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Problem 1. Prove Corollary I1.6.2 by partial summation.

Solution. Write
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Inserting the bound ;. .o A(q) < (N + Q?)S(N) from Theorem I1.6.1 yields
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since @ > R.

Problem 2. Modify the proof of the Barban—Davenport—Halberstam Theorem to
show the Theorem of Bombieri—Friedlander—Iwaniec.

Solution. By the character relations of Lemma II.1.1 we have
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and thus, by the same argument leading to (I1.6.1),
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As in the proof of the Barban—Davenport—-Halberstam theorem, we have to get rid
of non-primitive characters. If x is induced by a character x’ (mod ¢’) with ¢ = ¢'l,
we have

Y fx(n)= Y f)xX'(n),

n<x n<x
(n,0)=1

so if we denote the left hand side of the Bombieri—Friedlander—Iwaniec theorem by
S, we have
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As in the proof of B-D-H we first investigate the contribution of ¢ > R for some
suitable R. From Corollary I1.6.2 we have
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Note that the right hand side only increases if we abandon the condition (n,l) =1
in the innermost sum. After summing over | we see
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where we used relation I1.6.2.

For the terms with ¢’ < R we sort into residue classes modulo ¢’ and finde
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Instead of using the Siegel-Walfisz theorem, we now use the condition of B-F-I. This
shows that the inner sum is
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The first term of the right hand side vanishes by the character relations of Lemma
I1.1.1, and we find
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It follows that
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Altogether we have
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and the first and last terms on the right hand side coincide when R = (logz)?.
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