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1 Introduction

The task is to search among the documents in a large data base for those that
contain information of interest stated in a query. We summarize the contents of
the data base as an m x n term document matrix X, where each column represents
one document and each row one term, in the simplest case just a specific word. An
element z;; is nonzero whenever term ¢ is present in document k.

The query is now ¢, an m vector of terms, and we may form the scalar product

i =q¢"X (1)

to get p a choice vector whose nonzero elements indicate which of the documents
that contain any of the terms in the query.

This is the way one looks at it in the vector space methods of information
retrieval [9], each document is regarded as a column vector zj in m space and the
query ¢ is another. In the simplest case, we retrieve those documents k& whose angle
to the query is smallest, say that we take those for which the cosine
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is largest.

*Department of Mathematics, Chalmers Institute of Technology and the University of Goteborg,
S-41296 Goteborg, Sweden, email: blom,ruhe@math.chalmers.se. Support to the first author from
Chalmers University Graduate students travel Fund and to the second from the Royal Society for
Arts and Sciences in Goteborg is gratefully acknowledged.



2 Latent Semantic Indexing

The Latent Semantic Indexing (LSI) method has become rather well established,
see the works of Berry, Dumais et. al. [8, 1, 4]! Its aim is to find the global structure
in the data by computing the leading part of the singular value decomposition of
the term document matrix,

X=Uxv"
containing the r leading components and look at
X" =u,%,,V". (2)

Here we let the superscript in X (") signify that we take a rank r matrix of full size,
m X n, while subscripts like U, mean that we take the r first columns of U and
double susbcripts in Y., that we take the leading rows and columns of ¥.

The reason for doing the SVD is that the leading singular vectors contain the
global information of the data base, and we filter out local peculiarities as e. g.
spelling errors and nonstandard use of terms.

The rank r is chosen as a much smaller number than m or n, but is still quite
large, typically values like r = 100 to r = 300 are reported. One uses the singular
vectors computed to find a choice vector,

p(T)T = qTX(r) = qTUrerVrT = [UIQ] [ZTTVTT] = qArTXrn ; (3)

now with a r dimensional transformed query vector ¢, and a r X n transformed term
document matrix X,,, the latter can be regarded as some kind of catalogue of the
document, collection, where relevant information is gathered.

One can avoid computing this transformed term document matrix Xon by
instead computing a projected query vector, noting that

p(T)T = qTUrerVrT = qTUrU;rUrZTTVrT = [UTUrTq]T UmzmnVnT = NTX7 (4)

a product between the projected query vector ¢ and the original term document
matrix X.

In LSI the choices use to be determined by angles between the transformed
query ¢, and the transformed document vectors Zj, which is the same as between
the projected query ¢ and the projected document vectors zy in the leading singular
subspace spanned by U,,
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we will still need to get all the norms of the projected documents Zy.
We may avoid this extra computation, by instead letting the angles between
the projected query ¢, and the original documents x;, determine the scoring,
‘ p(r)
& =cos L(G,xp) = ———h . (6)
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This is simpler, since now we only need to compute the norms of the original sparse
zr, and can use the simpler multiplication (4) to compute pg. This simplified choice
gives a preference to documents that are closer to the leading singular subspace of
the documentspace X. We will see that this is of advantage when we deal with
Krylov subspaces later in this contribution.

One drawback of LSI is that the computation of several hundred singular
values of a huge matrix is a rather time consuming task. We also need to store
a large amount of singular vectors in the form of real numbers, while the original
matrix X is a very sparse matrix of small integers. It is also nontrivial to determine
the most appropriate rank r, and changes in the data base, additions and deletions
of terms and documents, will need some kind of update of the SVD.

3 Our approach

We have tried a simpler way to find the global information in the data base. Run
Lanczos, or more properly the Golub Kahan bidiagonalization algorithm [2, 7],
starting with the query vector g, and look at what you can get from the Krylov
subspaces thus computed.

Take the normalized query vector ¢ as a start, ¢ = ¢/||¢q||, and compute a
bidiagonal representation,

X"'Q;=PF;Bj;, XP;j=QjnBjn,; (7)

with P and () orthonormal bases of dimensions indicated by the subscripts and B
a lower bidiagonal matrix, see [3] section 9.3.3!

The bases Q and P are computed, adding one column in each step j using the
following;:

ALGORITHM BIDIAG
Start with q1 = q/||q
For j=1,2,... do

|27ﬂ1:0

1. ajpj = X"q; — Bipj
2. Bj+1¢j+1 = Xpj — a;q;
End

The quantities a; and 311 are computed to give the vectors p; and g;41 unit
Euclidean norm.
After step j we have got the bidiagonal matrix,
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B2 az O
0 Bz a3
Bjy15 = .
Bi oy
L 0 Bj+1]




We can show that P; is an orthonormal basis of the Krylov subspace K/ (X" X, XT¢)
and Q; of K9(XX™, q). A Krylov space K’(A, ) is a j dimensional subspace of a
starting vector x and successive applications of the matrix operator A to z,

K7(A,z) = span (T Az, A%z, ... ,Ajflm) )

Interpretation The columns of @ have the dimension of a kind of query, while
those of P can be interpreted as choices among the documents in the collection X.
The first column p; contains those documents that contain terms in the query, say
its brothers and sisters, and the next ps can similarly be interpreted as cousins and
so on. The number of documents reached will grow in a chain letter fashion, so we
can hope that rather few steps j will be sufficient to reach all documents that have
any connection to the original query.

Each step j can be interpreted as first applying the current query g;, in matrix
language doing X7 ¢;, giving a new choice p; that is strongly different from previous
choices, in matrix language we say that it is orthogonal. Then all terms from the
chosen documents are combined in the multiplication Xp;, to give a new query g1
strongly different (orthogonal) to all previous queries ¢i,...,q;. After j steps we
have made j queries to the data base, all of them strongly different from each other.

Some readers may remember the children’s game “master mind”.

Measuring progress We are interested in the reached subspace spanned by all the
documents that are combinations of all choices up to step j,

XPj=Qjn1Bjy1j =Qjr1Hjr iR , ®)

where H and R are the results of a QR-factorization of B. Note that H is both
orthogonal and Hessenberg, i. e. it is upper triangular with just one subdiagonal
added and can be computed as a product of j elementary Givens rotation matrices.
The matrices

Wi =Qj+1Hjt1,

will be orthogonal bases of these interesting subspaces for a sequence of steps 7. Let
us project the query onto this subspace.

hia
hi2

§V =w,Wlq=W;H, | e1 =W,

hy;

and we see that the first row of H gives the coordinates of the query in the basis
W. When we run several steps j of our algorithm, new columns are added to H,
but it is only the last column that is modified.



In step j the distance between the query ¢ and the projected query GV is
r) =g — g
= Qjrier — Qi Hip jHyy jer
= Qjr1(I — Hj jH j)es (9)
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and its norm is just
I = 1) (10)

It decreases as we let 7 grow, but will not tend to zero unless the query is a linear
combination of the documents in X.

We will get a quantity that tends to zero, if we follow the normal equation
residual,
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Scoring documents There are several possible ways to use the quantities obtained
from our algorithm to score documents for relevance with respect to the query ¢. It
is natural to mimic LSI and choose the angles either between the projected query
and documents in the reached subspace (5)

cp = cos L(G, i) = # ; (13)
lall=llZll2
or between the projected query and the original documents (6),
c; = cos (G, ) = Npik . (14)
' lall2llzell2

It is easy to find these from quantities computed in ALGORITHM BIDIAG. Apply an
elementary orthogonal transformation S; ; from the right to the Hessenberg matrix
Hj.1 ; so that the resulting H;11 ;S;; has only its leading element nonzero in the



first row. Then Q;11H;41,;S;,; is a new basis of the reached subspace. Premultiply
the document vector x; with this basis and,

_ QT T T
yr = S5 Hj41,;Qj11k

will give the component of z;, along GU/) as its first coordinate Y1,k, and the rest of
the projected Zj as the norm of the remaining (ya.r,...,y;x)" -

Our experiments have shown that the second choice (14) gave better precision
so we use it as our standard.

4 [llustrations

We have tested our algorithm on several widely circulated test sets coming from a.
o. the TREC conferences [6]. Here we choose to report results on the well known
MEDLINE collection [5]. It is admittedly a toy problem, but since it has been tested
by a wide range of people, it is good for comparison and illustration purposes.

Our original matrix X is of size m x n = 7014 x 1033, with z;; = 1 if term
1 is present in document k, no counting of appearances is done. Instead we scale
the matrix in a way that is natural in the analysis of general data. First all rows
are scaled to have Euclidean norm (sum of squares) equal to unity. This is sensible,
since it deemphasises common terms, as is done in most weighting schemes. Then
we scale the columns to have unit length. This disturbs the row scaling somehow,
but is good for illustration purposes, we get the same length on all vectors and
can let the length of a projection tell how close the vector is to a subspace it is
projected into. Moreover, we will most often let angles between vectors and spaces
determine choices, and those are independent of the length of the vectors. We plot
the row (term) and column (document) norms in figure 4. The lines are the row
and column norms in the original matrix X. After the row scaling all rows have
unit norm, so we do not plot them, but we plot the column norms as points in the
right plot. After the column scaling all columns have unit norm, but the rows have
the norms indicated by the dots on the left plot. We see that the row norms are no
longer strictly equal but reasonably equilibrated.

There are 30 queries supplied with the test matrix, together with indices k
of relevant documents for each each query. This gives between 9 and 39 relevant
documents for each query, altogether 696 documents are relevant to some query and
no document is relevant to more than one query. We compare our results to these
correct answers, and are interested to know whether any quantities obtained during
the computation can be used to determine if a query is a difficult or a simple one
to handle with our method.

Let us list results for some typical and interesting queries. First take query 1,
it has rather many, 37 relevant documents, and is on the easy side for our algorithm.
In figure 4 we follow the progress in linear algebra terms, as we execute the algorithm
for steps j = 1,...,12. Circles are the residual norms ||r()||, (10), they decrease
unnoticeably slowly from 1 to 0.892. This means that the query ¢ is at a rather
large angle to the reached subspace, it has a projection of length 0.451. We plot the
normal equation residuals || X7r()||, (12), as pluses, and note that they decrease
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Figure 1. Medline matriz row and column norms, before and after scaling.
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Figure 2. Medline matriz, follow convergence of bidiagonalization procedure.
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Figure 3. Medline matriz, Query 1, upper half step j = 2, lower half step
j = 12, numbers scores of relevant documents.

fast enough at a linear rate. After 12 steps we have found the projection of the query
into the document space spanned by X to at least 3 decimals. We were curious to
see how the singular values converged and plotted estimates of their accurracies as
points. Note that the leading singular value converged very fast, after 12 steps its
vector is accurate to 9 decimals and the singular value to full machine precision. It
is well known that the basis vectors @); keep orthogonal until one of the singular
values converges, to verify that we plotted the orthogonality of each basis vector
g; to its predecessors ();_1 as crosses and, true to theory, the crosses and points
intersect at half the machine accuracy level during step 10.

Let us now turn to a view of all the documents, and see how well we find



the relevant documents for query 1. We plot them in a two dimensional coordinate
system in figure 4. The x axis is along the projected query G1/). The y axis is used to
plot the component of each x;, in the reached subspace (8) orthogonal to G). This
makes up two of the three components of each z; vector. We can infer the length of
the third component, which is orthogonal to the reached subspace, by remembering
that all vectors zy were normalized to unit length, so the distances of the points
plotted to the origin indicate how close the vectors are to the reached subspace.
Those close to the origin are far from the reached subspace. If we continue the
bidiagonalization to full length j = n, most of the vectors will get unit length,
because then the reached subspace is the whole span of X, except in the rare case
when the query is totally unrelated to a part of the document collection.

If we use our standard scoring method (14), taking angles between the original
documents and the projected query, we would choose documents from right to left
as plotted in figure 4, and we can check how well we find the relevant documents.
We show this by giving the score number beside each relevant document. Look at
the lower part of figure 4! First comes document 1, it is a relevant one, then comes
an unnumbered point down to the left, it is not numbered since it is not relevant.
Then come 3, 4, 5 all relevant, while 6 is missing. Again 7 is relevant but 8 is not,
then 9 and 10 are good. Now our algorithm has given us 10 suggestions, of which
we find that 7 are relevant. We say that the precision is 0.7 now when the recall is 7
out of 37, that is 0.2. APR, the averaged precision over all relevant documents [6],
is slightly lower at 0.634 since the last relevant documents are found much later, we
see that the last one scores as number 141. This is still not too bad, we had 1033
documents to score.

One final look at the lower half of figure 4! There are many points along the
y axis, they denote documents that are orthogonal to the projected query, they will
be the last ones scored. Actually all but 234 of the 1033 documents are orthogonal
to both the original and the projected first query.

Our experiments have shown that it is overkill to run the algorithm as far as
j = 12, the APR reaches its maximum already after j = 2 steps. Look at the upper
part of figure 4! The projected query is slightly shorter, 0.408 compared to 0.451
at step 12, and all the z; points are quite a bit closer to the origin, indicating that
the components of the document vectors in the reached plane are smaller. One the
other hand, there is one more relevant document among the first 10 scored, and the
last relevant document is now scored as number 96, which brings up the APR to
0.762.

When scoring documents by angles in the reached plane (13), these can be
seen as angles to the x axis in figure 4. It did not differ much from the standard
scoring (14), actually it gave slightly worse precision, in this case APR 0.621 for
j = 2. The third scoring choice, angles to Krylov subspace, cannot be directly seen
in the plots in figure 4, it amounts somehow to choosing those documents plotted
far from the origin and gives about the same choices but with still somewhat lower
precision, in this case APR 0.495.

We have performed this kind of analysis for all the 30 queries given, some
give better and some give worse results than this first query, see figure 4 where the
APR is plotted against the step j for some of the queries and figure 4 that gives a
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Figure 4. Medline matriz, averaged precision recall for different steps j
and some queries iq.

(noninterpolated) precision recall diagram for these same queries at step j = 2.

Let us study a good question, query 13 in figure 4. It gives full score for the
first 16 documents scored, and the 21 st and last relevant document is scored as
number 32. We do not show the figure corresponding to figure 4 for this query, it is
very similar. This query actually deteriorates if we run up to 12 steps, see the lower
half of figure 4. Now we see that no less than 941 of the documents are orthogonal
to the query, including one relevant document that is scored as 582. This needs to
be studied further, one advantage claimed for LSI is that it can handle synonymy,
see [1] and return documents that are orthogonal to the original query. Here it
looks like our method has this property at step j = 2 but looses it when j = 12 is
reached.

The final query we will bother the readers with is 22, the worst performer.
See figure 4! Here one relevant document is the first to be scored, but then we
have to look until number 6 and 13 to find the next relevant documents, and the
25 th and last does not appear until as number 292, and at 0.237 the APR is not
that impressive. There does not seem to be anything wrong with the query, its
projection is 0.46 not smaller than the others.
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Krylov IR on Medline, Precision/recall, Subspace j=2
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Figure 5. Medline matriz, precision recall at step j = 2 and some queries iq.

One might believe that it should be difficult to distinguish relevant document
vectors from irrelevant ones but that appears far from true. Plot the cosines of
the angles between all the document vectors z; and those relevant to query 22 in
figure 4 left half. The relevant documents form a 25 dimensional subspace, that is
remarkably well separated from all the other vectors, the closest irrelevant vector
has a cosine of 0.277 to the subspace of relevant vectors. The query vector is at
a cosine of 0.3, not very close either, but this is true also for the lucky query 13,
where it is 0.43. We see in the right half of figure 4, that now the relevant document
vectors get good scoring cosines, the first points are higher and the later lower than
those for query 22. So, after the fact, we can see that the separation is better for
query 13 than for query 22.

Let us once more point out that the information needed for figure 4 is only
available when we know which documents are relevant. It cannot be used in the
information retrieval process.
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j = 12, numbers scores of relevant documents.



13

Question iq=22 nrel=25 dimension j=2 APR=0.23726
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Figure 7. Medline matriz, Query 22, j = 2, numbers scores of relevant
documents.
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Figure 8. Medline matriz, lines cosines of angles to subspace of relevant
documents, points cosines of angles to projected query. Sorted after angle to sub-
space.
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