrix will typially be very large and very sparse. The query will beexpressed by the same terms as the douments, i.e. as a olumn vetor q, where thei-th element qi is nonzero if the i-th term is a part of the query, zero otherwise.A very simple IR algorithm is to hoose those douments that ontain any of theterms in the query. This Boolean searh an be expressed as a row vetor pT = qTA,where eah element pj is the salar produt between the query vetor q and a doumentolumn vetor aj of A, and hoosing those douments for whih pj is nonzero. (Weuse the ommon linear algebra onvention of letting a Latin letter stand for a olumnvetor and T stand for transposing a olumn into a row. The matrix A has the olumnsA = [a1; a2; : : : ; an℄.)�Department of Computing Siene, Chalmers Institute of Tehnology and the University ofG�oteborg, SE-41296 G�oteborg, Sweden blom�s.halmers.se. Finanial support has been given byThe Swedish Researh Counil, Vetenskapsr�adet, ontrat 2002-4152yDepartment of Numerial Analysis and Computer Siene, NADA, Royal Institute of Tehnology,SE-10044 Stokholm, Sweden ruhe�kth.se 1



The vetor spae model is a re�nement of Boolean searh. The numerial valuesof the salar produts pj are used to get angles between the query vetor q and thedoument vetors aj . The douments are sored, starting with those that make thesmallest angle to the query vetor.In the present ontribution we will study re�nements of the vetor spae model.The main emphasis is on subspae metods, where we projet the query and doumentvetors on a arefully hosen subspae, and use the angles between these projetedvetors to determine loseness. We show that in many ases subspae methods behavein a similar way to methods based on query expansion, another ommon lass of re�nedvetor spae methods.One subspae method is Latent Semanti Indexing [8℄, where the dominant prin-ipal omponent subspae omputed by the singular value deomposition, SVD, isused. It is supposed to �lter away noisy and partiular information from the generaland relevant information that we need to distinguish between douments on di�erentsubjets. Another subspae method is based on a known lassi�ation and uses on-ept vetors [6, 13℄. One may also apply a probability model. This leads to omputingonvex ombinations of nonegative basis vetors, [12, 2℄.The purpose of this ontribution is to develop a new subspae method based onKrylov sequenes of subspaes reahable from the query vetor. The �rst steps ofthe Krylov sequene orrespond to a query expansion that is losely related to queryexpansion based on o-ourrenes as introdued by Spark Jones [14℄ and studied byXu and Croft [15℄.The advantage of our approah, ompared to LSI, is that it works on the originalterm doument matrix A, no SVD omputation is needed in the outset, and it is trivialto add and delete terms and douments between queries. The main omputationalwork is the same as a few appliations of a naive vetor spae searh, the rest ismanipulation of small matries.1.1. Summary of ontents. After some preliminary explanations of numeriallinear algebra and information retrieval notations in this setion, we desribe subspaemethods in setion 2. We explain their ommon harateristis and show that somewell known algorithms an be haraterized as subspae methods, using di�erent sub-spaes. We also disuss the relation between subspae methods and query expansion.In setion 3 we desribe the Krylov subspae algorithm we have used. It is simply thewell known Golub Kahan bidiagonalization [9℄, applied to the term doument matrixA, starting at the query q. It is used to �nd an expanded query q̂, whih is usedto ompute angles to sore the doument vetors aj . We also give quantities thatan be used to determine onvergene. In our ontext the algorithm is stopped at amuh earlier stage than for instane when solving least squares problems. Finally, insetion 4, we show results of some numerial experiments, using both the small andwell known Cran�eld data and a larger test matrix oming from the Finanial Timesolletion in the TREC material [11℄.We have formulated our algorithm and got some preliminary results in the li-entiate thesis of the �rst author [3℄. Further developments, like term weighting,experiments on more data sets and the inlusion of relevane feed bak is disussedin the thesis [4℄. Experiments on small matries are reported in more detail in theonferene ontribution [5℄.1.2. Notations.Matries:. Throughout this paper, A will denote them�n term doument matrix.The j:th olumn vetor of the matrix A will be denoted aj and the j:th olumn vetor2



of the identity matrix I will be denoted ej .Singular Value Deomposition:. LetA = U�V T (1.1)be the SVD of A, see [10℄. The best rank s approximation to A in the Frobenius orsum of squares norm is A(s) = Us�ssV Ts (1.2)where Us and Vs are formed by the �rst s olumns of U and V and the s� s diagonalmatrix �ss has the s largest singular values �1 � �2 � � � � � �s in its diagonal.Seen as a mapping, the m � n matrix A maps the n dimensional spae Rn intoits range spae R(A), the subspae of Rm whih is spanned by the olumns of A. Itsdimension is r the rank of A.Krylov spaes:. A Krylov subspae of a square matrix C, starting at the vetorv, is a subspae of the formKr(C; v) = spanfv; Cv; C2v; : : : Cr�1vg: (1.3)Inreasing the dimension r we �nally get the entire reahable subspae of the pair(C; v). Its dimension is r � n, the dimension of v.Measures:. Two standard measures used by the information retrieval ommunityare Preision and Reall. Preision is the ratio of the number of relevant doumentsretrieved for a given query over the total number of douments retrieved. Reall isthe ratio of relevant douments retrieved over the total number of relevant doumentsfor that query. Preision and reall are usually inversely related (when preision goesup, reall goes down and vie versa). A reall level for a partiular query an bearbitrarily hosen from 1t ; 2t : : : 1 where t is the number of relevant douments to thispartiular query.In order to show preision at various reall levels graphially, interpolation maybe used. The interpolated preision at a reall uto� R for one query is de�ned to bethe maximum preision at all reall levels greater than and equal to R.The average preision, is a single valued measure that reets performane over allrelevant douments. Average preision is the average of the preision value obtainedafter eah relevant doument is retrieved. Average preision will reward systemsthat rank all relevant douments high, the last relevant doument found is equallyimportant as the �rst.When reporting results for test sets with multiple queries, we will onsider themean interpolated average preision over all queries at a �xed sequene of reall uto�values.A way to ompare performane when �nding the �rst relevant douments is do-ument level average, DLA(i), the preision when a ertain number, i, of doumentsare retrieved. It mimis the use of a searh engine where 10 douments are presentedto the user eah time. Then DLA(10) is the fration of those that are relevant. Forfurther details, see Harman [11℄.Relevane is always judged by omparing the results of an algorithm to relevanejudgments provided with the test sets. These have been ompiled by a panel of humanexperts who have onsidered at least all those douments marked as relevant.3



2. Subspae methods. In a general sense, the vetor spae method works in aspae D of all douments that an be expressible as texts. This spae of all possibledouments has a ountably in�nite number of dimensions, and it is not simple to de-termine loseness between two douments. We therefore hoose to see eah doumentas a bag of terms, and represent it as a vetor aj 2 Rm in the m dimensional spaeof doument vetors. This is already a rather severe restrition, we have redued thedimension from in�nity to m. We have also made a hoie of whih words we regardas signi�ant, and used these words as terms.When terms are hosen, we represent the query as a vetor q 2 Rm. We useangles between the query vetor q and the doument vetors aj to determine whihdouments to retrieve in the naive vetor spae method.In our information retrieval task, we have a �nite olletion of n douments tohoose from, they build up a doument olletion spae A = R(A), the range spae ofthe term doument matrix A, whih is of dimension at most n. Most often the numberof terms m is larger than the number of douments, m > n, and the douments arelinearly independent, making A into an n dimensional subspae A � Rm. The queryvetor q is not in this subspae A, but we may use the projeted query vetor PAq,and retrieve those douments aj that are losest to that vetor. If we use angles inthe Eulidean spae to deide loseness, this will yield the same ranking as when weuse the angles between the doument vetors and the original query vetor.A wide lass of IR algorithms an now be lassi�ed as subspae algorithms wherewe restrit our view to a subspae S � A and use angles between a projeted queryq̂ = PSq and projeted douments âj = PSaj .Let us look at some natural hoies of subspaes S :2.1. Dominant subspae: Latent semanti indexing. Latent Semanti In-dexing, LSI, [8℄ uses the singular value deomposition, SVD (1.1) of the term doumentmatrix A = U�V Tand hoose the spae of the leading s singular vetors (1.2)S = span [Us℄It separates the global and general struture, orresponding to the large singularvetors, from loal or noisy information, whih hides among the small. LSI has beenreported to perform quite well on both rather large and small doument olletions.See for example Dumais [7℄. It an handle synonymy (when two words mean the same)and polysemy (when one word has several distint meanings depending on ontext)quite well. However LSI needs a substantial omputational work to get the SVD, andthere is no simple way to determine how many singular vetors s that are needed tospan the leading subspae. Work on this has been done by M Berry [1℄ and H Zha etal [16℄.2.2. Classi�ation: Centroid vetors. The singular vetors make up a basisof the best rank s approximation to the given term doument matrix A, and this anbe onsidered as the best subspae if nothing else is known. On the other hand, if weknow that the douments are taken from a set of sublasses, we may use a arefullyseleted set of entroid or onept vetors, as a basis of another subspae S, see Dhillonand Modha [6℄. Park et al [13℄ ompare the use of singular and entroid vetors in ageneral formulation of low rank approximations of the term doument matrix A.4



2.3. Reahable subspaes: Krylov sequenes. In the present ontribution,we will try a third sequene of subspaes. We will let the subspaes be determined bythe query vetor q. We take it as the Krylov sequene of subspaes of vetors reahedfrom q via a small number k of naive vetor spae searhes.In matrix language, this means that we take the query vetor q, multiply itwith the transposed term doument matrix A to get a ranking or soring vetorp = AT q. Eah element pj of p is a salar produt between the query vetor q andthe orresponding doument vetor aj , so the elements of p give a ranking from thenaive vetor spae method (if the olumns of A are normalized). In this �rst step ofthe Krylov sequene, we �nd those douments that are diretly related to the query,let us say its sisters.In the seond step, we multiply this soring vetor p with the term doumentmatrix A to get a new vetor q2 = Ap, a new query that ontains all the terms thatwere ontained in the douments that p pointed to. If we apply this new query, weget p2 = AT q2 whih points to all douments that ontain any of all the terms in q2,i. e. those two links away from the query, let us say its ousins.In later steps this ontinues in a hain letter fashion, and soon we will reah alldouments in the olletion that are reahable from the query, to borrow a term fromControl Theory. In matrix language,S = Kk(AAT ; q) (2.1)after k steps, see (1.3).In our omputation we do not just follow the Krylov sequene, we also make thevetors q1; q2; : : : ; qr and p1; p2; : : : ; pr into orthogonal bases. Intuitively this meansthat we remember what we asked for in the �rst query q1, and make a totally di�erentquery next time, q2. This is standard pratie in numerial linear algebra.2.4. Relevant subspaes. There is a fourth subspae that is of theoretialinterest, and an be used for omparison purposes. That is the relevant subspaeZ spanned by those douments that are relevant to the query q. This subspaeis not possible to use in any pratial algorithm, it supposes that all the relevantdouments are already known. However, it is interesting to see if the query q is loserto the relevant subspae Z , than to any other subspae spanned by a similar numberof doument vetors. Are there many irrelevant douments that are loser to therelevant subspae Z than the query q?In a way, the properties of the relevant subspae determine if there is any hopefor any algorithm, built up by tools from numerial linear algebra, to �nd the relevantdouments to a given query.2.5. Subspaes and query expansion. Subspae algorithms are losely re-lated to another lass of re�ned vetor spae IR methods built up around queryexpansion. Say that the subspae algorithm takes a subspae S in any of the mannersdesribed in the previous subsetions, and uses the angles between the projeted queryq̂ = PSq and the projeted douments âj = PSaj , to determine whih douments ajthat are relevant to the query q. The osine of this angle iŝj = q̂T âjkq̂k2kâjk2The salar produt in the numerator isq̂T âj = (PSq)TPSaj = qTP TS PSaj = qTPSaj = (PSq)T aj = q̂T aj ;5



provided that the projetion is orthogonal, P T = P . We see the salar produtbetween the projeted query vetor q̂ and the projeted doument vetor âj is thesame as that between the projeted query q̂ and the original doument vetor aj .Using salar produts to determine loseness, the subspae method based on S givesthe same result as a straightforward vetor spae method using the expanded queryq̂. The angles are not invariant however, sine the norms in the denominator di�er.We know that kâjk2 � kajk giving a larger osine or smaller angle in the subspaethan in the query expansion ase.Still, the result of a subspae method based on S is losely related to using theexpanded query q̂ = PSq in the original vetor spae method.When we hoose S as a Krylov subspae (2.1), our hoie of query expansion isrelated to the tehnique of Spark Jones [14℄. The seond vetor in the the Krylov se-quene (2.1), ~q2 = AAT q, weighs in omponents of all terms that are o-ourring withthe terms in the original query. The weights give an emphasis to the o-ourrenein the douments that are ranked highest in the vetor spae searh, p = AT q, givingan e�et similar to the loal expansions of Xu and Croft [15℄.3. The Krylov subspae algorithm. We use the Golub Kahan bidiagonaliza-tion algorithm [9℄ to ompute the Krylov sequene of subspaes (2.1). It is a variantof the Lanzos tridiagonalization algorithm and is widely used in the numerial linearalgebra ommunity .The Golub Kahan algorithm starts with the normalized query vetor q1 = q=kqk,and omputes two orthonormal bases P and Q, adding one olumn for eah step k,see [10℄ setion 9.3.3.Algorithm BidiagStart with q1 = q=kqk2 ; �1 = 0For k = 1; 2; : : : ; r do1. �kpk = AT qk � �kpk�12. �k+1qk+1 = Apk � �kqkEndThe salars �k and �k are hosen to normalize the orresponding vetors.De�ne Qr+1 = �q1 q2 : : : qr+1� ;Pr = �p1 p2 : : : pr� (3.1)Br+1;r = 26664�1�2 �2. . . �r�r+137775 :After r steps we have the basi reursion,ATQr = PrBTr;rAPr = Qr+1Br+1;rThe olumns of Qr will be an orthonormal basis of the Krylov subspae (2.1),span [Qr℄ = Kr(AAT ; q) � R([Aq℄) (3.2)6



in the doument spae, spanned by the query q and the olumns of A. The olumnsof Pr similarly span a basis of the Krylov subspaespan [Pr℄ = Kr(ATA;AT q) � R(AT ) ; (3.3)in the term spae spanned by the rows of A.We see that Br+1;r = QTr+1APr is the projetion of A into these Krylov subspaesand the singular values of Br+1;r will be approximations to those of A.If �k = 0 for some k � r we have exhausted the Krylov spae (3.2), reahablefrom the query q. Then QkBk;kP Tk is the restrition of A to this reahable subspae,and the singular values of Bk;k are a subset of those of A.The olumns of APr span the reahed subspae after r steps starting from q. Itis the intersetion between the Krylov subspae (3.2) and the olumn spae of A,R(APr) = span [Qr+1Br+1;r℄ � R(A) (3.4)The basi reursion (3.2) implies that it has the orthonormal basis Wr, whereWr = Qr+1Hr+1;r ; (3.5)with Hr+1;r+1 the orthogonal fator in the QR fatorization,Br+1;r = Hr+1;r+1R : (3.6)Note that sine Br+1;r is bidiagonal,Hr+1;r+1 will be both orthogonal and Hessenbergand an be omputed as a produt of r elementary rotations.The projeted query vetor. It is now easy to use the basis Wr (3.5) to projetthe query and the douments into the reahed subspae (3.4). The projeted query q̂is q̂ = PR(APr)q =WrW Tr q =WrHTr+1;re1 =Wr0BBB�h1;1h1;2...h1;r1CCCA (3.7)and we see that the �rst row of H gives the oordinates of the query in the basis W .When we run several steps r of our algorithm, new olumns are added to H , but whenone olumn r + 1 is added in step r, it is only the last r-th olumn that is modi�ed.We get the projeted doument âj similarly as,âj =WrW Tr aj : (3.8)3.1. Soring douments. We may regard our algorithm as a subspae methodand hoose the angles between the query and eah of the doument vetors, projetedonto the reahed subspae (3.4),Css(r)j = q̂T âjkq̂k2kâjk2 j = 1 : : : n: (3.9)Alternatively we may regard our algorithm as a query expansion method and use theangles between the projeted query and the original douments,Cqe(r)j = q̂Tajkq̂k2kajk2 j = 1 : : : n: (3.10)7



We ompute these quantities using the basis W (3.5) and the small orthogonalHessenberg Hr+1;r+1 (3.6). Apply an elementary orthogonal transformation Sr tomake all elements but the �rst in the �rst row of Hr+1;rSr zero. Then WrSr forms anew basis of the reahed subspae (3.4). The �rst element (y(r)j )1 in the vetory(r)j = STr W Tr ajwill give the omponent of aj along q̂ and the rest of the projeted âj (3.8) as thenorm of the remaining elements in y(r)j . Thus the subspae osine (3.9) isCss(r)j = (y(r)j )1ky(r)j )k2 ;while the query expansion osine (3.10) is slightly smaller atCqe(r)j = (y(r)j )1kajk2 :Our experiments have shown that using the query expansion osines Cqej (3.10)of the angles between projeted query and original douments for soring, often givesbetter performane than the subspae osines Cssj (3.9), so we use query expansion,Cqej ,as our standard. It gives a preferene for douments whose vetors aj are loserin angle to the reahed subspae.3.2. Following progress. In the Krylov method, a new bidiagonalization isperformed for every query vetor q. Thus the number of iterations must be small.The optimal number of iterations r is di�erent for various queries. Choosing theoptimal number r of iterations is an interesting and important problem. Figure 3.1show performane for the Cran�eld set using di�erent numbers of iterations r. Perfor-mane is measured by average preision. It is lear from this �gure that best averageperformane for all queries is reahed when three iterations are performed. Whenmore than three iterations are used, the performane rapidly onverges towards theperformane of the vetor model. Note that some queries show optimal performaneafter two iterations and very few after one iteration. For one iteration, performaneis worse than the performane for the vetor model for most queries. This pattern ofperformane (initial worse than the vetor model, inreasing performane and then arapid onvergene towards the vetor model) was observed for most of the queries inall data sets we tested.The onvergene towards the vetor model performane an easily be explainedand estimated using quantities from the bidiagonalization algorithm presented.Consider the least squares problemminx kAx� qk2; (3.11)where A is the term doument matrix and q is the query vetor. It an be solvedusing the Bidiag algorithm (see for example the textbook [10℄). In step k the distanebetween the query vetor and the projeted query vetor q̂(k) is the residuald(k) = q �Ax(k) = q � q̂(k):8



Here x(k) is the solution to problem (3.11) in step k. The distane dereases as welet k grow, but will not tend to zero unless the query is a linear ombination of thedouments in A 1.The normal equation residual AT d(k) = AT (q � q̂(k)) to the problem (3.11) willtend to zero as k grows. If the normal equation residual onverges monotonouslyto zero 2 then it is not surprising that the average preision for the Krylov method,using the query expansion soring Cqe(k)j (3.10), tends to the soring of the vetormodel. This is preisely what we see in �gure 3.1. Note that, even if the onvergeneof AT d(k) is monotonuous, the onvergene for the average preisions does not haveto be monotonuous. Looking losely into �gure 3.1, a few suh examples are visible.Finally d(k), the distane between the query and its projetion and the normalequation residual AT d(k), an easily be omputed for eah step k in the bidiagonal-ization proedure.In step k the distane between the query q and the projeted query q̂(k) isd(k) = q � q̂(k)= Qk+1e1 �Qk+1Hk+1;kHTk+1;ke1= Qk+1(I �Hk+1;kHTk+1;k)e1= Qk+1h(k)k+1h(k)Tk+1 e1= Qk+1h(k)k+1h(k)1;k+1 (3.12)and its norm is just kd(k)k = jh(k)1;k+1j (3.13)The normal equation residual isAT d(k) = ATQk+1h(k)k+1h(k)1;k+1= Pk+1BTk+1;k+1h(k)k+1h(k)1;k+1= Pk+1 � BTk+1;k0 �k+1�h(k)k+1h(k)1;k+1= Pk+1 0�k+1h(k)k+1;k+1!h(k)1;k+1: (3.14)
Its norm is kAT d(k)k = j�k+1h(k)k+1;k+1h(k)1;k+1j: (3.15)3.3. Complexity of the algorithm. In the Bidiag algorithm, the matrix ve-tor multipliations are performed between a sparse matrix and a dense vetor. Thenumber of operations needed is proportional to the number of nonzero elements in A.The rest of the algorithm onsists of subtrating and normalizing vetors of lengthm. In exat arithmeti we will have QTr+1Qr+1 = I and P Tr Pr = I (3.1). In standard1In our tests no query vetor is ompletely in the range of A2The onvergene of the normal equation residual is not in general monotonuous. For all testswe made however, the onvergene was monotonuous for at least the �rst 10 iterations.9
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Fig. 3.1. Average preision, for all 225 queries using the Cran�eld set for r = 1; 2 : : : 6 inthe Bidiag algorithm. The dark lines are the vetor model and the light grey lines are the Krylovsubspae model. Queries are sorted after inreasing vetor model apr.oating point arithmeti, fully aurate orthogonality of these vetors is only observedat the beginning of the proess. In order to reover the orthogonality some type ofreorthogonalization would be neessary. This would of ourse add operations to theomplexity of the algorithm. Sine we keep the number of iterations r very small, webelieve that no reorthogonalization is needed. The main omputational work for thedoument soring (3.9) (3.10) again is in the size of multiplying a sparse matrix witha dense vetor.4. Numerial experiments.Data sets:. Eah one of the test olletions we have used onsists of a doumentdata base and a set of queries for whih relevane judgments are available.For illustration and omparison purposes, we have used the small and widelyirulated data sets Medline, Cran�eld, ADI and CICI.We have also used larger test olletions reeived from the Text Retrieval Con-ferene (TREC) [11℄. The TREC 4 dis ontains three data olletions, the FinanialTimes, 1991-1994 (FT), the Federal Register, 1994 (FR94) and the CongressionalReord, 1993 (CR). The FT olletion, FR94 olletion and the CR olletion onsistsof 210,158, 55,630 and 27,922 douments respetively.Tests on data from the Cran�eld olletion and from the Finanial Times olle-tion will be reported here. Similar tests have been made for the Medline, ADI, CICI10
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Fig. 4.1. Preision as a funtion of reall for the Cran�eld olletion. Left: Interpolated andaveraged over all queries (reall level preision average). Dashed (- -) is vetor model, line withirle (-o) is LSI for rank s = 296, line (-) is our Krylov algorithm for r=3 steps. Right: OurKrylov algorithm to r=3 for 3 di�erent queries, preision at atual reall levels.and Congressional Reord olletions. See reports in [4, 5℄!Parsing the data sets:. For both olletions, any non-zero length string of har-aters, delimited by white spae or return, was regarded as a term. All terms thatourred in more than 10% of the douments were removed. They were onsideredto be ommon words of no interest for the retrieval. Eah element ai;j in the termdoument matrix was set to the number of ourrenes of term number i in doumentj . The size of the Cran�eld matrix is 7; 776 terms� 1; 400 douments. Before start-ing the bidiagonalization proess, �rst the rows and then the olumns of the termdoument matrix were normalized. This tends to deemphasize ommon terms andlong douments.The Finanial Times term doument matrix is of size m = 343; 578 terms by n =210; 158 douments with 26; 790; 949 nonzero elements. The olumns were normalizedbefore the bidiagonalization algorithm Bidiag was started.Results for the Cran�eld olletion:. There are 225 queries supplied with the testmatrix, together with indies j of relevant douments for eah eah query. This givesbetween 2 and 40 relevant douments for eah query, 476 douments were not relevantto any of the queries, 417 douments were relevant to just one, while the remaining507 douments were relevant to more than one and at most 8 of the 225 queries. We11
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proj res      Fig. 4.2. Cran�eld matrix, follow onvergene of bidiagonalization proedure starting at query q1.ompare our results to these orret answers.We �rst summarize the performane in an averaged preision-reall graph. In�gure 4.1 the vetor model is ompared to LSI and our algorithm, as desribed insetion 3, run for r = 3 steps. For the LSI method the optimal rank s = 296 in thelow rank approximation of A (1.2) was obtained by omputing the sum of the averagepreisions for eah query and simply piking the s with the largest sum. It is learthat our Krylov algorithm gives the best averaged preision at all reall levels forthese Cran�eld data.Let us look into the details and follow the Golub Kahan algorithm on one query.Take query 1, it has 29 relevant douments whih is rather many for a Cran�eld query.Our algorithm sores this query reasonably well. In �gure 4.2 we follow the progress inlinear algebra terms, as we exeute the algorithm for steps k = 1; : : : ; 12. Cirles arethe residual norms kr(k)k, (3.13), they derease unnotieably slowly from 1 to 0.879.This means that the query q is at a rather large angle to the reahed subspae (3.4),it has a projetion of length 0.477. We plot the normal equation residuals kAT r(k)k,(3.15), as pluses, and note that they derease fast enough at a linear rate. After 12steps we have found the projetion of the query into the doument spae spanned byA to nearly 3 deimals.We were urious to see how the singular values onverged and plotted estimatesof their auraies as points. Note that the leading singular value onverged very fast,after 12 steps its vetor is aurate to 9 deimals and the singular value to full mahine12
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Fig. 4.3. Cran�eld matrix, Query 1, upper half step r = 12, lower half step r = 2. Numbersare rankings given by the algorithm to relevant douments. Cirles mark relevant douments whilepoints mark those not relevant. Asterix marks the projeted query.preision. It is well known that the basis vetors Qk keep orthogonal until one of thesingular values onverges. We plotted the orthogonality of eah basis vetor qk to itspredeessors Qk�1 as rosses and, true to theory, the rosses and points interset athalf the mahine auray level 10�8 during step 10.Let us now turn to a view of all the douments, and see how well we �nd the13



relevant douments for query 1. We plot them in a two dimensional oordinate systemin �gure 4.3. The x axis is along the projeted query q̂ (3.7). The y axis is used toplot the omponent of eah aj in the reahed subspae (3.8) orthogonal to q̂. Thismakes up two of the three omponents of eah aj vetor. We an infer the length ofthe third omponent, whih is orthogonal to the reahed subspae, by rememberingthat all vetors aj were normalized to unit length, so the distanes of the pointsplotted to the origin indiate how lose the vetors are to the reahed subspae.Those shown lose to the origin are far from the reahed subspae. If we ontinuethe bidiagonalization to full length r = n, most of the vetors will get unit length,beause then the reahed subspae is the whole span of A, exept in the rare asewhen the query is totally unrelated to a part of the doument olletion.If we use our standard query expansion based soring method (3.10), taking anglesbetween the original douments and the projeted query, we would hoose doumentsfrom right to left as plotted in �gure 4.3, and we an hek how well we �nd therelevant douments. We show this by giving the ranking beside eah of the 10 highestsored relevant douments. Look at the lower part of �gure 4.3 whih shows thesituation after r = 2 steps. First omes douments 1, 2, and 3 they are all relevant.Then the next relevant doument is retrieved as number 6, we see two non relevantdouments as points above and losely below the irle with number 6. Then thenext relevant doument is retrieved as number 9. Now our algorithm has given us10 suggestions, of whih we �nd that 5 are relevant. We say that DLA(10), thedoument level average preision after 10 douments is 0.5. The average preisionover all relevant douments [11℄, is lower, 0:297, sine the last relevant douments arefound muh later, we see that the 10:th relevant doument sores as number 30 whilethe 29:th and last one does not appear until 1029.Look at the upper half of �gure 4.3, the �nal one after r = 12 steps. Thereare many points along the y axis, they denote douments that are orthogonal to theprojeted query, and will be the last ones sored. Atually 933 of the 1400 doumentsare orthogonal to the original query.When soring douments by angles in the reahed plane (3.9), these an be seenas angles to the x axis in �gure 4.3. It did not di�er muh from the standard queryexpansion soring (3.10), for some queries it was better for others it was worse. Forthis Query 1, it gave about the same average preision at 0.296 and retrieved relevantdouments ranked as 1,2,3,4,5,9, giving a DLA(10) = 0:6. The third soring hoie(angles to Krylov subspae) amounts to hoosing those douments plotted far fromthe origin in �gure 4.3, and gives about the same hoies but with lower averagepreision, 0.180, and DLA(10) = 0:4.Results for the Finanial Times olletion:. There are several queries providedwith the TREC olletion. We have used query number 251 to 350. Nine of thequeries do not have any relevant answers among the Finanial Times douments, andfor the rest of the queries there are between 1 and 280 relevant douments. Altogether3,044 of the 210,158 douments are relevant to some query, 116 douments are relevantto two queries and 7 douments are relevant to three queries.In �gure 4.4 the vetor model is ompared to our algorithm run to r = 3. Theexperiments were made in the same way as for �gure 4.1, but we did not have resultsfor LSI for this large matrix. Douments were sored using the standard query ex-pansion sores (3.10). We did hoose r = 3 as dimension of the Krylov subspae, herethe results were better for larger subspaes for some of the queries.We hoose suh a query, number 344, to report in �gure 4.5. As for �gure 4.3,14
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Fig. 4.4. Interpolated preisions for reall levels 0; 0:1; : : : 1 for the Finanial Times olletionfrom the TREC data base. The vetor model ({) is ompared to our algorithm for r = 3 (- -) . Theaverage of the 25 douments that are best ranked by the vetor spae method are inluded.the x axis is along the projeted query q̂ (3.7) and the y axis is used to plot theomponent of eah doument vetor in the reahed subspae. The labels show theranking of the relevant douments, there are only 3 relevant douments among all the210,158, quite like seeking a needle in a haystak. Note that the relevant doumentsget better ranking for the larger subspae r = 6 than for r = 3. This question is notone of the 25 best questions inluded in �gure 4.4.Disussion:. The experiments have shown good performane for the small dataset (Cranield), but not that good performane for the larger Finanial times (FT) set.Although we annot notie any major di�erenes in the struture of the term dou-ment matries or the distribution of singular values, there are di�erenes between thetwo sets. The FT set onsists of news telegrams and Cran�eld of sienti� papers. Forthe Cran�eld olletion, most users will probably agree on the relevane judgementsgiven for this set, while for the FT douments more subjetivity is involved in therelevane judgements. We believe the larger sets do reet a more realisti ase.The onstrution of the FT matrix also plays a role in the performane of ouralgorithm. Perhaps more are has to be taken when deiding what terms to use forthe matrix. It might not be enough to remove all terms ourring in more than 10%of the douments, maybe that �gure should be 5% or something else.Some type of row and olumn normalization is useful. In our Cran�eld exper-iments, we �rst normalized the row vetors, and then the olumn vetors. Even ifthe normalization of the olumn vetors destroys the row normalization, a smoothinge�et remains. This had some e�et for the performane for the Cran�eld matrix.For the FT matrix only the olumns were normalized.The starting vetor (the query) in our algorithm plays an important role, and itmight also bene�t our algorithm to pay more attention to how to onstrut the queryvetor. We have only tried our algorithm for at most r = 12 steps, sine generating alarger subspae is too time onsuming to be interesting in a realisti ase. Moreover15
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