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Abstract. An new algorithm for information retrieval is described. It is a vector space method
with automatic query expansion. The original user query is projected onto a Krylov subspace gener-
ated by the query and the term-document matrix. Each dimension of the Krylov space is generated
by a simple vector space search, first using the user query and then new queries generated by the
algorithm and orthognal to the previous query vectors.

The new algorithm is closely related to latent semantic indexing, LSI, but it is a local algorithm
that works on a new subspace of very low dimension for each query. This makes it faster and more
flexible than LSI. No preliminary computation of the singular value decomposition, SVD, is needed
and changes in the data base cause no complication.

Numerical tests on both small (Cranfield) and larger (Financial Times data from the TREC
collection) data sets are reported. The new algorithm gives better precision at given recall levels
than simple vector space and LSI in those cases that have been compared.
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1. Introduction. The purpose of an information retrieval (IR) system is to seek
through a large collection of information items, or documents, to retrieve those relevant
to information requests, or queries, stated by a user. In the present contribution, we
will show how computational tools from Numerical Linear Algebra can be helpful. We
will use IR criteria to decide success or failure of the algorithms developed. How large
part of the relevant documents are found, and how many of the retrieved documents
are relevant to the user?

The documents may be books in a library, documents in a data base of news
telegrams, scientific papers in journals or web pages on the world wide web (WWW).
Each document contains terms, words that are significant in some way. The query is
also formulated in terms of the same kind. We will look at the document collection
as a huge matrix, where there is one row for each term that occurs anywhere in the
collection and each column represents one document. This term-document matrix is
denoted A throughout this paper. We let the element a;; in row 7 and column j of
A be nonzero if the i-th term is present in document number j, zero otherwise. The
term document matrix will typically be very large and very sparse. The query will be
expressed by the same terms as the documents, i.e. as a column vector g, where the
i-th element ¢; is nonzero if the i-th term is a part of the query, zero otherwise.

A very simple IR algorithm is to choose those documents that contain any of the
terms in the query. This Boolean search can be expressed as a row vector p? = g7 A,
where each element p; is the scalar product between the query vector ¢ and a document
column vector a; of A, and choosing those documents for which p; is nonzero. (We
use the common linear algebra convention of letting a Latin letter stand for a column
vector and T stand for transposing a column into a row. The matrix A has the columns
A =lai,az,...,a,).)
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The vector space model is a refinement of Boolean search. The numerical values
of the scalar products p; are used to get angles between the query vector ¢ and the
document vectors aj. The documents are scored, starting with those that make the
smallest angle to the query vector.

In the present contribution we will study refinements of the vector space model.
The main emphasis is on subspace metods, where we project the query and document
vectors on a carefully chosen subspace, and use the angles between these projected
vectors to determine closeness. We show that in many cases subspace methods behave
in a similar way to methods based on query expansion, another common class of refined
vector space methods.

One subspace method is Latent Semantic Indexing [8], where the dominant prin-
cipal component subspace computed by the singular value decomposition, SVD, is
used. It is supposed to filter away noisy and particular information from the general
and relevant information that we need to distinguish between documents on different
subjects. Another subspace method is based on a known classification and uses con-
cept vectors [6, 13]. One may also apply a probability model. This leads to computing
convex combinations of nonegative basis vectors, [12, 2].

The purpose of this contribution is to develop a new subspace method based on
Krylov sequences of subspaces reachable from the query vector. The first steps of
the Krylov sequence correspond to a query expansion that is closely related to query
expansion based on co-occurrences as introduced by Sparck Jones [14] and studied by
Xu and Croft [15].

The advantage of our approach, compared to LSI, is that it works on the original
term document matrix A, no SVD computation is needed in the outset, and it is trivial
to add and delete terms and documents between queries. The main computational
work is the same as a few applications of a naive vector space search, the rest is
manipulation of small matrices.

1.1. Summary of contents. After some preliminary explanations of numerical
linear algebra and information retrieval notations in this section, we describe subspace
methods in section 2. We explain their common characteristics and show that some
well known algorithms can be characterized as subspace methods, using different, sub-
spaces. We also discuss the relation between subspace methods and query expansion.
In section 3 we describe the Krylov subspace algorithm we have used. It is simply the
well known Golub Kahan bidiagonalization [9], applied to the term document matrix
A, starting at the query ¢. It is used to find an expanded query ¢, which is used
to compute angles to score the document vectors a;. We also give quantities that
can be used to determine convergence. In our context the algorithm is stopped at a
much earlier stage than for instance when solving least squares problems. Finally, in
section 4, we show results of some numerical experiments, using both the small and
well known Cranfield data and a larger test matrix coming from the Financial Times
collection in the TREC material [11].

We have formulated our algorithm and got some preliminary results in the li-
centiate thesis of the first author [3]. Further developments, like term weighting,
experiments on more data sets and the inclusion of relevance feed back is discussed
in the thesis [4]. Experiments on small matrices are reported in more detail in the
conference contribution [5].

1.2. Notations.
Matrices:. Throughout this paper, A will denote the m xn term document matrix.
The j:th column vector of the matrix A will be denoted a; and the j:th column vector
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of the identity matrix I will be denoted e;.
Singular Value Decomposition:. Let

A=UxvT (1.1)

be the SVD of A, see [10]. The best rank s approximation to A in the Frobenius or
sum of squares norm is

AL =y,3,, VT (1.2)

where Ug and V; are formed by the first s columns of U and V' and the s x s diagonal
matrix X, has the s largest singular values g1 > g9 > -+ > 0, in its diagonal.

Seen as a mapping, the m x n matrix A maps the n dimensional space R™ into
its range space R(A), the subspace of R™ which is spanned by the columns of A. Its
dimension is r the rank of A.

Krylov spaces:. A Krylov subspace of a square matrix C, starting at the vector
v, is a subspace of the form

K.(C,v) = span{v, Cv, C?v,...C" *v}. (1.3)

Increasing the dimension r we finally get the entire reachable subspace of the pair
(C,v). Its dimension is r < n, the dimension of v.

Measures:. Two standard measures used by the information retrieval community
are Precision and Recall. Precision is the ratio of the number of relevant documents
retrieved for a given query over the total number of documents retrieved. Recall is
the ratio of relevant documents retrieved over the total number of relevant documents
for that query. Precision and recall are usually inversely related (when precision goes
up, recall goes down and vice versa). A recall level for a particular query can be
arbitrarily chosen from 1,2 ...1 where ¢ is the number of relevant documents to this
particular query.

In order to show precision at various recall levels graphically, interpolation may
be used. The interpolated precision at a recall cutoff R for one query is defined to be
the maximum precision at all recall levels greater than and equal to R.

The average precision, is a single valued measure that reflects performance over all
relevant documents. Average precision is the average of the precision value obtained
after each relevant document is retrieved. Average precision will reward systems
that rank all relevant documents high, the last relevant document found is equally
important as the first.

When reporting results for test sets with multiple queries, we will consider the
mean interpolated average precision over all queries at a fixed sequence of recall cutoff
values.

A way to compare performance when finding the first relevant documents is doc-
ument level average, DLA(7), the precision when a certain number, i, of documents
are retrieved. It mimics the use of a search engine where 10 documents are presented
to the user each time. Then DLA(10) is the fraction of those that are relevant. For
further details, see Harman [11].

Relevance is always judged by comparing the results of an algorithm to relevance
judgments provided with the test sets. These have been compiled by a panel of human
experts who have considered at least all those documents marked as relevant.
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2. Subspace methods. In a general sense, the vector space method works in a
space D of all documents that can be expressible as texts. This space of all possible
documents has a countably infinite number of dimensions, and it is not simple to de-
termine closeness between two documents. We therefore choose to see each document
as a bag of terms, and represent it as a vector a; € R™ in the m dimensional space
of document vectors. This is already a rather severe restriction, we have reduced the
dimension from infinity to m. We have also made a choice of which words we regard
as significant, and used these words as terms.

When terms are chosen, we represent the query as a vector ¢ € R™. We use
angles between the query vector ¢ and the document vectors a; to determine which
documents to retrieve in the naive vector space method.

In our information retrieval task, we have a finite collection of n documents to
choose from, they build up a document collection space A = R(A), the range space of
the term document matrix A, which is of dimension at most n. Most often the number
of terms m is larger than the number of documents, m > n, and the documents are
linearly independent, making A into an n dimensional subspace A C R™. The query
vector ¢ is not in this subspace A, but we may use the projected query vector P4q,
and retrieve those documents a; that are closest to that vector. If we use angles in
the Euclidean space to decide closeness, this will yield the same ranking as when we
use the angles between the document vectors and the original query vector.

A wide class of IR algorithms can now be classified as subspace algorithms where
we restrict our view to a subspace S C A and use angles between a projected query
G = Psq and projected documents a; = Psa;.

Let us look at some natural choices of subspaces S :

2.1. Dominant subspace: Latent semantic indexing. Latent Semantic In-
dexing, LSI, [8] uses the singular value decomposition, SVD (1.1) of the term document
matrix

A=Uxv’
and choose the space of the leading s singular vectors (1.2)
S = span [Us]

It separates the global and general structure, corresponding to the large singular
vectors, from local or noisy information, which hides among the small. LSI has been
reported to perform quite well on both rather large and small document collections.
See for example Dumais [7]. It can handle synonymy (when two words mean the same)
and polysemy (when one word has several distinct meanings depending on context)
quite well. However LSI needs a substantial computational work to get the SVD, and
there is no simple way to determine how many singular vectors s that are needed to
span the leading subspace. Work on this has been done by M Berry [1] and H Zha et
al [16].

2.2. Classification: Centroid vectors. The singular vectors make up a basis
of the best rank s approximation to the given term document matrix A, and this can
be considered as the best subspace if nothing else is known. On the other hand, if we
know that the documents are taken from a set of subclasses, we may use a carefully
selected set of centroid or concept vectors, as a basis of another subspace S, see Dhillon
and Modha [6]. Park et al [13] compare the use of singular and centroid vectors in a
general formulation of low rank approximations of the term document matrix A.
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2.3. Reachable subspaces: Krylov sequences. In the present contribution,
we will try a third sequence of subspaces. We will let the subspaces be determined by
the query vector q. We take it as the Krylov sequence of subspaces of vectors reached
from ¢ via a small number £ of naive vector space searches.

In matrix language, this means that we take the query vector ¢, multiply it
with the transposed term document matrix A to get a ranking or scoring vector
p = ATq. Each element p; of p is a scalar product between the query vector ¢ and
the corresponding document vector aj, so the elements of p give a ranking from the
naive vector space method (if the columns of A are normalized). In this first step of
the Krylov sequence, we find those documents that are directly related to the query,
let us say its sisters.

In the second step, we multiply this scoring vector p with the term document
matrix A to get a new vector ¢o = Ap, a new query that contains all the terms that
were contained in the documents that p pointed to. If we apply this new query, we
get py = AT gy which points to all documents that contain any of all the terms in gy,
i. e. those two links away from the query, let us say its cousins.

In later steps this continues in a chain letter fashion, and soon we will reach all
documents in the collection that are reachable from the query, to borrow a term from
Control Theory. In matrix language,

after k steps, see (1.3).

In our computation we do not just follow the Krylov sequence, we also make the
vectors qi,qa2,---,qy and pi,psa, ..., P, into orthogonal bases. Intuitively this means
that we remember what we asked for in the first query ¢;, and make a totally different
query next time, ¢». This is standard practice in numerical linear algebra.

2.4. Relevant subspaces. There is a fourth subspace that is of theoretical
interest, and can be used for comparison purposes. That is the relevant subspace
Z spanned by those documents that are relevant to the query ¢. This subspace
is not possible to use in any practical algorithm, it supposes that all the relevant
documents are already known. However, it is interesting to see if the query ¢ is closer
to the relevant subspace Z, than to any other subspace spanned by a similar number
of document vectors. Are there many irrelevant documents that are closer to the
relevant subspace Z than the query ¢?

In a way, the properties of the relevant subspace determine if there is any hope
for any algorithm, built up by tools from numerical linear algebra, to find the relevant
documents to a given query.

2.5. Subspaces and query expansion. Subspace algorithms are closely re-
lated to another class of refined vector space IR methods built up around query
expansion. Say that the subspace algorithm takes a subspace S in any of the manners
described in the previous subsections, and uses the angles between the projected query
G = Psq and the projected documents a; = Psaj, to determine which documents a;
that are relevant to the query g. The cosine of this angle is

o= 0l
T ldll2llagll
The scalar product in the numerator is
¢"a; = (Psq)" Psaj = ¢" P§ Psaj; = q" Psa; = (Psq)"a; = ¢"a;,
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provided that the projection is orthogonal, PT = P. We see the scalar product
between the projected query vector ¢ and the projected document vector a; is the
same as that between the projected query ¢ and the original document vector a;.
Using scalar products to determine closeness, the subspace method based on S gives
the same result as a straightforward vector space method using the expanded query
G. The angles are not invariant however, since the norms in the denominator differ.
We know that ||a;]]> < ||a;|| giving a larger cosine or smaller angle in the subspace
than in the query expansion case.

Still, the result of a subspace method based on § is closely related to using the
expanded query § = Psq in the original vector space method.

When we choose S as a Krylov subspace (2.1), our choice of query expansion is
related to the technique of Sparck Jones [14]. The second vector in the the Krylov se-
quence (2.1), o = AATq, weighs in components of all terms that are co-occurring with
the terms in the original query. The weights give an emphasis to the co-occurrence
in the documents that are ranked highest in the vector space search, p = ATq, giving
an effect similar to the local expansions of Xu and Croft [15].

3. The Krylov subspace algorithm. We use the Golub Kahan bidiagonaliza-
tion algorithm [9] to compute the Krylov sequence of subspaces (2.1). It is a variant
of the Lanczos tridiagonalization algorithm and is widely used in the numerical linear
algebra community .

The Golub Kahan algorithm starts with the normalized query vector ¢; = q/||q|l,
and computes two orthonormal bases P and @, adding one column for each step k,
see [10] section 9.3.3.

ALGORITHM BIDIAG
Start with q1 = q/l|q|l2, 81 =0
Fork=1,2,...,7 do
1. appr = ATqi — Bepr—1
2. Bry1Qr+1 = Apr — arqs
End

The scalars a and S}, are chosen to normalize the corresponding vectors.
Define

Qrii =l @ o @41,
Po=[p p2 ... pr
(3.1)
aq

B2 as
Br+1,r =
Ay

6r+1
After r steps we have the basic recursion,
ATQ, = P,BI,
APT‘ = Qr+1Br+17r

The columns of @, will be an orthonormal basis of the Krylov subspace (2.1),

span [Q,] = K,(447, q) C R([Aq)) (3.2)
6



in the document space, spanned by the query ¢ and the columns of A. The columns
of P, similarly span a basis of the Krylov subspace

span [P,] = K, (AT 4, ATq) C R(AT), (3.3)

in the term space spanned by the rows of A.

We see that Byy1, = QZHAPT is the projection of A into these Krylov subspaces
and the singular values of B, 1, will be approximations to those of A.

If Br = 0 for some k < r we have exhausted the Krylov space (3.2), reachable
from the query ¢. Then QkBk,kP,;F is the restriction of A to this reachable subspace,
and the singular values of By, j are a subset of those of A.

The columns of AP, span the reached subspace after r steps starting from ¢. It

is the intersection between the Krylov subspace (3.2) and the column space of A,
R(AP,) = span [@Qr+1Br+1,r] C R(A) (3.4)

The basic recursion (3.2) implies that it has the orthonormal basis W,, where

W, = Qr+1Hr+17r ; (35)
with H,y1 41 the orthogonal factor in the QR factorization,
Byy1,r=Hpp1 011 R (3.6)

Note that since By, is bidiagonal, Hy1 41 will be both orthogonal and Hessenberg
and can be computed as a product of r elementary rotations.

The projected query vector. It is now easy to use the basis W, (3.5) to project
the query and the documents into the reached subspace (3.4). The projected query §
is

hl,l
R T T h1,2
q=Priapyg=WW, q=W,H, e =W, | . (3.7)

hl,r

and we see that the first row of H gives the coordinates of the query in the basis .

When we run several steps r of our algorithm, new columns are added to H, but when

one column r + 1 is added in step r, it is only the last r-th column that is modified.
We get the projected document a; similarly as,

a; =W, Wla;. (3.8)

3.1. Scoring documents. We may regard our algorithm as a subspace method
and choose the angles between the query and each of the document vectors, projected
onto the reached subspace (3.4)

AT ~
aj .
Cssy) = 1% _ i-1...n (3.9)
14ll2]ld;1]2
Alternatively we may regard our algorithm as a query expansion method and use the
angles between the projected query and the original documents,

T
q aj;

Cgel” = 1

o ldllzllagll2
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We compute these quantities using the basis W (3.5) and the small orthogonal
Hessenberg H,y1 41 (3.6). Apply an elementary orthogonal transformation S, to

make all elements but the first in the first row of H,;1,S, zero. Then W,.S, forms a

new basis of the reached subspace (3.4). The first element (y(r)

; )1 in the vector

v = STWa;

will give the component of a; along ¢ and the rest of the projected a; (3.8) as the
(r)

norm of the remaining elements in y;"’. Thus the subspace cosine (3.9) is

(n
Csst”) = ; s

] — . 3
ISz
while the query expansion cosine (3.10) is slightly smaller at

(r)
Ogel”) = (y; 'h _
! lla;l2

Our experiments have shown that using the query expansion cosines Cqe; (3.10)
of the angles between projected query and original documents for scoring, often gives
better performance than the subspace cosines Css; (3.9), so we use query expansion,
Cqe;,as our standard. It gives a preference for documents whose vectors a; are closer
in angle to the reached subspace.

3.2. Following progress. In the Krylov method, a new bidiagonalization is
performed for every query vector q. Thus the number of iterations must be small.
The optimal number of iterations r is different for various queries. Choosing the
optimal number r of iterations is an interesting and important problem. Figure 3.1
show performance for the Cranfield set using different numbers of iterations r. Perfor-
mance is measured by average precision. It is clear from this figure that best average
performance for all queries is reached when three iterations are performed. When
more than three iterations are used, the performance rapidly converges towards the
performance of the vector model. Note that some queries show optimal performance
after two iterations and very few after one iteration. For one iteration, performance
is worse than the performance for the vector model for most queries. This pattern of
performance (initial worse than the vector model, increasing performance and then a
rapid convergence towards the vector model) was observed for most of the queries in
all data sets we tested.

The convergence towards the vector model performance can easily be explained
and estimated using quantities from the bidiagonalization algorithm presented.

Consider the least squares problem

min ||Az — ql|,, (3.11)

where A is the term document matrix and ¢ is the query vector. It can be solved
using the BID1AG algorithm (see for example the textbook [10]). In step k the distance
between the query vector and the projected query vector ¢(¥) is the residual

d®) = g — Ag®) = g — 48,
8



Here (%) is the solution to problem (3.11) in step k. The distance decreases as we
let k£ grow, but will not tend to zero unless the query is a linear combination of the
documents in A !,

The normal equation residual ATd*® = AT (q — ™) to the problem (3.11) will
tend to zero as k grows. If the normal equation residual converges monotonously
to zero ? then it is not surprising that the average precision for the Krylov method,
using the query expansion scoring qugk) (3.10), tends to the scoring of the vector
model. This is precisely what we see in figure 3.1. Note that, even if the convergence
of ATd®) is monotonuous, the convergence for the average precisions does not have
to be monotonuous. Looking closely into figure 3.1, a few such examples are visible.

Finally d®), the distance between the query and its projection and the normal
equation residual ATd*®), can easily be computed for each step k in the bidiagonal-
ization procedure.

In step k the distance between the query ¢ and the projected query ¢*) is

d*® = q-— ,j(k)
= Qry101 — Qk+1Hk+1,kH1?+1,kel
= Qe (I = Higa 1k Hiyy 1) (3.12)
= Qi) n)Tes
= Qk+1h§f£1h§]fli+l
and its norm is just
1a®] = (2] (3.13)

The normal equation residual is
ATA®) = ATQu ) 1F) |
k) 5 (k
= Pk+131{+1,k+1h§c+)1h5,11+1

Bl (k) (k)
= Pk+1 <0 ;;;1) hk+1h17k+1 (314)

P )AL
k1l g e

Its norm is

IATd® || = Jaksa i)y b (3.15)

3.3. Complexity of the algorithm. In the BIDIAG algorithm, the matrix vec-
tor multiplications are performed between a sparse matrix and a dense vector. The
number of operations needed is proportional to the number of nonzero elements in A.
The rest of the algorithm consists of subtracting and normalizing vectors of length
m. In exact arithmetic we will have QY Q.41 = I and PY P, = (3.1). In standard

n our tests no query vector is completely in the range of A
2The convergence of the normal equation residual is not in general monotonuous. For all tests
we made however, the convergence was monotonuous for at least the first 10 iterations.
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Fic. 3.1. Awerage precision, for all 225 queries using the Cranfield set for r = 1,2...6 in
the BIDIAG algorithm. The dark lines are the vector model and the light grey lines are the Krylov
subspace model. Queries are sorted after increasing vector model apr.

floating point arithmetic, fully accurate orthogonality of these vectors is only observed
at the beginning of the process. In order to recover the orthogonality some type of
reorthogonalization would be necessary. This would of course add operations to the
complexity of the algorithm. Since we keep the number of iterations r very small, we
believe that no reorthogonalization is needed. The main computational work for the
document scoring (3.9) (3.10) again is in the size of multiplying a sparse matrix with
a dense vector.

4. Numerical experiments.

Data sets:. Each one of the test collections we have used consists of a document
data base and a set of queries for which relevance judgments are available.

For illustration and comparison purposes, we have used the small and widely
circulated data sets Medline, Cranfield, ADI and CICI.

We have also used larger test collections received from the Text Retrieval Con-
ference (TREC) [11]. The TREC 4 disc contains three data collections, the Financial
Times, 1991-1994 (FT), the Federal Register, 1994 (FR94) and the Congressional
Record, 1993 (CR). The FT collection, FR94 collection and the CR collection consists
of 210,158, 55,630 and 27,922 documents respectively.

Tests on data from the Cranfield collection and from the Financial Times collec-
tion will be reported here. Similar tests have been made for the Medline, ADI, CICI
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Fia. 4.1. Precision as a function of recall for the Cranfield collection. Left: Interpolated and
averaged over all queries (recall level precision average). Dashed (- -) is vector model, line with
circle (-0) is LSI for rank s = 296, line (-) is our Krylov algorithm for r=3 steps. Right: Our
Krylov algorithm to r=3 for 3 different queries, precision at actual recall levels.

and Congressional Record collections. See reports in [4, 5]!

Parsing the data sets:. For both collections, any non-zero length string of char-
acters, delimited by white space or return, was regarded as a term. All terms that
occurred in more than 10% of the documents were removed. They were considered
to be common words of no interest for the retrieval. Each element a; ; in the term
document matrix was set to the number of occurrences of term number i in document
J .

The size of the Cranfield matrix is 7, 776 terms x 1,400 documents. Before start-
ing the bidiagonalization process, first the rows and then the columns of the term
document, matrix were normalized. This tends to deemphasize common terms and
long documents.

The Financial Times term document matrix is of size m = 343, 578 terms by n =
210, 158 documents with 26, 790, 949 nonzero elements. The columns were normalized
before the bidiagonalization algorithm BIDIAG was started.

Results for the Cranfield collection:. There are 225 queries supplied with the test
matrix, together with indices j of relevant documents for each each query. This gives
between 2 and 40 relevant documents for each query, 476 documents were not relevant
to any of the queries, 417 documents were relevant to just one, while the remaining
507 documents were relevant to more than one and at most 8 of the 225 queries. We
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F1a. 4.2. Cranfield matriz, follow convergence of bidiagonalization procedure starting at query qi .

compare our results to these correct answers.

We first summarize the performance in an averaged precision-recall graph. In
figure 4.1 the vector model is compared to LSI and our algorithm, as described in
section 3, run for r = 3 steps. For the LSI method the optimal rank s = 296 in the
low rank approximation of A (1.2) was obtained by computing the sum of the average
precisions for each query and simply picking the s with the largest sum. It is clear
that our Krylov algorithm gives the best averaged precision at all recall levels for
these Cranfield data.

Let us look into the details and follow the Golub Kahan algorithm on one query.
Take query 1, it has 29 relevant documents which is rather many for a Cranfield query.
Our algorithm scores this query reasonably well. In figure 4.2 we follow the progress in
linear algebra terms, as we execute the algorithm for steps £ = 1,...,12. Circles are
the residual norms ||r(*)||, (3.13), they decrease unnoticeably slowly from 1 to 0.879.
This means that the query ¢ is at a rather large angle to the reached subspace (3.4),
it has a projection of length 0.477. We plot the normal equation residuals ||ATr(*) ||,
(3.15), as pluses, and note that they decrease fast enough at a linear rate. After 12
steps we have found the projection of the query into the document space spanned by
A to nearly 3 decimals.

We were curious to see how the singular values converged and plotted estimates
of their accuracies as points. Note that the leading singular value converged very fast,
after 12 steps its vector is accurate to 9 decimals and the singular value to full machine
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Fia. 4.3. Cranfield matriz, Query 1, upper half step r = 12, lower half step r = 2. Numbers
are rankings given by the algorithm to relevant documents. Circles mark relevant documents while

points mark those not relevant. Asteriz marks the projected query.

precision. It is well known that the basis vectors @ keep orthogonal until one of the
singular values converges. We plotted the orthogonality of each basis vector ¢ to its
predecessors Qr—1 as crosses and, true to theory, the crosses and points intersect at

half the machine accuracy level 10~® during step 10.

Let us now turn to a view of all the documents, and see how well we find the
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relevant documents for query 1. We plot them in a two dimensional coordinate system
in figure 4.3. The x axis is along the projected query ¢ (3.7). The y axis is used to
plot the component of each a; in the reached subspace (3.8) orthogonal to §. This
makes up two of the three components of each a; vector. We can infer the length of
the third component, which is orthogonal to the reached subspace, by remembering
that all vectors a; were normalized to unit length, so the distances of the points
plotted to the origin indicate how close the vectors are to the reached subspace.
Those shown close to the origin are far from the reached subspace. If we continue
the bidiagonalization to full length r = n, most of the vectors will get unit length,
because then the reached subspace is the whole span of A, except in the rare case
when the query is totally unrelated to a part of the document collection.

If we use our standard query expansion based scoring method (3.10), taking angles
between the original documents and the projected query, we would choose documents
from right to left as plotted in figure 4.3, and we can check how well we find the
relevant documents. We show this by giving the ranking beside each of the 10 highest
scored relevant documents. Look at the lower part of figure 4.3 which shows the
situation after r = 2 steps. First comes documents 1, 2, and 3 they are all relevant.
Then the next relevant document is retrieved as number 6, we see two non relevant
documents as points above and closely below the circle with number 6. Then the
next relevant document is retrieved as number 9. Now our algorithm has given us
10 suggestions, of which we find that 5 are relevant. We say that DLA(10), the
document level average precision after 10 documents is 0.5. The average precision
over all relevant documents [11], is lower, 0.297, since the last relevant documents are
found much later, we see that the 10:th relevant document scores as number 30 while
the 29:th and last one does not appear until 1029.

Look at the upper half of figure 4.3, the final one after r = 12 steps. There
are many points along the y axis, they denote documents that are orthogonal to the
projected query, and will be the last ones scored. Actually 933 of the 1400 documents
are orthogonal to the original query.

When scoring documents by angles in the reached plane (3.9), these can be seen
as angles to the x axis in figure 4.3. It did not differ much from the standard query
expansion scoring (3.10), for some queries it was better for others it was worse. For
this Query 1, it gave about the same average precision at 0.296 and retrieved relevant
documents ranked as 1,2,3,4,5,9, giving a DLA(10) = 0.6. The third scoring choice
(angles to Krylov subspace) amounts to choosing those documents plotted far from
the origin in figure 4.3, and gives about the same choices but with lower average
precision, 0.180, and DLA(10) = 0.4.

Results for the Financial Times collection:. There are several queries provided
with the TREC collection. We have used query number 251 to 350. Nine of the
queries do not have any relevant answers among the Financial Times documents, and
for the rest of the queries there are between 1 and 280 relevant documents. Altogether
3,044 of the 210,158 documents are relevant to some query, 116 documents are relevant
to two queries and 7 documents are relevant to three queries.

In figure 4.4 the vector model is compared to our algorithm run to r = 3. The
experiments were made in the same way as for figure 4.1, but we did not have results
for LSI for this large matrix. Documents were scored using the standard query ex-
pansion scores (3.10). We did choose r = 3 as dimension of the Krylov subspace, here
the results were better for larger subspaces for some of the queries.

We choose such a query, number 344, to report in figure 4.5. As for figure 4.3,
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Fia. 4.4. Interpolated precisions for recall levels 0,0.1,...1 for the Financial Times collection
from the TREC data base. The vector model (—) is compared to our algorithm for r =3 (- -) . The
average of the 25 documents that are best ranked by the vector space method are included.

the x axis is along the projected query ¢ (3.7) and the y axis is used to plot the
component of each document vector in the reached subspace. The labels show the
ranking of the relevant documents, there are only 3 relevant documents among all the
210,158, quite like seeking a needle in a haystack. Note that the relevant documents
get better ranking for the larger subspace r = 6 than for » = 3. This question is not
one of the 25 best questions included in figure 4.4.

Discussion:. The experiments have shown good performance for the small data
set (Cranield), but not that good performance for the larger Financial times (FT) set.
Although we cannot notice any major differences in the structure of the term docu-
ment matrices or the distribution of singular values, there are differences between the
two sets. The FT set consists of news telegrams and Cranfield of scientific papers. For
the Cranfield collection, most users will probably agree on the relevance judgements
given for this set, while for the FT documents more subjectivity is involved in the
relevance judgements. We believe the larger sets do reflect a more realistic case.

The construction of the FT matrix also plays a role in the performance of our
algorithm. Perhaps more care has to be taken when deciding what terms to use for
the matrix. It might not be enough to remove all terms occurring in more than 10%
of the documents, maybe that figure should be 5% or something else.

Some type of row and column normalization is useful. In our Cranfield exper-
iments, we first normalized the row vectors, and then the column vectors. Even if
the normalization of the column vectors destroys the row normalization, a smoothing
effect remains. This had some effect for the performance for the Cranfield matrix.
For the FT matrix only the columns were normalized.

The starting vector (the query) in our algorithm plays an important role, and it
might also benefit our algorithm to pay more attention to how to construct the query
vector. We have only tried our algorithm for at most r = 12 steps, since generating a
larger subspace is too time consuming to be interesting in a realistic case. Moreover
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the starting vector looses its importance the longer we iterate. For our future work
we will concentrate on improving the starting vector and we will investigate how to
add relevance feedback to the algorithm.
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