
A KRYLOV SUBSPACE METHOD FOR INFORMATIONRETRIEVAL.KATARINA BLOM� AND AXEL RUHEyAbstra
t. An new algorithm for information retrieval is des
ribed. It is a ve
tor spa
e methodwith automati
 query expansion. The original user query is proje
ted onto a Krylov subspa
e gener-ated by the query and the term-do
ument matrix. Ea
h dimension of the Krylov spa
e is generatedby a simple ve
tor spa
e sear
h, �rst using the user query and then new queries generated by thealgorithm and orthognal to the previous query ve
tors.The new algorithm is 
losely related to latent semanti
 indexing, LSI, but it is a lo
al algorithmthat works on a new subspa
e of very low dimension for ea
h query. This makes it faster and more
exible than LSI. No preliminary 
omputation of the singular value de
omposition, SVD, is neededand 
hanges in the data base 
ause no 
ompli
ation.Numeri
al tests on both small (Cran�eld) and larger (Finan
ial Times data from the TREC
olle
tion) data sets are reported. The new algorithm gives better pre
ision at given re
all levelsthan simple ve
tor spa
e and LSI in those 
ases that have been 
ompared.Key words. Information Retrieval, Ve
tor spa
e model, Query expansion, Latent Semanti
indexing, Singular value de
omposition, Lan
zos algorithm, Krylov subspa
e.1. Introdu
tion. The purpose of an information retrieval (IR) system is to seekthrough a large 
olle
tion of information items, or do
uments, to retrieve those relevantto information requests, or queries, stated by a user. In the present 
ontribution, wewill show how 
omputational tools from Numeri
al Linear Algebra 
an be helpful. Wewill use IR 
riteria to de
ide su

ess or failure of the algorithms developed. How largepart of the relevant do
uments are found, and how many of the retrieved do
umentsare relevant to the user?The do
uments may be books in a library, do
uments in a data base of newstelegrams, s
ienti�
 papers in journals or web pages on the world wide web (WWW).Ea
h do
ument 
ontains terms, words that are signi�
ant in some way. The query isalso formulated in terms of the same kind. We will look at the do
ument 
olle
tionas a huge matrix, where there is one row for ea
h term that o

urs anywhere in the
olle
tion and ea
h 
olumn represents one do
ument. This term-do
ument matrix isdenoted A throughout this paper. We let the element aij in row i and 
olumn j ofA be nonzero if the i-th term is present in do
ument number j, zero otherwise. Theterm do
ument matrix will typi
ally be very large and very sparse. The query will beexpressed by the same terms as the do
uments, i.e. as a 
olumn ve
tor q, where thei-th element qi is nonzero if the i-th term is a part of the query, zero otherwise.A very simple IR algorithm is to 
hoose those do
uments that 
ontain any of theterms in the query. This Boolean sear
h 
an be expressed as a row ve
tor pT = qTA,where ea
h element pj is the s
alar produ
t between the query ve
tor q and a do
ument
olumn ve
tor aj of A, and 
hoosing those do
uments for whi
h pj is nonzero. (Weuse the 
ommon linear algebra 
onvention of letting a Latin letter stand for a 
olumnve
tor and T stand for transposing a 
olumn into a row. The matrix A has the 
olumnsA = [a1; a2; : : : ; an℄.)�Department of Computing S
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The ve
tor spa
e model is a re�nement of Boolean sear
h. The numeri
al valuesof the s
alar produ
ts pj are used to get angles between the query ve
tor q and thedo
ument ve
tors aj . The do
uments are s
ored, starting with those that make thesmallest angle to the query ve
tor.In the present 
ontribution we will study re�nements of the ve
tor spa
e model.The main emphasis is on subspa
e metods, where we proje
t the query and do
umentve
tors on a 
arefully 
hosen subspa
e, and use the angles between these proje
tedve
tors to determine 
loseness. We show that in many 
ases subspa
e methods behavein a similar way to methods based on query expansion, another 
ommon 
lass of re�nedve
tor spa
e methods.One subspa
e method is Latent Semanti
 Indexing [8℄, where the dominant prin-
ipal 
omponent subspa
e 
omputed by the singular value de
omposition, SVD, isused. It is supposed to �lter away noisy and parti
ular information from the generaland relevant information that we need to distinguish between do
uments on di�erentsubje
ts. Another subspa
e method is based on a known 
lassi�
ation and uses 
on-
ept ve
tors [6, 13℄. One may also apply a probability model. This leads to 
omputing
onvex 
ombinations of nonegative basis ve
tors, [12, 2℄.The purpose of this 
ontribution is to develop a new subspa
e method based onKrylov sequen
es of subspa
es rea
hable from the query ve
tor. The �rst steps ofthe Krylov sequen
e 
orrespond to a query expansion that is 
losely related to queryexpansion based on 
o-o

urren
es as introdu
ed by Spar
k Jones [14℄ and studied byXu and Croft [15℄.The advantage of our approa
h, 
ompared to LSI, is that it works on the originalterm do
ument matrix A, no SVD 
omputation is needed in the outset, and it is trivialto add and delete terms and do
uments between queries. The main 
omputationalwork is the same as a few appli
ations of a naive ve
tor spa
e sear
h, the rest ismanipulation of small matri
es.1.1. Summary of 
ontents. After some preliminary explanations of numeri
allinear algebra and information retrieval notations in this se
tion, we des
ribe subspa
emethods in se
tion 2. We explain their 
ommon 
hara
teristi
s and show that somewell known algorithms 
an be 
hara
terized as subspa
e methods, using di�erent sub-spa
es. We also dis
uss the relation between subspa
e methods and query expansion.In se
tion 3 we des
ribe the Krylov subspa
e algorithm we have used. It is simply thewell known Golub Kahan bidiagonalization [9℄, applied to the term do
ument matrixA, starting at the query q. It is used to �nd an expanded query q̂, whi
h is usedto 
ompute angles to s
ore the do
ument ve
tors aj . We also give quantities that
an be used to determine 
onvergen
e. In our 
ontext the algorithm is stopped at amu
h earlier stage than for instan
e when solving least squares problems. Finally, inse
tion 4, we show results of some numeri
al experiments, using both the small andwell known Cran�eld data and a larger test matrix 
oming from the Finan
ial Times
olle
tion in the TREC material [11℄.We have formulated our algorithm and got some preliminary results in the li-
entiate thesis of the �rst author [3℄. Further developments, like term weighting,experiments on more data sets and the in
lusion of relevan
e feed ba
k is dis
ussedin the thesis [4℄. Experiments on small matri
es are reported in more detail in the
onferen
e 
ontribution [5℄.1.2. Notations.Matri
es:. Throughout this paper, A will denote them�n term do
ument matrix.The j:th 
olumn ve
tor of the matrix A will be denoted aj and the j:th 
olumn ve
tor2



of the identity matrix I will be denoted ej .Singular Value De
omposition:. LetA = U�V T (1.1)be the SVD of A, see [10℄. The best rank s approximation to A in the Frobenius orsum of squares norm is A(s) = Us�ssV Ts (1.2)where Us and Vs are formed by the �rst s 
olumns of U and V and the s� s diagonalmatrix �ss has the s largest singular values �1 � �2 � � � � � �s in its diagonal.Seen as a mapping, the m � n matrix A maps the n dimensional spa
e Rn intoits range spa
e R(A), the subspa
e of Rm whi
h is spanned by the 
olumns of A. Itsdimension is r the rank of A.Krylov spa
es:. A Krylov subspa
e of a square matrix C, starting at the ve
torv, is a subspa
e of the formKr(C; v) = spanfv; Cv; C2v; : : : Cr�1vg: (1.3)In
reasing the dimension r we �nally get the entire rea
hable subspa
e of the pair(C; v). Its dimension is r � n, the dimension of v.Measures:. Two standard measures used by the information retrieval 
ommunityare Pre
ision and Re
all. Pre
ision is the ratio of the number of relevant do
umentsretrieved for a given query over the total number of do
uments retrieved. Re
all isthe ratio of relevant do
uments retrieved over the total number of relevant do
umentsfor that query. Pre
ision and re
all are usually inversely related (when pre
ision goesup, re
all goes down and vi
e versa). A re
all level for a parti
ular query 
an bearbitrarily 
hosen from 1t ; 2t : : : 1 where t is the number of relevant do
uments to thisparti
ular query.In order to show pre
ision at various re
all levels graphi
ally, interpolation maybe used. The interpolated pre
ision at a re
all 
uto� R for one query is de�ned to bethe maximum pre
ision at all re
all levels greater than and equal to R.The average pre
ision, is a single valued measure that re
e
ts performan
e over allrelevant do
uments. Average pre
ision is the average of the pre
ision value obtainedafter ea
h relevant do
ument is retrieved. Average pre
ision will reward systemsthat rank all relevant do
uments high, the last relevant do
ument found is equallyimportant as the �rst.When reporting results for test sets with multiple queries, we will 
onsider themean interpolated average pre
ision over all queries at a �xed sequen
e of re
all 
uto�values.A way to 
ompare performan
e when �nding the �rst relevant do
uments is do
-ument level average, DLA(i), the pre
ision when a 
ertain number, i, of do
umentsare retrieved. It mimi
s the use of a sear
h engine where 10 do
uments are presentedto the user ea
h time. Then DLA(10) is the fra
tion of those that are relevant. Forfurther details, see Harman [11℄.Relevan
e is always judged by 
omparing the results of an algorithm to relevan
ejudgments provided with the test sets. These have been 
ompiled by a panel of humanexperts who have 
onsidered at least all those do
uments marked as relevant.3



2. Subspa
e methods. In a general sense, the ve
tor spa
e method works in aspa
e D of all do
uments that 
an be expressible as texts. This spa
e of all possibledo
uments has a 
ountably in�nite number of dimensions, and it is not simple to de-termine 
loseness between two do
uments. We therefore 
hoose to see ea
h do
umentas a bag of terms, and represent it as a ve
tor aj 2 Rm in the m dimensional spa
eof do
ument ve
tors. This is already a rather severe restri
tion, we have redu
ed thedimension from in�nity to m. We have also made a 
hoi
e of whi
h words we regardas signi�
ant, and used these words as terms.When terms are 
hosen, we represent the query as a ve
tor q 2 Rm. We useangles between the query ve
tor q and the do
ument ve
tors aj to determine whi
hdo
uments to retrieve in the naive ve
tor spa
e method.In our information retrieval task, we have a �nite 
olle
tion of n do
uments to
hoose from, they build up a do
ument 
olle
tion spa
e A = R(A), the range spa
e ofthe term do
ument matrix A, whi
h is of dimension at most n. Most often the numberof terms m is larger than the number of do
uments, m > n, and the do
uments arelinearly independent, making A into an n dimensional subspa
e A � Rm. The queryve
tor q is not in this subspa
e A, but we may use the proje
ted query ve
tor PAq,and retrieve those do
uments aj that are 
losest to that ve
tor. If we use angles inthe Eu
lidean spa
e to de
ide 
loseness, this will yield the same ranking as when weuse the angles between the do
ument ve
tors and the original query ve
tor.A wide 
lass of IR algorithms 
an now be 
lassi�ed as subspa
e algorithms wherewe restri
t our view to a subspa
e S � A and use angles between a proje
ted queryq̂ = PSq and proje
ted do
uments âj = PSaj .Let us look at some natural 
hoi
es of subspa
es S :2.1. Dominant subspa
e: Latent semanti
 indexing. Latent Semanti
 In-dexing, LSI, [8℄ uses the singular value de
omposition, SVD (1.1) of the term do
umentmatrix A = U�V Tand 
hoose the spa
e of the leading s singular ve
tors (1.2)S = span [Us℄It separates the global and general stru
ture, 
orresponding to the large singularve
tors, from lo
al or noisy information, whi
h hides among the small. LSI has beenreported to perform quite well on both rather large and small do
ument 
olle
tions.See for example Dumais [7℄. It 
an handle synonymy (when two words mean the same)and polysemy (when one word has several distin
t meanings depending on 
ontext)quite well. However LSI needs a substantial 
omputational work to get the SVD, andthere is no simple way to determine how many singular ve
tors s that are needed tospan the leading subspa
e. Work on this has been done by M Berry [1℄ and H Zha etal [16℄.2.2. Classi�
ation: Centroid ve
tors. The singular ve
tors make up a basisof the best rank s approximation to the given term do
ument matrix A, and this 
anbe 
onsidered as the best subspa
e if nothing else is known. On the other hand, if weknow that the do
uments are taken from a set of sub
lasses, we may use a 
arefullysele
ted set of 
entroid or 
on
ept ve
tors, as a basis of another subspa
e S, see Dhillonand Modha [6℄. Park et al [13℄ 
ompare the use of singular and 
entroid ve
tors in ageneral formulation of low rank approximations of the term do
ument matrix A.4



2.3. Rea
hable subspa
es: Krylov sequen
es. In the present 
ontribution,we will try a third sequen
e of subspa
es. We will let the subspa
es be determined bythe query ve
tor q. We take it as the Krylov sequen
e of subspa
es of ve
tors rea
hedfrom q via a small number k of naive ve
tor spa
e sear
hes.In matrix language, this means that we take the query ve
tor q, multiply itwith the transposed term do
ument matrix A to get a ranking or s
oring ve
torp = AT q. Ea
h element pj of p is a s
alar produ
t between the query ve
tor q andthe 
orresponding do
ument ve
tor aj , so the elements of p give a ranking from thenaive ve
tor spa
e method (if the 
olumns of A are normalized). In this �rst step ofthe Krylov sequen
e, we �nd those do
uments that are dire
tly related to the query,let us say its sisters.In the se
ond step, we multiply this s
oring ve
tor p with the term do
umentmatrix A to get a new ve
tor q2 = Ap, a new query that 
ontains all the terms thatwere 
ontained in the do
uments that p pointed to. If we apply this new query, weget p2 = AT q2 whi
h points to all do
uments that 
ontain any of all the terms in q2,i. e. those two links away from the query, let us say its 
ousins.In later steps this 
ontinues in a 
hain letter fashion, and soon we will rea
h alldo
uments in the 
olle
tion that are rea
hable from the query, to borrow a term fromControl Theory. In matrix language,S = Kk(AAT ; q) (2.1)after k steps, see (1.3).In our 
omputation we do not just follow the Krylov sequen
e, we also make theve
tors q1; q2; : : : ; qr and p1; p2; : : : ; pr into orthogonal bases. Intuitively this meansthat we remember what we asked for in the �rst query q1, and make a totally di�erentquery next time, q2. This is standard pra
ti
e in numeri
al linear algebra.2.4. Relevant subspa
es. There is a fourth subspa
e that is of theoreti
alinterest, and 
an be used for 
omparison purposes. That is the relevant subspa
eZ spanned by those do
uments that are relevant to the query q. This subspa
eis not possible to use in any pra
ti
al algorithm, it supposes that all the relevantdo
uments are already known. However, it is interesting to see if the query q is 
loserto the relevant subspa
e Z , than to any other subspa
e spanned by a similar numberof do
ument ve
tors. Are there many irrelevant do
uments that are 
loser to therelevant subspa
e Z than the query q?In a way, the properties of the relevant subspa
e determine if there is any hopefor any algorithm, built up by tools from numeri
al linear algebra, to �nd the relevantdo
uments to a given query.2.5. Subspa
es and query expansion. Subspa
e algorithms are 
losely re-lated to another 
lass of re�ned ve
tor spa
e IR methods built up around queryexpansion. Say that the subspa
e algorithm takes a subspa
e S in any of the mannersdes
ribed in the previous subse
tions, and uses the angles between the proje
ted queryq̂ = PSq and the proje
ted do
uments âj = PSaj , to determine whi
h do
uments ajthat are relevant to the query q. The 
osine of this angle is
̂j = q̂T âjkq̂k2kâjk2The s
alar produ
t in the numerator isq̂T âj = (PSq)TPSaj = qTP TS PSaj = qTPSaj = (PSq)T aj = q̂T aj ;5



provided that the proje
tion is orthogonal, P T = P . We see the s
alar produ
tbetween the proje
ted query ve
tor q̂ and the proje
ted do
ument ve
tor âj is thesame as that between the proje
ted query q̂ and the original do
ument ve
tor aj .Using s
alar produ
ts to determine 
loseness, the subspa
e method based on S givesthe same result as a straightforward ve
tor spa
e method using the expanded queryq̂. The angles are not invariant however, sin
e the norms in the denominator di�er.We know that kâjk2 � kajk giving a larger 
osine or smaller angle in the subspa
ethan in the query expansion 
ase.Still, the result of a subspa
e method based on S is 
losely related to using theexpanded query q̂ = PSq in the original ve
tor spa
e method.When we 
hoose S as a Krylov subspa
e (2.1), our 
hoi
e of query expansion isrelated to the te
hnique of Spar
k Jones [14℄. The se
ond ve
tor in the the Krylov se-quen
e (2.1), ~q2 = AAT q, weighs in 
omponents of all terms that are 
o-o

urring withthe terms in the original query. The weights give an emphasis to the 
o-o

urren
ein the do
uments that are ranked highest in the ve
tor spa
e sear
h, p = AT q, givingan e�e
t similar to the lo
al expansions of Xu and Croft [15℄.3. The Krylov subspa
e algorithm. We use the Golub Kahan bidiagonaliza-tion algorithm [9℄ to 
ompute the Krylov sequen
e of subspa
es (2.1). It is a variantof the Lan
zos tridiagonalization algorithm and is widely used in the numeri
al linearalgebra 
ommunity .The Golub Kahan algorithm starts with the normalized query ve
tor q1 = q=kqk,and 
omputes two orthonormal bases P and Q, adding one 
olumn for ea
h step k,see [10℄ se
tion 9.3.3.Algorithm BidiagStart with q1 = q=kqk2 ; �1 = 0For k = 1; 2; : : : ; r do1. �kpk = AT qk � �kpk�12. �k+1qk+1 = Apk � �kqkEndThe s
alars �k and �k are 
hosen to normalize the 
orresponding ve
tors.De�ne Qr+1 = �q1 q2 : : : qr+1� ;Pr = �p1 p2 : : : pr� (3.1)Br+1;r = 26664�1�2 �2. . . �r�r+137775 :After r steps we have the basi
 re
ursion,ATQr = PrBTr;rAPr = Qr+1Br+1;rThe 
olumns of Qr will be an orthonormal basis of the Krylov subspa
e (2.1),span [Qr℄ = Kr(AAT ; q) � R([Aq℄) (3.2)6



in the do
ument spa
e, spanned by the query q and the 
olumns of A. The 
olumnsof Pr similarly span a basis of the Krylov subspa
espan [Pr℄ = Kr(ATA;AT q) � R(AT ) ; (3.3)in the term spa
e spanned by the rows of A.We see that Br+1;r = QTr+1APr is the proje
tion of A into these Krylov subspa
esand the singular values of Br+1;r will be approximations to those of A.If �k = 0 for some k � r we have exhausted the Krylov spa
e (3.2), rea
hablefrom the query q. Then QkBk;kP Tk is the restri
tion of A to this rea
hable subspa
e,and the singular values of Bk;k are a subset of those of A.The 
olumns of APr span the rea
hed subspa
e after r steps starting from q. Itis the interse
tion between the Krylov subspa
e (3.2) and the 
olumn spa
e of A,R(APr) = span [Qr+1Br+1;r℄ � R(A) (3.4)The basi
 re
ursion (3.2) implies that it has the orthonormal basis Wr, whereWr = Qr+1Hr+1;r ; (3.5)with Hr+1;r+1 the orthogonal fa
tor in the QR fa
torization,Br+1;r = Hr+1;r+1R : (3.6)Note that sin
e Br+1;r is bidiagonal,Hr+1;r+1 will be both orthogonal and Hessenbergand 
an be 
omputed as a produ
t of r elementary rotations.The proje
ted query ve
tor. It is now easy to use the basis Wr (3.5) to proje
tthe query and the do
uments into the rea
hed subspa
e (3.4). The proje
ted query q̂is q̂ = PR(APr)q =WrW Tr q =WrHTr+1;re1 =Wr0BBB�h1;1h1;2...h1;r1CCCA (3.7)and we see that the �rst row of H gives the 
oordinates of the query in the basis W .When we run several steps r of our algorithm, new 
olumns are added to H , but whenone 
olumn r + 1 is added in step r, it is only the last r-th 
olumn that is modi�ed.We get the proje
ted do
ument âj similarly as,âj =WrW Tr aj : (3.8)3.1. S
oring do
uments. We may regard our algorithm as a subspa
e methodand 
hoose the angles between the query and ea
h of the do
ument ve
tors, proje
tedonto the rea
hed subspa
e (3.4),Css(r)j = q̂T âjkq̂k2kâjk2 j = 1 : : : n: (3.9)Alternatively we may regard our algorithm as a query expansion method and use theangles between the proje
ted query and the original do
uments,Cqe(r)j = q̂Tajkq̂k2kajk2 j = 1 : : : n: (3.10)7



We 
ompute these quantities using the basis W (3.5) and the small orthogonalHessenberg Hr+1;r+1 (3.6). Apply an elementary orthogonal transformation Sr tomake all elements but the �rst in the �rst row of Hr+1;rSr zero. Then WrSr forms anew basis of the rea
hed subspa
e (3.4). The �rst element (y(r)j )1 in the ve
tory(r)j = STr W Tr ajwill give the 
omponent of aj along q̂ and the rest of the proje
ted âj (3.8) as thenorm of the remaining elements in y(r)j . Thus the subspa
e 
osine (3.9) isCss(r)j = (y(r)j )1ky(r)j )k2 ;while the query expansion 
osine (3.10) is slightly smaller atCqe(r)j = (y(r)j )1kajk2 :Our experiments have shown that using the query expansion 
osines Cqej (3.10)of the angles between proje
ted query and original do
uments for s
oring, often givesbetter performan
e than the subspa
e 
osines Cssj (3.9), so we use query expansion,Cqej ,as our standard. It gives a preferen
e for do
uments whose ve
tors aj are 
loserin angle to the rea
hed subspa
e.3.2. Following progress. In the Krylov method, a new bidiagonalization isperformed for every query ve
tor q. Thus the number of iterations must be small.The optimal number of iterations r is di�erent for various queries. Choosing theoptimal number r of iterations is an interesting and important problem. Figure 3.1show performan
e for the Cran�eld set using di�erent numbers of iterations r. Perfor-man
e is measured by average pre
ision. It is 
lear from this �gure that best averageperforman
e for all queries is rea
hed when three iterations are performed. Whenmore than three iterations are used, the performan
e rapidly 
onverges towards theperforman
e of the ve
tor model. Note that some queries show optimal performan
eafter two iterations and very few after one iteration. For one iteration, performan
eis worse than the performan
e for the ve
tor model for most queries. This pattern ofperforman
e (initial worse than the ve
tor model, in
reasing performan
e and then arapid 
onvergen
e towards the ve
tor model) was observed for most of the queries inall data sets we tested.The 
onvergen
e towards the ve
tor model performan
e 
an easily be explainedand estimated using quantities from the bidiagonalization algorithm presented.Consider the least squares problemminx kAx� qk2; (3.11)where A is the term do
ument matrix and q is the query ve
tor. It 
an be solvedusing the Bidiag algorithm (see for example the textbook [10℄). In step k the distan
ebetween the query ve
tor and the proje
ted query ve
tor q̂(k) is the residuald(k) = q �Ax(k) = q � q̂(k):8



Here x(k) is the solution to problem (3.11) in step k. The distan
e de
reases as welet k grow, but will not tend to zero unless the query is a linear 
ombination of thedo
uments in A 1.The normal equation residual AT d(k) = AT (q � q̂(k)) to the problem (3.11) willtend to zero as k grows. If the normal equation residual 
onverges monotonouslyto zero 2 then it is not surprising that the average pre
ision for the Krylov method,using the query expansion s
oring Cqe(k)j (3.10), tends to the s
oring of the ve
tormodel. This is pre
isely what we see in �gure 3.1. Note that, even if the 
onvergen
eof AT d(k) is monotonuous, the 
onvergen
e for the average pre
isions does not haveto be monotonuous. Looking 
losely into �gure 3.1, a few su
h examples are visible.Finally d(k), the distan
e between the query and its proje
tion and the normalequation residual AT d(k), 
an easily be 
omputed for ea
h step k in the bidiagonal-ization pro
edure.In step k the distan
e between the query q and the proje
ted query q̂(k) isd(k) = q � q̂(k)= Qk+1e1 �Qk+1Hk+1;kHTk+1;ke1= Qk+1(I �Hk+1;kHTk+1;k)e1= Qk+1h(k)k+1h(k)Tk+1 e1= Qk+1h(k)k+1h(k)1;k+1 (3.12)and its norm is just kd(k)k = jh(k)1;k+1j (3.13)The normal equation residual isAT d(k) = ATQk+1h(k)k+1h(k)1;k+1= Pk+1BTk+1;k+1h(k)k+1h(k)1;k+1= Pk+1 � BTk+1;k0 �k+1�h(k)k+1h(k)1;k+1= Pk+1 0�k+1h(k)k+1;k+1!h(k)1;k+1: (3.14)
Its norm is kAT d(k)k = j�k+1h(k)k+1;k+1h(k)1;k+1j: (3.15)3.3. Complexity of the algorithm. In the Bidiag algorithm, the matrix ve
-tor multipli
ations are performed between a sparse matrix and a dense ve
tor. Thenumber of operations needed is proportional to the number of nonzero elements in A.The rest of the algorithm 
onsists of subtra
ting and normalizing ve
tors of lengthm. In exa
t arithmeti
 we will have QTr+1Qr+1 = I and P Tr Pr = I (3.1). In standard1In our tests no query ve
tor is 
ompletely in the range of A2The 
onvergen
e of the normal equation residual is not in general monotonuous. For all testswe made however, the 
onvergen
e was monotonuous for at least the �rst 10 iterations.9
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Fig. 3.1. Average pre
ision, for all 225 queries using the Cran�eld set for r = 1; 2 : : : 6 inthe Bidiag algorithm. The dark lines are the ve
tor model and the light grey lines are the Krylovsubspa
e model. Queries are sorted after in
reasing ve
tor model apr.
oating point arithmeti
, fully a

urate orthogonality of these ve
tors is only observedat the beginning of the pro
ess. In order to re
over the orthogonality some type ofreorthogonalization would be ne
essary. This would of 
ourse add operations to the
omplexity of the algorithm. Sin
e we keep the number of iterations r very small, webelieve that no reorthogonalization is needed. The main 
omputational work for thedo
ument s
oring (3.9) (3.10) again is in the size of multiplying a sparse matrix witha dense ve
tor.4. Numeri
al experiments.Data sets:. Ea
h one of the test 
olle
tions we have used 
onsists of a do
umentdata base and a set of queries for whi
h relevan
e judgments are available.For illustration and 
omparison purposes, we have used the small and widely
ir
ulated data sets Medline, Cran�eld, ADI and CICI.We have also used larger test 
olle
tions re
eived from the Text Retrieval Con-feren
e (TREC) [11℄. The TREC 4 dis
 
ontains three data 
olle
tions, the Finan
ialTimes, 1991-1994 (FT), the Federal Register, 1994 (FR94) and the CongressionalRe
ord, 1993 (CR). The FT 
olle
tion, FR94 
olle
tion and the CR 
olle
tion 
onsistsof 210,158, 55,630 and 27,922 do
uments respe
tively.Tests on data from the Cran�eld 
olle
tion and from the Finan
ial Times 
olle
-tion will be reported here. Similar tests have been made for the Medline, ADI, CICI10
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Fig. 4.1. Pre
ision as a fun
tion of re
all for the Cran�eld 
olle
tion. Left: Interpolated andaveraged over all queries (re
all level pre
ision average). Dashed (- -) is ve
tor model, line with
ir
le (-o) is LSI for rank s = 296, line (-) is our Krylov algorithm for r=3 steps. Right: OurKrylov algorithm to r=3 for 3 di�erent queries, pre
ision at a
tual re
all levels.and Congressional Re
ord 
olle
tions. See reports in [4, 5℄!Parsing the data sets:. For both 
olle
tions, any non-zero length string of 
har-a
ters, delimited by white spa
e or return, was regarded as a term. All terms thato

urred in more than 10% of the do
uments were removed. They were 
onsideredto be 
ommon words of no interest for the retrieval. Ea
h element ai;j in the termdo
ument matrix was set to the number of o

urren
es of term number i in do
umentj . The size of the Cran�eld matrix is 7; 776 terms� 1; 400 do
uments. Before start-ing the bidiagonalization pro
ess, �rst the rows and then the 
olumns of the termdo
ument matrix were normalized. This tends to deemphasize 
ommon terms andlong do
uments.The Finan
ial Times term do
ument matrix is of size m = 343; 578 terms by n =210; 158 do
uments with 26; 790; 949 nonzero elements. The 
olumns were normalizedbefore the bidiagonalization algorithm Bidiag was started.Results for the Cran�eld 
olle
tion:. There are 225 queries supplied with the testmatrix, together with indi
es j of relevant do
uments for ea
h ea
h query. This givesbetween 2 and 40 relevant do
uments for ea
h query, 476 do
uments were not relevantto any of the queries, 417 do
uments were relevant to just one, while the remaining507 do
uments were relevant to more than one and at most 8 of the 225 queries. We11
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e of bidiagonalization pro
edure starting at query q1.
ompare our results to these 
orre
t answers.We �rst summarize the performan
e in an averaged pre
ision-re
all graph. In�gure 4.1 the ve
tor model is 
ompared to LSI and our algorithm, as des
ribed inse
tion 3, run for r = 3 steps. For the LSI method the optimal rank s = 296 in thelow rank approximation of A (1.2) was obtained by 
omputing the sum of the averagepre
isions for ea
h query and simply pi
king the s with the largest sum. It is 
learthat our Krylov algorithm gives the best averaged pre
ision at all re
all levels forthese Cran�eld data.Let us look into the details and follow the Golub Kahan algorithm on one query.Take query 1, it has 29 relevant do
uments whi
h is rather many for a Cran�eld query.Our algorithm s
ores this query reasonably well. In �gure 4.2 we follow the progress inlinear algebra terms, as we exe
ute the algorithm for steps k = 1; : : : ; 12. Cir
les arethe residual norms kr(k)k, (3.13), they de
rease unnoti
eably slowly from 1 to 0.879.This means that the query q is at a rather large angle to the rea
hed subspa
e (3.4),it has a proje
tion of length 0.477. We plot the normal equation residuals kAT r(k)k,(3.15), as pluses, and note that they de
rease fast enough at a linear rate. After 12steps we have found the proje
tion of the query into the do
ument spa
e spanned byA to nearly 3 de
imals.We were 
urious to see how the singular values 
onverged and plotted estimatesof their a

ura
ies as points. Note that the leading singular value 
onverged very fast,after 12 steps its ve
tor is a

urate to 9 de
imals and the singular value to full ma
hine12
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Fig. 4.3. Cran�eld matrix, Query 1, upper half step r = 12, lower half step r = 2. Numbersare rankings given by the algorithm to relevant do
uments. Cir
les mark relevant do
uments whilepoints mark those not relevant. Asterix marks the proje
ted query.pre
ision. It is well known that the basis ve
tors Qk keep orthogonal until one of thesingular values 
onverges. We plotted the orthogonality of ea
h basis ve
tor qk to itsprede
essors Qk�1 as 
rosses and, true to theory, the 
rosses and points interse
t athalf the ma
hine a

ura
y level 10�8 during step 10.Let us now turn to a view of all the do
uments, and see how well we �nd the13



relevant do
uments for query 1. We plot them in a two dimensional 
oordinate systemin �gure 4.3. The x axis is along the proje
ted query q̂ (3.7). The y axis is used toplot the 
omponent of ea
h aj in the rea
hed subspa
e (3.8) orthogonal to q̂. Thismakes up two of the three 
omponents of ea
h aj ve
tor. We 
an infer the length ofthe third 
omponent, whi
h is orthogonal to the rea
hed subspa
e, by rememberingthat all ve
tors aj were normalized to unit length, so the distan
es of the pointsplotted to the origin indi
ate how 
lose the ve
tors are to the rea
hed subspa
e.Those shown 
lose to the origin are far from the rea
hed subspa
e. If we 
ontinuethe bidiagonalization to full length r = n, most of the ve
tors will get unit length,be
ause then the rea
hed subspa
e is the whole span of A, ex
ept in the rare 
asewhen the query is totally unrelated to a part of the do
ument 
olle
tion.If we use our standard query expansion based s
oring method (3.10), taking anglesbetween the original do
uments and the proje
ted query, we would 
hoose do
umentsfrom right to left as plotted in �gure 4.3, and we 
an 
he
k how well we �nd therelevant do
uments. We show this by giving the ranking beside ea
h of the 10 highests
ored relevant do
uments. Look at the lower part of �gure 4.3 whi
h shows thesituation after r = 2 steps. First 
omes do
uments 1, 2, and 3 they are all relevant.Then the next relevant do
ument is retrieved as number 6, we see two non relevantdo
uments as points above and 
losely below the 
ir
le with number 6. Then thenext relevant do
ument is retrieved as number 9. Now our algorithm has given us10 suggestions, of whi
h we �nd that 5 are relevant. We say that DLA(10), thedo
ument level average pre
ision after 10 do
uments is 0.5. The average pre
isionover all relevant do
uments [11℄, is lower, 0:297, sin
e the last relevant do
uments arefound mu
h later, we see that the 10:th relevant do
ument s
ores as number 30 whilethe 29:th and last one does not appear until 1029.Look at the upper half of �gure 4.3, the �nal one after r = 12 steps. Thereare many points along the y axis, they denote do
uments that are orthogonal to theproje
ted query, and will be the last ones s
ored. A
tually 933 of the 1400 do
umentsare orthogonal to the original query.When s
oring do
uments by angles in the rea
hed plane (3.9), these 
an be seenas angles to the x axis in �gure 4.3. It did not di�er mu
h from the standard queryexpansion s
oring (3.10), for some queries it was better for others it was worse. Forthis Query 1, it gave about the same average pre
ision at 0.296 and retrieved relevantdo
uments ranked as 1,2,3,4,5,9, giving a DLA(10) = 0:6. The third s
oring 
hoi
e(angles to Krylov subspa
e) amounts to 
hoosing those do
uments plotted far fromthe origin in �gure 4.3, and gives about the same 
hoi
es but with lower averagepre
ision, 0.180, and DLA(10) = 0:4.Results for the Finan
ial Times 
olle
tion:. There are several queries providedwith the TREC 
olle
tion. We have used query number 251 to 350. Nine of thequeries do not have any relevant answers among the Finan
ial Times do
uments, andfor the rest of the queries there are between 1 and 280 relevant do
uments. Altogether3,044 of the 210,158 do
uments are relevant to some query, 116 do
uments are relevantto two queries and 7 do
uments are relevant to three queries.In �gure 4.4 the ve
tor model is 
ompared to our algorithm run to r = 3. Theexperiments were made in the same way as for �gure 4.1, but we did not have resultsfor LSI for this large matrix. Do
uments were s
ored using the standard query ex-pansion s
ores (3.10). We did 
hoose r = 3 as dimension of the Krylov subspa
e, herethe results were better for larger subspa
es for some of the queries.We 
hoose su
h a query, number 344, to report in �gure 4.5. As for �gure 4.3,14
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Fig. 4.4. Interpolated pre
isions for re
all levels 0; 0:1; : : : 1 for the Finan
ial Times 
olle
tionfrom the TREC data base. The ve
tor model ({) is 
ompared to our algorithm for r = 3 (- -) . Theaverage of the 25 do
uments that are best ranked by the ve
tor spa
e method are in
luded.the x axis is along the proje
ted query q̂ (3.7) and the y axis is used to plot the
omponent of ea
h do
ument ve
tor in the rea
hed subspa
e. The labels show theranking of the relevant do
uments, there are only 3 relevant do
uments among all the210,158, quite like seeking a needle in a haysta
k. Note that the relevant do
umentsget better ranking for the larger subspa
e r = 6 than for r = 3. This question is notone of the 25 best questions in
luded in �gure 4.4.Dis
ussion:. The experiments have shown good performan
e for the small dataset (Cranield), but not that good performan
e for the larger Finan
ial times (FT) set.Although we 
annot noti
e any major di�eren
es in the stru
ture of the term do
u-ment matri
es or the distribution of singular values, there are di�eren
es between thetwo sets. The FT set 
onsists of news telegrams and Cran�eld of s
ienti�
 papers. Forthe Cran�eld 
olle
tion, most users will probably agree on the relevan
e judgementsgiven for this set, while for the FT do
uments more subje
tivity is involved in therelevan
e judgements. We believe the larger sets do re
e
t a more realisti
 
ase.The 
onstru
tion of the FT matrix also plays a role in the performan
e of ouralgorithm. Perhaps more 
are has to be taken when de
iding what terms to use forthe matrix. It might not be enough to remove all terms o

urring in more than 10%of the do
uments, maybe that �gure should be 5% or something else.Some type of row and 
olumn normalization is useful. In our Cran�eld exper-iments, we �rst normalized the row ve
tors, and then the 
olumn ve
tors. Even ifthe normalization of the 
olumn ve
tors destroys the row normalization, a smoothinge�e
t remains. This had some e�e
t for the performan
e for the Cran�eld matrix.For the FT matrix only the 
olumns were normalized.The starting ve
tor (the query) in our algorithm plays an important role, and itmight also bene�t our algorithm to pay more attention to how to 
onstru
t the queryve
tor. We have only tried our algorithm for at most r = 12 steps, sin
e generating alarger subspa
e is too time 
onsuming to be interesting in a realisti
 
ase. Moreover15
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Fig. 4.5. The TREC Finan
ial Times matrix. Query no. 344, upper half step r = 3 and lowerhalf step r = 6, numbers rankings of relevant do
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the starting ve
tor looses its importan
e the longer we iterate. For our future workwe will 
on
entrate on improving the starting ve
tor and we will investigate how toadd relevan
e feedba
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