
Information Retrievalusing very short KrylovsequencesKatarina Blom and Axel Ruhe�1 IntroductionThe task is to search among the documents in a large data base for those thatcontain information of interest stated in a query. We summarize the contents ofthe data base as an m�n term document matrix X , where each column representsone document and each row one term, in the simplest case just a speci�c word. Anelement xik is nonzero whenever term i is present in document k.The query is now q, an m vector of terms, and we may form the scalar productpT = qTX (1)to get p a choice vector whose nonzero elements indicate which of the documentsthat contain any of the terms in the query.This is the way one looks at it in the vector space methods of informationretrieval [9], each document is regarded as a column vector xk in m space and thequery q is another. In the simplest case, we retrieve those documents k whose angleto the query is smallest, say that we take those for which the cosineck = cos 6 (q; xk) = qTxkkqk2kxkk2is largest.�Department of Mathematics, Chalmers Institute of Technology and the University of G�oteborg,S-41296 G�oteborg, Sweden, email: blom,ruhe@math.chalmers.se. Support to the �rst author fromChalmers University Graduate students travel Fund and to the second from the Royal Society forArts and Sciences in G�oteborg is gratefully acknowledged.1



22 Latent Semantic IndexingThe Latent Semantic Indexing (LSI) method has become rather well established,see the works of Berry, Dumais et. al. [8, 1, 4]! Its aim is to �nd the global structurein the data by computing the leading part of the singular value decomposition ofthe term document matrix, X = U�V Tcontaining the r leading components and look atX(r) = Ur�rrV Tr : (2)Here we let the superscript in X(r) signify that we take a rank r matrix of full size,m � n, while subscripts like Ur mean that we take the r �rst columns of U anddouble susbcripts in �rr that we take the leading rows and columns of �.The reason for doing the SVD is that the leading singular vectors contain theglobal information of the data base, and we �lter out local peculiarities as e. g.spelling errors and nonstandard use of terms.The rank r is chosen as a much smaller number than m or n, but is still quitelarge, typically values like r = 100 to r = 300 are reported. One uses the singularvectors computed to �nd a choice vector,p(r)T = qTX(r) = qTUr�rrV Tr = �UTr q� ��rrV Tr � = q̂rT X̂rn ; (3)now with a r dimensional transformed query vector q̂r and a r�n transformed termdocument matrix X̂rn, the latter can be regarded as some kind of catalogue of thedocument collection, where relevant information is gathered.One can avoid computing this transformed term document matrix X̂rn byinstead computing a projected query vector, noting thatp(r)T = qTUr�rrV Tr = qTUrUTr Ur�rrV Tr = �UrUTr q�T Um�mnV Tn = ~qTX ; (4)a product between the projected query vector ~q and the original term documentmatrix X .In LSI the choices use to be determined by angles between the transformedquery q̂r and the transformed document vectors x̂k, which is the same as betweenthe projected query ~q and the projected document vectors ~xk in the leading singularsubspace spanned by Ur, ~c1k = cos 6 (~q; ~xk) = p(r)kk~qk2k~xkk2 ; (5)we will still need to get all the norms of the projected documents ~xk.We may avoid this extra computation, by instead letting the angles betweenthe projected query q̂r and the original documents xk determine the scoring,~c2k = cos 6 (~q; xk) = p(r)kk~qk2kxkk2 : (6)



3This is simpler, since now we only need to compute the norms of the original sparsexk and can use the simpler multiplication (4) to compute pk. This simpli�ed choicegives a preference to documents that are closer to the leading singular subspace ofthe documentspace X . We will see that this is of advantage when we deal withKrylov subspaces later in this contribution.One drawback of LSI is that the computation of several hundred singularvalues of a huge matrix is a rather time consuming task. We also need to storea large amount of singular vectors in the form of real numbers, while the originalmatrix X is a very sparse matrix of small integers. It is also nontrivial to determinethe most appropriate rank r, and changes in the data base, additions and deletionsof terms and documents, will need some kind of update of the SVD.3 Our approachWe have tried a simpler way to �nd the global information in the data base. RunLanczos, or more properly the Golub Kahan bidiagonalization algorithm [2, 7],starting with the query vector q, and look at what you can get from the Krylovsubspaces thus computed.Take the normalized query vector q as a start, q1 = q=kqk, and compute abidiagonal representation,XTQj = PjBTj;j ; XPj = Qj+1Bj+1;j (7)with P and Q orthonormal bases of dimensions indicated by the subscripts and Ba lower bidiagonal matrix, see [3] section 9.3.3!The bases Q and P are computed, adding one column in each step j using thefollowing:Algorithm BidiagStart with q1 = q=kqk2 ; �1 = 0For j = 1; 2; : : : do1. �jpj = XT qj � �jpj�12. �j+1qj+1 = Xpj � �jqjEnd The quantities �j and �j+1 are computed to give the vectors pj and qj+1 unitEuclidean norm.After step j we have got the bidiagonal matrix,Bj+1;j = 266666664�1 0 0�2 �2 00 �3 �3. . . . . .�j �j0 �j+1
377777775



4We can show that Pj is an orthonormal basis of the Krylov subspaceKj(XTX;XT q)and Qj of Kj(XXT ; q). A Krylov space Kj(A; x) is a j dimensional subspace of astarting vector x and successive applications of the matrix operator A to x,Kj(A; x) = span �x;Ax;A2x; : : : ; Aj�1x� :Interpretation The columns of Q have the dimension of a kind of query, whilethose of P can be interpreted as choices among the documents in the collection X .The �rst column p1 contains those documents that contain terms in the query, sayits brothers and sisters, and the next p2 can similarly be interpreted as cousins andso on. The number of documents reached will grow in a chain letter fashion, so wecan hope that rather few steps j will be su�cient to reach all documents that haveany connection to the original query.Each step j can be interpreted as �rst applying the current query qj , in matrixlanguage doing XT qj , giving a new choice pj that is strongly di�erent from previouschoices, in matrix language we say that it is orthogonal. Then all terms from thechosen documents are combined in the multiplication Xpj , to give a new query qj+1strongly di�erent (orthogonal) to all previous queries q1; : : : ; qj . After j steps wehave made j queries to the data base, all of them strongly di�erent from each other.Some readers may remember the children's game \master mind".Measuring progress We are interested in the reached subspace spanned by all thedocuments that are combinations of all choices up to step j,XPj = Qj+1Bj+1;j = Qj+1Hj+1;jRj;j ; (8)where H and R are the results of a QR-factorization of B. Note that H is bothorthogonal and Hessenberg, i. e. it is upper triangular with just one subdiagonaladded and can be computed as a product of j elementary Givens rotation matrices.The matrices Wj = Qj+1Hj+1;jwill be orthogonal bases of these interesting subspaces for a sequence of steps j. Letus project the query onto this subspace.~q(j) =WjW Tj q =WjHTj+1;je1 =Wj 0BBB@h1;1h1;2...h1;j1CCCA ;and we see that the �rst row of H gives the coordinates of the query in the basisW . When we run several steps j of our algorithm, new columns are added to H ,but it is only the last column that is modi�ed.



5In step j the distance between the query q and the projected query ~q(j) isr(j) = q � ~q(j)= Qj+1e1 �Qj+1Hj+1;jHTj+1;je1= Qj+1(I �Hj+1;jHTj+1;j)e1= Qj+1h(j)j+1h(j)Tj+1 e1= Qj+1h(j)j+1h(j)1;j+1 (9)and its norm is just kr(j)k = jh(j)1;j+1j : (10)It decreases as we let j grow, but will not tend to zero unless the query is a linearcombination of the documents in X .We will get a quantity that tends to zero, if we follow the normal equationresidual, XT r(j) = XTQj+1h(j)j+1h(j)1;j+1= Pj+1BTj+1;j+1h(j)j+1h(j)1;j+1= Pj+1 � BTj+1;j0 �j+1�h(j)j+1h(j)1;j+1= Pj+1 � 0�j+1h(j)j+1;j+1�h(j)1;j+1 (11)
which has the norm kXT r(j)k = j�j+1h(j)j+1;j+1h(j)1;j+1j (12)Scoring documents There are several possible ways to use the quantities obtainedfrom our algorithm to score documents for relevance with respect to the query q. Itis natural to mimic LSI and choose the angles either between the projected queryand documents in the reached subspace (5),c1k = cos 6 (~q; ~xk) = pkk~qk2k~xkk2 ; (13)or between the projected query and the original documents (6),c2k = cos 6 (~q; xk) = pkk~qk2kxkk2 : (14)It is easy to �nd these from quantities computed in Algorithm Bidiag. Apply anelementary orthogonal transformation Sj;j from the right to the Hessenberg matrixHj+1;j so that the resulting Hj+1;jSj;j has only its leading element nonzero in the



6�rst row. Then Qj+1Hj+1;jSj;j is a new basis of the reached subspace. Premultiplythe document vector xk with this basis and,yk = STj;jHTj+1;jQTj+1xkwill give the component of xk along ~q(j) as its �rst coordinate y1;k, and the rest ofthe projected ~xk as the norm of the remaining (y2;k; : : : ; yj;k)T .Our experiments have shown that the second choice (14) gave better precisionso we use it as our standard.4 IllustrationsWe have tested our algorithm on several widely circulated test sets coming from a.o. the TREC conferences [6]. Here we choose to report results on the well knownMEDLINE collection [5]. It is admittedly a toy problem, but since it has been testedby a wide range of people, it is good for comparison and illustration purposes.Our original matrix X is of size m � n = 7014� 1033, with xik = 1 if termi is present in document k, no counting of appearances is done. Instead we scalethe matrix in a way that is natural in the analysis of general data. First all rowsare scaled to have Euclidean norm (sum of squares) equal to unity. This is sensible,since it deemphasises common terms, as is done in most weighting schemes. Thenwe scale the columns to have unit length. This disturbs the row scaling somehow,but is good for illustration purposes, we get the same length on all vectors andcan let the length of a projection tell how close the vector is to a subspace it isprojected into. Moreover, we will most often let angles between vectors and spacesdetermine choices, and those are independent of the length of the vectors. We plotthe row (term) and column (document) norms in �gure 4. The lines are the rowand column norms in the original matrix X . After the row scaling all rows haveunit norm, so we do not plot them, but we plot the column norms as points in theright plot. After the column scaling all columns have unit norm, but the rows havethe norms indicated by the dots on the left plot. We see that the row norms are nolonger strictly equal but reasonably equilibrated.There are 30 queries supplied with the test matrix, together with indices kof relevant documents for each each query. This gives between 9 and 39 relevantdocuments for each query, altogether 696 documents are relevant to some query andno document is relevant to more than one query. We compare our results to thesecorrect answers, and are interested to know whether any quantities obtained duringthe computation can be used to determine if a query is a di�cult or a simple oneto handle with our method.Let us list results for some typical and interesting queries. First take query 1,it has rather many, 37 relevant documents, and is on the easy side for our algorithm.In �gure 4 we follow the progress in linear algebra terms, as we execute the algorithmfor steps j = 1; : : : ; 12. Circles are the residual norms kr(j)k, (10), they decreaseunnoticeably slowly from 1 to 0.892. This means that the query q is at a ratherlarge angle to the reached subspace, it has a projection of length 0.451. We plot thenormal equation residuals kXT r(j)k, (12), as pluses, and note that they decrease
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Figure 1. Medline matrix row and column norms, before and after scaling.Sorted before scaling
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Figure 2. Medline matrix, follow convergence of bidiagonalization procedure.
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Figure 3. Medline matrix, Query 1, upper half step j = 2, lower half stepj = 12, numbers scores of relevant documents.fast enough at a linear rate. After 12 steps we have found the projection of the queryinto the document space spanned by X to at least 3 decimals. We were curious tosee how the singular values converged and plotted estimates of their accurracies aspoints. Note that the leading singular value converged very fast, after 12 steps itsvector is accurate to 9 decimals and the singular value to full machine precision. Itis well known that the basis vectors Qj keep orthogonal until one of the singularvalues converges, to verify that we plotted the orthogonality of each basis vectorqj to its predecessors Qj�1 as crosses and, true to theory, the crosses and pointsintersect at half the machine accuracy level during step 10.Let us now turn to a view of all the documents, and see how well we �nd



9the relevant documents for query 1. We plot them in a two dimensional coordinatesystem in �gure 4. The x axis is along the projected query ~q(j). The y axis is used toplot the component of each xk in the reached subspace (8) orthogonal to ~q(j). Thismakes up two of the three components of each xk vector. We can infer the length ofthe third component, which is orthogonal to the reached subspace, by rememberingthat all vectors xk were normalized to unit length, so the distances of the pointsplotted to the origin indicate how close the vectors are to the reached subspace.Those close to the origin are far from the reached subspace. If we continue thebidiagonalization to full length j = n, most of the vectors will get unit length,because then the reached subspace is the whole span of X , except in the rare casewhen the query is totally unrelated to a part of the document collection.If we use our standard scoring method (14), taking angles between the originaldocuments and the projected query, we would choose documents from right to leftas plotted in �gure 4, and we can check how well we �nd the relevant documents.We show this by giving the score number beside each relevant document. Look atthe lower part of �gure 4! First comes document 1, it is a relevant one, then comesan unnumbered point down to the left, it is not numbered since it is not relevant.Then come 3, 4, 5 all relevant, while 6 is missing. Again 7 is relevant but 8 is not,then 9 and 10 are good. Now our algorithm has given us 10 suggestions, of whichwe �nd that 7 are relevant. We say that the precision is 0.7 now when the recall is 7out of 37, that is 0.2. APR, the averaged precision over all relevant documents [6],is slightly lower at 0:634 since the last relevant documents are found much later, wesee that the last one scores as number 141. This is still not too bad, we had 1033documents to score.One �nal look at the lower half of �gure 4! There are many points along they axis, they denote documents that are orthogonal to the projected query, they willbe the last ones scored. Actually all but 234 of the 1033 documents are orthogonalto both the original and the projected �rst query.Our experiments have shown that it is overkill to run the algorithm as far asj = 12, the APR reaches its maximum already after j = 2 steps. Look at the upperpart of �gure 4! The projected query is slightly shorter, 0:408 compared to 0:451at step 12, and all the xk points are quite a bit closer to the origin, indicating thatthe components of the document vectors in the reached plane are smaller. One theother hand, there is one more relevant document among the �rst 10 scored, and thelast relevant document is now scored as number 96, which brings up the APR to0:762.When scoring documents by angles in the reached plane (13), these can beseen as angles to the x axis in �gure 4. It did not di�er much from the standardscoring (14), actually it gave slightly worse precision, in this case APR 0:621 forj = 2. The third scoring choice, angles to Krylov subspace, cannot be directly seenin the plots in �gure 4, it amounts somehow to choosing those documents plottedfar from the origin and gives about the same choices but with still somewhat lowerprecision, in this case APR 0:495.We have performed this kind of analysis for all the 30 queries given, somegive better and some give worse results than this �rst query, see �gure 4 where theAPR is plotted against the step j for some of the queries and �gure 4 that gives a
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Figure 4. Medline matrix, averaged precision recall for di�erent steps jand some queries iq.(noninterpolated) precision recall diagram for these same queries at step j = 2.Let us study a good question, query 13 in �gure 4. It gives full score for the�rst 16 documents scored, and the 21 st and last relevant document is scored asnumber 32. We do not show the �gure corresponding to �gure 4 for this query, it isvery similar. This query actually deteriorates if we run up to 12 steps, see the lowerhalf of �gure 4. Now we see that no less than 941 of the documents are orthogonalto the query, including one relevant document that is scored as 582. This needs tobe studied further, one advantage claimed for LSI is that it can handle synonymy,see [1] and return documents that are orthogonal to the original query. Here itlooks like our method has this property at step j = 2 but looses it when j = 12 isreached.The �nal query we will bother the readers with is 22, the worst performer.See �gure 4! Here one relevant document is the �rst to be scored, but then wehave to look until number 6 and 13 to �nd the next relevant documents, and the25 th and last does not appear until as number 292, and at 0.237 the APR is notthat impressive. There does not seem to be anything wrong with the query, itsprojection is 0:46 not smaller than the others.
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