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Abstract. We prove that the Poisson Boolean model, also known as the Gilbert disc model,
is noise sensitive at criticality. This is the first such result for a Continuum Percolation
model, and the first which involves a percolation model with critical probability pc 6= 1/2.
Our proof uses a version of the Benjamini-Kalai-Schramm Theorem for biased product
measures. A quantitative version of this result was recently proved by Keller and Kindler.
We give a simple deduction of the non-quantitative result from the unbiased version. We
also develop a quite general method of approximating Continuum Percolation models by
discrete models with pc bounded away from zero; this method is based on an extremal
result on non-uniform hypergraphs.

1. Introduction

The concept of noise sensitivity of a sequence of Boolean functions was introduced in
1999 by Benjamini, Kalai and Schramm [9], and has since developed into one of the most
exciting areas in Probability Theory, linking Percolation with Discrete Fourier Analysis and
Combinatorics. So far, most attention has been focused on percolation crossings in two
dimensions [9, 21, 35], either for bond percolation on the square lattice Z2, or for site per-
colation on the triangular lattice T. In this paper we study the corresponding questions in
the setting of Continuum Percolation; in particular, we shall prove that the Poisson Boolean
model, also known as the Gilbert disc model, is noise sensitive at criticality.

Roughly speaking, a sequence of Boolean functions fn : {0, 1}n → {0, 1} is said to be
noise sensitive if a slight perturbation of the state ω asymptotically causes all information
about fn(ω) to be lost. More precisely, let ε > 0 and suppose that ω ∈ {0, 1}n is chosen
uniformly at random. Define ωε ∈ {0, 1}n to be the (random) state obtained by re-sampling
each coordinate (independently and uniformly) with probability ε, and note that ωε is also
a uniform element of {0, 1}n. Then the sequence (fn)n>1 is said to be noise sensitive (NS)
if, for every ε > 0,

lim
n→∞

E
[
fn(ω)fn(ωε)

]
− E

[
fn(ω)

]2
= 0. (1)

For example, the Majority function (fn(ω) = 1 iff
∑
ωj > n/2) and the Dictator function

(fn(ω) = 1 iff ω1 = 1) are not noise sensitive, but the Parity function (fn(ω) = 1 iff
∑
ωj
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is even) is noise sensitive. One can easily see, using the Fourier representation of Section 4,
that if (1) holds for some ε ∈ (0, 1), then it holds for every ε ∈ (0, 1).

Noise sensitivity was first defined by Benjamini, Kalai and Schramm [9], who were partly
motivated by the problem of exceptional times in dynamical percolation (see [36]). In this
model, which was introduced independently by Benjamini (unpublished) and by Häggström,
Peres and Steif [24], each bond in Z2 (or site in T) has a Poisson clock, and updates its state
(again according to the uniform distribution) every time the clock rings. At any given time,
the probability that there is an infinite component of open edges is zero (see [14] or [23],
for example). However, there might still exist certain exceptional times at which such a
component appears. Building on the work of [9], Schramm and Steif [35] were able to prove
that, for the triangular lattice T, such exceptional times do exist, and moreover the Hausdorff
dimension of the set of such times lies in [1/6, 31/36]. Even stronger results were obtained by
Garban, Pete and Schramm [21], who were able to prove, via an extremely precise result on
the Fourier spectrum of the ‘percolation crossing event’, that the dimension of the exceptional
set for T is 31/36, and that exceptional times also exist for bond percolation on Z2.

Following [9], we shall study Boolean functions which encode ‘crossings’ in percolation
models. For example, consider bond percolation on Z2 at criticality (i.e., with p = pc = 1/2),
and let fN encode the event that there is a horizontal crossing of RN , the N × N square
centred at the origin, using only the open edges of the configuration. In other words, let
fN : {0, 1}E → {0, 1}, where E is the set of edges of Z2 with an endpoint in RN , be defined
by fN(ω) = 1 if and only if there is such a crossing using only edges e ∈ E with ωe = 1.
In [9], the authors proved that the sequence (fN)N∈N is noise sensitive.

Continuum Percolation describes the following family of random geometric graphs: first
choose a countable random subset of Rd according to some distribution, and then join two
points with an edge in a deterministic way, based on their relative position. Two especially
well-studied examples are Voronoi percolation (see [7, 13]), and the Poisson Boolean model,
which was introduced by Gilbert in 1961 [22], and studied further in [4, 6, 8, 31, 34]. In
the latter model, a set η of points in the plane R2 are chosen according to a Poisson point
process with intensity λ, and for each point x ∈ η, a closed disc of radius 1 is placed with
its centre on x; let D(η) denote the union of these discs. The model is said to percolate if
there exists an unbounded connected component in D(η). It is well known that there exists
a critical intensity 0 < λc < ∞ such that if λ < λc then the model a.s. does not percolate,
while if λ > λc it a.s. percolates. See the books [30] and [14] for a detailed introduction to
Continuum Percolation.

We shall be interested in the problem of noise sensitivity of the Poisson Boolean model
at criticality, that is, with λ = λc. Let fGN be the function, defined on countable, discrete
subsets η of the plane R2, which encodes whether or not there is a horizontal crossing of RN

using only points of D(η) ∩RN . That is,

fGN (η) = 1 ⇔ H
(
η,RN , •

)
occurs,

where H(η,RN , •) denotes the event that such a crossing exists in the ‘occupied space’ D(η).
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Since fGN is defined on a continuous state space, we shall need to modify the definition of
noise sensitivity. Let ε > 0 and λ > 0, and let η ⊂ R2 be chosen according to a Poisson
point process of intensity λ. We shall denote the measure associated to this Poisson process
by Pλ, expectation with respect to this measure by Eλ, and variance Varλ. We define ηε

to be the random subset of R2 obtained by deleting each element of η independently with
probability ε, and then adding a independent Poisson point process of intensity ελ. It is
clear that ηε has the same distribution as η, and we will for that reason allow a minor abuse
of notation letting Pλ denote the measure by which the pair (η, ηε) is chosen.

Definition 1 (Noise sensitivity for Continuum Percolation). We say that the Poisson Boolean
model is noise sensitive at λ if the sequence of functions (fGN )N>1 satisfies

lim
N→∞

Eλ

[
fGN (η)fGN (ηε)

]
− Eλ

[
fGN (η)

]2
= 0 for every ε > 0.

We shall say that the model is noise sensitive at criticality if it is noise sensitive at λc.

We remark that the Poisson Boolean model is trivially noise sensitive at every λ 6= λc.
The reason is simply that when λ > λc (or λ < λc), then limN f

G
N = 1 a.s. (or limN f

G
N = 0

a.s.), as is well known.
The following theorem is our main result. It is the analogue for the Poisson Boolean model

of the result from [9] mentioned above concerning bond percolation on Z2.

Theorem 1.1. The Poisson Boolean model is noise sensitive at criticality.

The proof of Theorem 1.1 is based on two very general theorems, neither of which uses
any properties of the specific model which we are studying. The first is a generalization of
one of the main theorems of Benjamini, Kalai and Schramm [9], a result referred to as the
BKS Theorem, to biased product measures. It gives a sufficient condition (based on the
concept of influence) for an arbitrary sequence of functions to be noise sensitive at density p
(see Theorem 1.2). A quantitative version of the BKS Theorem for biased product measures
was recently proved by Keller and Kindler [28]. Their result is therefore a strengthening of
the qualitative result of [9]. We shall give a short deduction of the BKS Theorem for general
p ∈ (0, 1) from the uniform case.

The second main tool is an extremal result on arbitrary non-uniform hypergraphs (i.e.,
arbitrary events on {0, 1}n), which allows us to bound the variance that arises when two
stages of randomness are used to choose a random subset. We shall use this bound (see
Theorem 1.4) to prove noise sensitivity for the Poisson Boolean model via a corresponding
result for a particular discrete percolation model (see Theorem 1.3). These tools are quite
general, and we expect both to have other applications; we shall therefore state them here,
and in some detail, for easy reference.

In order to state the BKS Theorem for product measure, we first need to define noise
sensitivity in this setting. Let Pp denote product measure with density p ∈ (0, 1) on {0, 1}n,
i.e., Pp(ωi = 1) = p independently for every i ∈ [n] := {1, 2, . . . , n}. (We will let Ep denote
expectation with respect to this measure.) When p = 1/2 this corresponds to picking an
element of {0, 1}n uniformly at random, and so we refer to it as the uniform case. Define ωε

as above, by re-randomizing each bit independently with probability ε.
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Definition 2 (Noise sensitivity at density p). A sequence of functions fn : {0, 1}n → [0, 1]
is said to be noise sensitive at density p (NSp) if, for every ε > 0,

lim
n→∞

Ep
[
fn(ω)fn(ωε)

]
− Ep

[
fn(ω)

]2
= 0. (2)

When p = 1/2, this is equivalent to (1), the definition of noise sensitivity from [9].

The influence at density p, denoted Infp,i(f), of a coordinate i ∈ [n] in a function
f : {0, 1}n → [0, 1], is defined by

Infp,i(f) := Ep
[∣∣f(ω)− f(σiω)

∣∣],
where σi is the function that flips the value of ω at position i. We denote the sum of the
squares of the influences of f by

IIp(f) :=
n∑
i=1

Infp,i(f)2.

The following theorem was first proved by Benjamini, Kalai and Schramm [9] in the case
p = 1/2, but also remarked to hold for general p. A quantitative version was obtained by
Keller and Kindler [28]. The result was stated in [9] for functions into {0, 1}, but the proof
works also for functions into [0, 1], as was also observed in [28, page 3]. We shall give a
simple deduction of this theorem from the uniform case.

Theorem 1.2 (BKS Theorem for product measure). Let (fn)n>1 be a sequence of functions
fn : {0, 1}n → [0, 1]. For every p ∈ (0, 1),

lim
n→∞

IIp(fn) = 0 ⇒ (fn)n>1 is NSp.

We remark that the approach we use to prove Theorem 1.2 is quite general, and may be
used to extend various other results from uniform to biased product measures, see Section 2.2.
Before introducing our second main tool, Theorem 1.4, let us give some more context, by
describing our general approach to the proof of Theorem 1.1.

We shall choose our Poisson configuration η ⊂ R2 in two steps; in other words, we view
the Poisson Boolean model as a ‘weighted average’ (according to a certain probability dis-
tribution) of a family of discrete percolation models. To be precise, for each countable set
B ⊂ R2 and p ∈ (0, 1) we consider the following simple model; it is nothing more than site
percolation on the graph (with vertex set B) defined by the Poisson Boolean model.

Definition 3 (The percolation model PBp ). For each countable B ⊂ R2 and p ∈ (0, 1), a

configuration η ⊂ B in the percolation model PBp is obtained by including each point of B
independently with probability p.

A p-subset of a (countable) set S is a random subset chosen by including each element
independently with probability p. We shall write PSp for the corresponding probability dis-

tribution; or just Pp when S = [n]. We will be interested in the PBp model for fixed (small)

p > 0 in the case where B ⊂ R2 is chosen according to Pλc/p, the measure of a Poisson point
process with intensity λc/p. Given B chosen in that way, let η denote a p-subset of B. That
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is, choose η ⊂ B according to the conditional measure PBp . We emphasize that choosing η
in this two-step procedure is equivalent to choosing it according to a Poisson point process
of intensity λc. Consequently, D(η) corresponds to a configuration of the occupied space in
the Poisson Boolean model at criticality.

For each countable set B ⊂ R2, define the function fBN : {0, 1}B → {0, 1} by setting
fBN (η) = 1 if and only if there is a horizontal crossing of RN in D(η). (Note that although
B may be infinite, the function fBN only depends on a finite number of elements of B, a.s.
in Pλc/p.) We say that the model PBp is noise sensitive at density p (NSp) if the sequence

(fBN )N>1 is NSp. Our proof of Theorem 1.1 proceeds via the following result.

Theorem 1.3. The model PBp is noise sensitive at density p for Pλc/p-almost every B, for
each sufficiently small p > 0.

Thus, the proof of Theorem 1.1 divides naturally into two parts. In the first we adapt
the methods of Benjamini, Kalai and Schramm [9] to prove noise sensitivity of the discrete
models PBp ; in the second we use our bound on the variance (Theorem 1.4, below) to prove
that this noise sensitivity transfers to the continuous Poisson Boolean model. Interestingly,
Theorem 1.4 will also be a key tool in the proof of Theorem 1.3.

To apply the adapted methods of [9], we require a bound on the fluctuations (in B chosen
according to Pλc/p) of the probability of the crossing event in the model PBp ; we shall prove
such a bound in a much more general context. Indeed, our next theorem holds for arbitrary
hypergraphs (events), and thus we shall not use any properties of the specific percolation
problem under consideration. By working at this level of generality, we are able to deduce,
with no extra effort, similar bounds for crossings of rectangles, and for crossings in other
percolation models.

A hypergraph H is simply a collection of subsets of [n]; or, equivalently, it is a subset of
{0, 1}n. We call these sets ‘edges’, and remark that if every edge has exactly two elements
then H is a graph. Given a hypergraph H, for each set B ⊂ [n] and p ∈ (0, 1) we define

rH(B, p) := PBp
(
A ∈ H

)
,

where A is a p-subset of B. We remark that our use of the letter B here is supposed to be
suggestive; in our applications it will correspond to a discrete approximation of the subset
of R2 considered above, which was chosen according to Pλc/p. Indeed, given a rectangle
R ⊂ R2, we shall discretize by partitioning it into n small squares. The set B will be a
q-subset of [n], where q = q(n) is chosen so that (the set of centres of squares corresponding
to) B has intensity λc/p in R. Our hypergraph H will encode crossings of R in D(η), where
η is a p-subset of these squares. Observe that in this case, if n is large, then rH(B, p) is very
close to the probability of a crossing of R in the model PBp .

Theorem 1.4. Let 0 < p 6 1/2, 0 < q < 1 and n ∈ N satisfy n > 200(pqn)3, n > 8p(qn)2

and pqn > 32 log 1
p
. Let H be a hypergraph on vertex set [n], and let B be a q-subset of [n].

Then

Varq
(
rH(B, p)

)
= O

(
p

(
log

1

p

)2)
,
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where the constant implicit on the right-hand side is independent of H.

We emphasize the crucial point, which is that our bound on Varq
(
rH(B, p)

)
goes to zero

as p → 0 uniformly in H. Here, and throughout, f(x) = O(g(x)) denotes the existence of
an absolute constant C > 0, independent of all other variables, such that |f(x)| 6 C|g(x)|
for every x in the domain of f and g. We remark that an alternative proof of Theorem 1.4
was recently obtained by one of us [2], using completely different methods.

As noted above, we shall use Theorem 1.4 in order to prove that the sequence (fBN )N>1 is
noise sensitive for Pλc/p-almost every B, as well as to deduce Theorem 1.1 from Theorem 1.3.
Indeed, we shall use Theorem 1.4 together with the ‘deterministic algorithm’ method (see
Sections 2.3 and 5) to obtain bounds on the influences of variables; Theorem 1.3 then follows
from the BKS Theorem for product measure.

We study in this paper how methods developed to study noise sensitivity for discrete
percolation models can be adapted to a continuum setting. We have chosen to follow the
approach of Benjamini, Kalai, and Schramm [9]. More recently, quantitative noise sensitivity
has been introduced. Here one aims at determining the rate at which ε = ε(n) is allowed
to decay while the limit in (1) persists. Results of this kind were obtained by Schramm and
Steif [35] and Garban, Pete, and Schramm [21] in the context of percolation crossings on the
square lattice Z2 and triangular lattice T2. As a corollary of our main result (Theorem 1.1),
via the approach developed in [35], it is possible to obtain similar quantitative results for
the Poisson Boolean model.

Define the noise sensitivity exponent (for the Poisson Boolean model) as the supremum
over the set of α > 0 for which the limit in Definition 1 holds with ε = ε(N) = N−α.

Corollary 1.5. The noise sensitivity exponent for the Poisson Boolean model at criticality
is strictly positive. That is, there exists α > 0 such that, for ε(N) = N−α,

lim
N→∞

Eλc

[
fGN (η)fGN (ηε(N))

]
− Eλc

[
fGN (η)

]2
= 0.

We shall, in Section 8, only outline the proof of Corollary 1.5. The rest of the paper is
organized as follows. In Section 2 we give a full overview of the proof, and state several
other results which may be of independent interest. In Section 3 we recall some facts about
the Poisson Boolean model, and in Sections 4 and 5 we prove Theorem 1.2 and extend
the deterministic algorithm method of [9] to general p ∈ (0, 1). In Section 6 we prove
Theorem 1.4, and deduce some simple consequences, in Section 7 we prove Theorem 1.3
and deduce Theorem 1.1, and in Section 8 we sketch the proof of Corollary 1.5. Finally, in
Section 9 we state some open questions.

Throughout the article we treat elements of {0, 1}n as subsets of [n], and vice versa,
without comment, by identifying sets with their indicator functions. Thus Pp denotes the
biased product measure on {0, 1}n, and also the probability distribution associated with
choosing a p-subset of [n]. As remarked above, we shall (suggestively) use the letter B to
denote both a q-subset of [n], and a subset of R2 chosen according to Pλc/p (i.e., according to
a Poisson point process with intensity λc/p), and trust that this will not confuse the reader.
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The letter η will always denote a random subset of the plane, chosen according to a Poisson
process of intensity λc; or, equivalently, chosen as a p-subset of the set B ⊂ R2.

2. Further results, and an overview of the proof

In this section we introduce a number of auxiliary methods and results that we shall use
in the proof of Theorem 1.1, and which may also be of independent interest. In particular,
we introduce a new way of deducing results for biased product measures from results in the
uniform case. We shall use this method in Sections 4 and 5 to generalize the BKS Theorem
and the deterministic algorithm method of Benjamini, Kalai and Schramm [9].

Let us begin by examining the link between the Poisson Boolean model and the model
PBp . It is this link that will enable us to deduce Theorem 1.1 from Theorems 1.3 and 1.4.
First, to illustrate the sense in which the Boolean model may be viewed as an ‘average’ of
the discrete percolation models PBp , let us fix p ∈ (0, 1), and observe that

Eλc/p

[
EBp
(
fBN (η)

)]
= Eλc/p

[
PBp
(
H(η,RN , •)

)]
= Pλc

(
H(η,RN , •)

)
= Eλc

[
fGN (η)

]
, (3)

where the second equality follows since if B ⊂ R2 is chosen according to a Poisson point
process of intensity λc/p, then η is distributed as a Poisson point process of intensity λc.
Furthermore, it is not difficult to show that for ε ∈ (0, 1− p) and ε′ = ε/(1− p)

Eλc

[
fGN (η)fGN (ηε)

]
− Eλc

[
fGN (η)

]2
= Eλc/p

[
EBp
[
fBN (η)fBN (ηε

′
)
]
− EBp

[
fBN (η)

]2]
+ Varλc/p

(
EBp
[
fBN (η)

])
,

(4)

where, as the notation suggests, on the left-hand side (η, ηε) is specified as in Definition 1, and
on the right-hand side (η, ηε

′
) is chosen as in Definition 2, as subsets of B (see Section 7).

Thus, proving that the Poisson Boolean model is noise sensitive at criticality reduces to
proving that (for some p)

Eλc/p

[
EBp
[
fBN (η)fBN (ηε)

]
− EBp

[
fBN (η)

]2]
+ Varλc/p

(
EBp
[
fBN (η)

])
→ 0 (5)

as N → ∞. Theorem 1.3 says exactly that, for fixed p, the first term is o(1) as N → ∞,
while the following proposition shows that the second term can be made arbitrarily small by
choosing p appropriately.

Proposition 2.1.

lim
p→0

lim sup
N→∞

Varλc/p

(
PBp
(
H(η,RN , •)

))
= 0.

We shall deduce the proposition from Theorem 1.4 via a straightforward discretization
argument. Since the expression in (5) in fact is independent of p (as seen in (4)), it follows
that (5) holds (see Section 7 for more details).

Having described how we shall deduce Theorem 1.1 from Theorems 1.3 and 1.4, we continue
this section with a few comments on their proofs, as well as a presentation of some results
and methods we shall use for that purpose.
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The proof of Theorem 1.4, given in Section 6, does not rely on the remainder of the paper,
but follows instead from an inequality due to Bey [11] (see Section 2.4 for a brief overview).
The proof of noise sensitivity in the PBp model (Theorem 1.3) is given in Section 7, and is
based on the approach developed by Benjamini, Kalai, and Schramm [9]. Our main challenge
will be to extend their method to the non-uniform case; in particular, we shall need to prove
the BKS Theorem for biased product measure (Theorem 1.2), and to generalize a result
linking the revealment of algorithms to the influence of bits (see Section 2.3). In order to
do so, we introduce a new method for reducing problems for biased product measure to the
uniform case. This method is introduced in Section 2.2; in Section 4 we use it to prove
the BKS Theorem for product measure, and in Section 5 to complete the extension of the
deterministic algorithm approach.

We begin by stating the key property of the Poisson Boolean model that we shall need.

2.1. Non-triviality of crossing probabilities. If the probability (in Pλc) of the crossing
events H(η,RN , •) were trivial, in the sense that it converged to 0 or 1 as N → ∞, then
Theorem 1.1 would itself be trivial. However, this is not the case. Further, one may deduce,
using Theorem 1.4, that if p > 0 is sufficiently small, then with probability close to 1
(in Pλc/p) the same is true for the model PBp , see Proposition 2.3. This fact will be a vital
tool in our proof of the noise sensitivity of this model, as it will allow us to bound the
probability of the ‘one-arm event’ (see Section 2.3). Throughout Ra×b denotes the rectangle
with side lengths a and b, centred at the origin.

Theorem 2.2 (Alexander [4]). For every t > 0 there exists c = c(t) > 0 such that

c 6 Pλc

(
H
(
η,RN×tN , •

))
6 1− c

for every N ∈ N.

Theorem 2.2 is in fact a slight extension of [4, Theorem 3.4], but it follows by the same
argument. For completeness, we shall sketch the proof in Section 3. From this bound,
together with Theorem 1.4, we shall deduce the following bound (see Section 7).

Proposition 2.3. For every t, γ > 0 there exist constants c′ = c′(t) > 0 and p0 = p0(t, γ) > 0
such that if p ∈ (0, p0), then

Pλc/p

(
PBp
(
H
(
η,RN×tN , •

))
6∈ (c′, 1− c′)

)
< γ

for every sufficiently large N ∈ N.

We next turn to one of the key new techniques we introduce in this paper.

2.2. A new method for proving results for biased product measures. We outline
here a new method for deducing results in the setting of a density p product measure from
the uniform case (i.e., the case p = 1/2). The idea is the following. Rather than considering
directly the function f : {0, 1}n → [0, 1] where {0, 1}n is endowed with density p product
measure, we consider a related function hf : {0, 1}n → [0, 1] where {0, 1}n is endowed with
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uniform measure. This function hf is obtained from f by a smoothing (or averaging) oper-
ation. Assume for now that p 6 1/2. Given any function f : {0, 1}n → [0, 1] we define hf
as

hf (X) := E
[
f(Z)

∣∣X], (6)

where Z ∈ {0, 1}n is obtained as a 2p-subset of X. More formally, independently of X, pick
a 2p-subset Y of [n] (i.e., P(Yi = 1) = 2p for each i ∈ [n], all independently) and define Z as
the coordinate wise product of X and Y , i.e.,

Zi := XiYi for each i ∈ [n]. (7)

Observe that hf : {0, 1}n → [0, 1] and that if X is uniformly chosen, then Z is a p-subset
of [n]; Assume from now on that X is uniformly chosen in {0, 1}n. By relating various
parameters of f(Z) and hf (X), results about one may be deduced from results concerning
the other. The connection between f and hf is given by the following proposition. In the
interest of generality we state the proposition for all p ∈ (0, 1). For p > 1/2 we define Z
as a p-subset containing X. Formally, we set Zi = 1 − (1 − Xi)Yi for each i, where Y is a
2(1 − p)-subset of [n]. Following the standard convention, by f being monotone we mean
that f(ω) 6 f(ω′) for every ω, ω′ ∈ {0, 1}n such that ωj 6 ω′j for every j ∈ [n].

Proposition 2.4. Let f : {0, 1}n → [0, 1] and p ∈ (0, 1), and set p̄ = min{p, 1− p}.
(i) If f is monotone then hf is monotone.

(ii) Inf1/2,i(hf ) 6 2p̄ Infp,i(f), and moreover equality holds if f is monotone.

(iii) (fn)n>1 is NSp ⇔
(
hfn
)
n>1

is NS.

Moreover, if p 6= 1/2 then this is also equivalent to lim
n→∞

Var
(
hfn
)

= 0.

We remark that the random variables X and Z realize the maximal coupling between
the uniform measure and product measure of density p on {0, 1}n, or similarly, between a
uniformly chosen subset and a p-subset of [n].

Other reduction methods have previously been used for similar purposes. See e.g. [15, 19,
27, 29] for results in this direction.

2.3. The deterministic algorithm method. In order to prove that (fBN )N>1 is NSp for
Pλc/p-almost every B (Theorem 1.3), we shall use the ‘algorithm method’, which was also
introduced by Benjamini, Kalai and Schramm [9] in the case p = 1/2. (We would like to
thank Jeff Steif for pointing out to us that the approach in [9] can be synthesized in the way
it is presented here.) Given a function f : {0, 1}n → [0, 1], let A∗(f) denote the collection of
deterministic algorithms which determine f .1

Definition 4 (Revealment of an algorithm). Let f : {0, 1}n → [0, 1] and let A ∈ A∗(f). For
each p ∈ (0, 1) and j ∈ [n], define

δj(A, p) := Pp
(
A queries bit j when determining f(ω)

)
,

1An algorithm is simply a rule which, given the information about ω received so far, tells you which bit
of ω to query next. It determines f if it determines f(ω) for any input ω ∈ {0, 1}n.
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where ω ∈ {0, 1}n is chosen according to Pp. The revealment δK(A, p) of A with respect to
a set K ⊂ [n] is defined to be max{δj(A, p) : j ∈ K}.

Using Theorem 1.2, we shall prove the following theorem, which generalizes the method
of [9] to the non-uniform set-up.

Theorem 2.5. Let r ∈ N be fixed, and let (fn)n>1 be a sequence of monotone functions
fn : {0, 1}n → [0, 1]. For each n ∈ N, let A1, . . . ,Ar ∈ A∗(fn) and let [n] = K1 ∪ . . . ∪Kr.
If, for a fixed p ∈ (0, 1), we have

δKi(Ai, p)
(

log n
)6 → 0

as n→∞ for each i ∈ [r], then (fn)n>1 is NSp.

We aim to apply Theorem 2.5 to deduce noise sensitivity in the (discrete) model PBp . For

this we shall need to define a deterministic algorithm which determines fBN , and show that it
has low revealment for most sets B (with respect to Pλc/p). The algorithm which we shall use
is the continuum analogue of that used in [9]. Let η be a p-subset of B. Roughly speaking,
we ‘pour water’ into the left-hand side of the square RN , and allow water to infiltrate the
occupied space D(η). Thus, an element in B will be queried only if it becomes wet via a
path in D(η) reaching from the left-hand side. For elements in the left half of RN we pour
water into the right-hand side (see Section 7 for a precise definition).

It is easy to see that the probability that an element x ∈ B is queried by A is at most the
probability of the corresponding ‘one-arm event’, i.e., the event that there is a path in D(η)
from x to the boundary of a square centered therearound (for background on arm-events,
see e.g. [14]). In the original Poisson Boolean model, a bound on this probability can be
deduced from Theorem 2.2. However, in order to apply Theorem 2.5 we need a bound for
the model PBp ; we obtain such a bound using Proposition 2.3.

In order to apply Proposition 2.3, we simply surround each point x ∈ B ∩ RN by c logN
disjoint annuli, and show that, with very high probability (in Pλc/p), at least half of them
are ‘good’, in the sense that the probability (in PBp ) that there is a vacant loop around x is
at least c′′, for some small constant c′′ > 0. It will then follow that (for Pλc/p-almost every
B), every x ∈ B ∩RN has probability at most N−δ (in PBp ) of being queried by A, when N
is large (see Section 7).

2.4. Hypergraphs. Theorem 1.4 provides a very general bound on the variance that arises
in settings where two stages of randomness are used to select a random subset. The main
step in the proof of Theorem 1.4 is to prove a variance bound (Proposition 6.1) for the case
where the random sets A ⊂ B have fixed sizes m 6 k. It is then relatively straightforward to
deduce a corresponding bound on Varq

(
rH(B, p)

)
, and thus prove Theorem 1.4, by bounding

other factors that might contribute towards the variance. These bounds are obtained using
Chernoff’s inequality (see Section 6).

We shall control Var
(
Xm(Bk)

)
, where Bk is a uniformly chosen k element subset of [n]

and Xm(B) = Xm(B,H) counts the number of hypergraph edges of size m contained in
B ⊂ [n], using the following theorem of Bey [11] concerning the sum of squares of degrees
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in hypergraphs. It generalized results of Ahlswede and Katona [3] and de Caen [17], and
answered a question of Aharoni [1].

Let e(H) denote the number of edges in a hypergraph H, and, given a set T ⊂ [n], let
dH(T ) denote the degree of T in H, i.e., the number of edges of H which contain T . The
following result bounds the sum of the squares of the degrees over sets of size t in an m-
uniform hypergraph, i.e., one in which all edges have size m. By convention, we let

(
n
k

)
:= 0

for k < 0 and k > n.

Bey’s inequality (Bey [11]). Let H be an m-uniform hypergraph on n vertices, and let
t ∈ [m]. Then

d2

(
H, t

)
:=

∑
T⊂[n], |T |=t

dH(T )2 6

(
m
t

)(
m−1
t

)(
n−1
t

) e(H)2 +

(
m− 1

t− 1

)(
n− t− 1

m− t

)
e(H).

To see how Bey’s inequality is related to the variance of Xm(Bk), observe that dH(T )2

counts the number of (ordered) pairs of edges of size m in H which both contain T . Thus,
summing over t (with appropriate weights), we obtain an upper bound on E

(
Xm(Bk)

2
)
.

3. Non-triviality of the crossing probability at criticality

In this section we shall sketch the proof (from [4]) of Theorem 2.2, which says that at
criticality, the probability of crossing a rectangle is bounded away from zero and one. The
proof is based on the RSW Theorem for the Poisson Boolean model, which was proved by
Roy [34] for the vacant space (see below), and by Alexander [4] for the occupied space.

Recall that Pλ indicates that the configuration η ⊂ R2 is chosen according to a Poisson
process with intensity λ. Let V

(
η,R, ◦

)
denote the event that there is a vacant vertical

crossing of R, i.e., a crossing using only points of RN \D(η), and define V
(
η,R, •

)
(vertical

crossing in D(η) ∩RN) and H
(
η,R, ◦

)
similarly.

Vacant RSW Theorem (Roy [34], see Theorem 4.2 of [30]). For every δ, t, λ > 0, there
exists an ε = ε(δ, t, λ) > 0 such that the following holds for every a, b, c > 0 with c 6 3a/2.
If

Pλ

(
H
(
η,Ra×b, ◦

))
> δ, and Pλ

(
H
(
η,Rb×c, ◦

))
> δ,

then Pλ

(
H
(
η,Rta×b, ◦

))
> ε.

We remark that this result was in fact proved in substantially greater generality: it holds
for random radii, with arbitrary distribution on (0, r) (where r ∈ R+ is arbitrary). Alexan-
der [4] proved the corresponding statement for the occupied space (for fixed radii), and used
this result to prove the following characterization.

Theorem 3.1 (Theorem 3.4 of [4]). In the Poisson Boolean model, there exists θ > 0 such
that the following are equivalent:

(a) There is almost surely an infinite occupied component.
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(b) lim
N→∞

Pλ

(
H
(
η,RN , •

))
= 1.

(c) lim
N→∞

Pλ

(
H
(
η,R3N×N , •

))
= 1.

(d) There exists N ∈ N such that Pλ

(
H
(
η,R3N×N , •

))
> 1− θ.

The same holds true if ‘occupied’ is changed for ‘vacant’ throughout.

It follows immediately that there is no percolation at criticality for either the occupied or
vacant space.

Corollary 3.2 (Corollary 3.5 of [4]). At λ = λc, there is almost surely no infinite component
in the occupied space D(η), and no infinite component in the vacant space R2 \D(η).

Proof. A standard argument shows that Pλ

(
H
(
η,R3N×N , •

))
is a continuous function of λ,

and so the set of λ ∈ R for which property (d) of Theorem 3.1 holds is an open set. �

Theorem 2.2 follows immediately from Corollary 3.2, together with the following slight
extension of Theorem 3.1.

Theorem 3.3. Let η be a subset of R2 chosen according to a Poisson point process with
intensity λ. Then, for every t > 0,

(a) sup
N>1

Pλ

(
H
(
η,RN×tN , •

))
= 1 ⇒ D(η) percolates almost surely.

(b) sup
N>1

Pλ

(
H
(
η,RN×tN , ◦

))
= 1 ⇒ R2 \D(η) percolates almost surely.

The proof of Theorem 3.3 is almost identical to that of Theorem 3.1; for completeness, we
shall sketch the argument.

Sketch proof of Theorem 3.3. We shall prove only (a); part (b) follows by the same proof,
except using the Occupied RSW Theorem [4, Theorem 2.1] in place of the Vacant RSW
Theorem. We claim that our assumption implies property (d) in Theorem 3.1, and hence
(by property (a) of the theorem) that D(η) percolates. We remark that the implication
(d)⇒ (a) in Theorem 3.1 follows by a straightforward Peierls-type argument.

We want to show that property (d) of Theorem 3.1 holds. It is not hard to show that

sup
N>1

Pλ

(
H
(
η,RN×tN , •

))
= 1 ⇒ sup

N>1
Pλ

(
H
(
η,RN×N , •

))
= 1,

by the Vacant RSW Theorem, applied with a = b = c = N . The latter implies that for each
ε > 0 there exists N = N(ε) > 1 such that

Pλ

(
H
(
η,RN×N , •

))
= 1 − Pλ

(
V
(
η,RN×N , ◦

))
> 1− ε. (8)

Next, observe that for every N > 0 and k ∈ N,

Pλ

(
V
(
η,R3N×N , ◦

))
6
(
2k + 1

)
Pλ

(
V
(
η,RN×N , ◦

))
+ 2k ·Pλ

(
H
(
η,R k−1

k
N×N , ◦

))
,
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and moreover that

Pλ

(
V
(
η,R3N×N , ◦

))
6 2k ·Pλ

(
V
(
η,R k+1

k
N×N , ◦

))
+
(
2k − 1

)
Pλ

(
H
(
η,RN×N , ◦

))
.

To see these, partition the rectangle R3N×N into N
k
×N rectangles B1, . . . , B3k, and consider

the leftmost and rightmost pieces Bj touched by a vertical path across R3N×N . The first
follows because either an N×N square (made up of Bj’s) is crossed vertically, or a

(
k−1
k

)
N×

N rectangle is crossed horizontally. The second follows because either a k+1
k
N ×N rectangle

is crossed vertically, or an N ×N square is crossed horizontally.

Thus, either Pλ

(
V
(
η,R3N×N , ◦

))
can be made arbitrarily small, as required, or there

exists δ > 0 such that

Pλ

(
H
(
η,R k−1

k
N×N , ◦

))
> δ and Pλ

(
V
(
η,R k+1

k
N×N , ◦

))
> δ (9)

for every N = N(ε) and every ε > 0.
Now, apply the Vacant RSW Theorem with a = k−1

k
N , b = N , c = k+1

k
N , for some N > 0.

Note that c 6 3a/2 if 2(k + 1) 6 3(k − 1), which holds if k > 5. Setting t = k
k−1

, it follows
that if (9) holds for N , then

Pλ

(
H
(
η,RN×N , ◦

))
> ε′. (10)

where ε′ = ε(δ, t, λ) > 0 is given by the Vacant RSW Theorem.
Hence if (9) holds for N = N(ε′) then (10) also holds, and (10) contradicts (8). Thus (9)

must fail to hold for N = N(ε′), and so, by the observations above, Pλ

(
V
(
η,R3N×N , ◦

))
can

be made arbitrarily small, as required. �

4. BKS Theorem for biased product measures

A tool that has turned out to be very useful in connection with the study of Boolean
functions is discrete Fourier analysis. For ω ∈ {0, 1}n and i ∈ [n], we define

χpi (ω) =

 −
√

1−p
p

if ωi = 1√
p

1−p otherwise.

Furthermore, for S ⊂ [n], let χpS(ω) :=
∏

i∈S χ
p
i (ω). (In particular, χp∅ is the constant function

1.) We observe that for i 6= j

Ep
[
χpi (ω)χpj(ω)

]
=

(
1− p
p

)
p2 +

(
p

1− p

)
(1− p)2 − 2p(1− p) = 0.

In fact, it is easily seen that the set {χpS}S⊂[n] forms an orthonormal basis for the set of
functions f : {0, 1}n 7→ R. We can therefore express such functions using the so-called
Fourier-Walsh representation (see [33, 38]):

f(ω) =
∑
S⊂[n]

f̂p(S)χpS(ω), (11)
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where f̂p(S) := Ep[fχpS].
The following lemma was proved in [9] in the uniform case; its generalization to arbitrary

(fixed) p is similarly straightforward.

Lemma 4.1. Let p ∈ (0, 1), and let (fn)n>1 be a sequence of functions fn : {0, 1}n 7→ [0, 1].
The following two conditions are equivalent.

(i) The sequence (fn)n>1 is NSp.

(ii) For every k ∈ N,

lim
n→∞

∑
0<|S|6k

f̂n
p
(S)2 = 0.

Although our results hold for arbitrary p ∈ (0, 1), we shall prove them only for p 6 1/2,
since this is the case we shall need in our applications. The proofs for p > 1/2 all follow
in exactly the same way. From now on, we will not stress that S ⊂ [n] in the notation.

Furthermore, when p = 1/2 we shall write χS for χpS and f̂(S) for f̂p(S).

Proof of Lemma 4.1. Note that Ep
[
χpS(ω)χpS′(ω

ε)
]

= 0 if S 6= S ′, that Ep
[
fn(ω)

]
= f̂n

p
(∅),

and that
Ep
[
χpS(ω)χpS(ωε)

]
= (1− ε)|S|,

since this is zero whenever at least one of the coordinates {ωi : i ∈ S} is re-randomized, and
one otherwise. By (11), it follows that

Ep
[
fn(ω)fn(ωε)

]
− Ep

[
fn(ω)

]2
= Ep

[∑
S

f̂n
p
(S)χpS(ω)

∑
S′

f̂n
p
(S ′)χpS′(ω

ε)

]
− f̂pn(∅)2

=
∑
S 6=∅

f̂n
p
(S)2Ep

[
χpS(ω)χpS(ωε)

]
=
∑
S 6=∅

f̂n
p
(S)2(1− ε)|S|,

from which both implications follow easily. �

Recall from (6) that we define hf (X) := E[f(Z)|X], where X, Y ∈ {0, 1}n are independent
random variables, X is chosen uniformly, Y is a 2p-random set, and Zi = XiYi for every
i ∈ [n]. The key fact, that the sequence (fn)n>1 is NSp if and only if (hfn)n>1 is NS, will
follow directly from Lemma 4.1, together with the following result.

Proposition 4.2. Let f : {0, 1}n → [0, 1] and p ∈ (0, 1), and set p̄ = min{p, 1 − p}. Then,
for every S ⊂ [n],

ĥf (S) =

(
p̄

1− p̄

)|S|/2
f̂p(S)

Proof. We shall prove the proposition in the case p 6 1/2; the other case follows similarly.
Let f : {0, 1}n → [0, 1] and S ⊂ [n]. By the definitions, we have

ĥf (S) = E
[
hf (X)χS(X)

]
= E

[
E
[
f(Z)

∣∣X]χS(X)
]

= E
[
E
[
f(Z)χS(X)

∣∣X]] = E
[
f(Z)χS(X)

]
= E

[
f(Z)E

[
χS(X)

∣∣Z]]. (12)
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Furthermore, Zi = 1 implies Xi = 1, which implies χi(X) = −1, so

E
[
χi(X)

∣∣Zi = 1
]

= −1,

while Zi = 0 and Xi = 1 implies that Yi = 0, so

E
[
χi(X)

∣∣Zi = 0
]

= 1 − 2 · P
(
Xi = 1

∣∣Zi = 0
)

= 1 − 2 · P(Zi = 0 |Xi = 1)P(Xi = 1)

P(Zi = 0)
= 1− 1− 2p

1− p
=

p

1− p
.

We conclude that E
[
χi(X)

∣∣Zi] =
√

p
1−pχ

p
i (Z). Therefore, since the Xi and Yi are all inde-

pendent,

E
[
χS(X)

∣∣Z] =
∏
i∈S

E
[
χi(X)

∣∣Zi] =
∏
i∈S

√
p

1− p
χpi (Z) =

(
p

1− p

)|S|/2
χpS(Z).

Inserting this into (12) gives the result. �

It is now straightforward to deduce Proposition 2.4 from Proposition 4.2.

Proof of Proposition 2.4. We shall assume that p 6 1/2; once again, the other case follows
similarly. Let f : {0, 1}n → [0, 1].

(i) Suppose that f is monotone; we claim that hf is also monotone. Indeed, observe that

hf (X) = E
[
f(Z)

∣∣X] = E
[
f(XY )

∣∣X] =
∑

ξ∈{0,1}n
f(Xξ)P(Y = ξ). (13)

But if f is monotone, then f(Xξ) is also monotone in X for every ξ ∈ {0, 1}n. Thus (13)
implies that hf is monotone, as required.

(ii) We next claim that Inf1/2,i(hf ) 6 2p · Infp,i(f) for every i ∈ [n]. For every i ∈ [n] and
k ∈ {0, 1}, let X i→k ∈ {0, 1}n be defined by X i→k

j = Xj if j 6= i, and X i→k
i = k.

By the definition, we have

Inf1/2,i(hf ) = E
[∣∣hf (X)− hf (σiX)

∣∣] = E
[∣∣∣E[f(Z)

∣∣X i→1
]
− E

[
f(Z)

∣∣X i→0
]∣∣∣]. (14)

Now, if Xi = 1, then Yi = 1 if and only if Zi = 1, and if Xi = 0 then Zi = 0, so the
right-hand side of (14) is equal to

E
[∣∣∣2p ·E[f(Z)

∣∣X i→1, Zi = 1
]

+
(
1−2p

)
E
[
f(Z)

∣∣X i→1, Zi = 0
]
− E

[
f(Z)

∣∣X i→0, Zi = 0
]∣∣∣].

But given Zi, the value of Xi is irrelevant to f(Z), so we have (with obvious notation X{i}c)

Inf1/2,i(hf ) = 2pE
[ ∣∣E[f(Zi→1) − f(Zi→0)

∣∣X{i}c]∣∣ ]
6 2pE

[∣∣f(Zi→1) − f(Zi→0)
∣∣] = 2p Infp,i(f), (15)

as required. Finally, note that the inequality in (15) be replaced by an equality when f is
monotone.
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(iii) We are required to show that (fn)n>1 is NSp if and only if (hfn)n>1 is NS. Indeed, by

Lemma 4.1, (fn)n>1 is NSp if and only if
∑

0<|S|6k f̂n
p
(S)2 → 0 as n→∞ for every fixed k,

and by Proposition 4.2,

lim
n→∞

∑
0<|S|6k

ĥfn(S)2 = 0 ⇔ lim
n→∞

∑
0<|S|6k

f̂n
p
(S)2 = 0

for every such k. But by Lemma 4.1 (applied with p = 1/2), we have that (hfn)n>1 is NS if

and only if
∑

0<|S|6k ĥfn(S)2 → 0 as n→∞ for every fixed k, so the result follows.

Finally, note that Var(hfn) =
∑

S 6=∅ ĥfn(S)2. Thus, by Proposition 4.2, if p 6= 1/2 then

Var(hfn) =
∑
S 6=∅

(
p

1− p

)|S|
f̂n

p
(S)2 → 0

as n→∞ if and only if
∑

0<|S|6k f̂n
p
(S)2 → 0 as n→∞ for every fixed k, as claimed. �

The BKS Theorem for biased product measures follows almost immediately from the
uniform case, together with Proposition 2.4.

Proof of Theorem 1.2. Let (fn)n>1 be a sequence of functions fn : {0, 1}n → [0, 1], let p ∈
(0, 1), and assume that IIp(fn)→ 0 as n→∞. We are required to show that (fn)n>1 is NSp.

By Proposition 2.4(ii), we have

II(hfn) 6 4p̄2 · II(fn),

and so II(hfn)→ 0 as n→∞. By the BKS Theorem (i.e., Theorem 1.2 in the case p = 1/2),
which was proved in [9], it follows that (hfn)n>1 is NS.

But, by Proposition 2.4(iii), we have (hfn)n>1 is NS if and only if (fn)n>1 is NSp. Hence
(fn)n>1 is NSp, as required. �

5. The deterministic algorithm approach

In this section we shall prove Theorem 2.5, the uniform case of which was proved in [9].
We shall use the method of [9], together with Theorem 1.2 and some of the results from the
previous section.

We need the following definition.

Definition 5 (The Majority function). For every K ⊂ [n] let MK : {0, 1}n → {−1, 0, 1} be
defined by

MK(X) :=



1 if
∑
i∈K

(2Xi − 1) > 0

0 if
∑
i∈K

(2Xi − 1) = 0

−1 if
∑
i∈K

(2Xi − 1) < 0.
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Throughout this section let X and Z be the random variables defined in Section 2.2,
so X ∈ {0, 1}n is chosen uniformly, and Z ∈ {0, 1}n with Zi = XiYi, where Yi is chosen
according to product measure with density 2p. (We assume again for simplicity that p 6 1/2.)

Theorem 2.5 will follow by combining the BKS Theorem with the following two proposi-
tions, of which in [9] the first was proved in the case p = 1/2, and the second was proved for
p = 1/2 for functions taking values in {0, 1}. We shall generalize them to the biased setting.

Proposition 5.1. There exists a constant C > 0 such that, if f : {0, 1}n → [0, 1] is mono-
tone, p ∈ (0, 1) and K ⊂ [n], then∑

j∈K

Infp,j(f) 6
C

min{p, 1− p}
√
|K|E

[
f(Z)MK(X)

](
1 +

√
− logE

[
f(Z)MK(X)

])
.

Recall that the revealment δK(A, p) of an algorithm with respect to a set K ⊂ [n] is
defined to be max{δj(A, p) : j ∈ K}, where δj(A, p) = Pp

(
A queries coordinate j

)
.

Proposition 5.2. There exists a constant C > 0 such that, if f : {0, 1}n → [0, 1], p ∈ (0, 1),
K ⊂ [n] and A ∈ A∗(f), then

E
[
f(Z)MK(X)

]
6 C δK(A, p)1/3 log n.

We begin by proving Proposition 5.1, which follows almost immediately from the uniform
case, together with Proposition 2.4.

Proof of Proposition 5.1. The proposition was proved in [9, Corollary 3.2] in the case p =
1/2; we apply this result to the function hf . It follows that∑

j∈K

Inf1/2,j(hf ) 6 C
√
|K|E

[
hf (X)MK(X)

](
1 +

√
− logE

[
hf (X)MK(X)

])
.

for some C > 0. Next, observe that

E
[
hf (X)MK(X)

]
= E

[
E
[
f(Z)MK(X)

∣∣X]] = E
[
f(Z)MK(X)

]
.

Since f is monotone, we have Inf1/2,j(hf ) = 2p̄ · Infp,j(f), by Proposition 2.4, and so the
result follows. �

The proof of Proposition 5.2 will be based on the argument used in [9, Section 4], but
modified to fit in the current setting. The strategy is roughly as follows: let V denote the set
of coordinates queried by the algorithm. Then with high probability, V ∩K is small enough
so that MK(X) will (probably) be determined by the values of bits of X in K \ V . By a
careful coupling, we can make these independent of the value of f , and thus E

[
f(Z)MK(X)

]
is small.

We shall use Chernoff’s inequality; see, e.g., [5, Appendix A]. Let Bin(n, p) denote the
binomial distribution with parameters n and p. Throughout the rest of the paper, ξn,p will
denote a binomially distributed random variable with parameters n ∈ N and p ∈ (0, 1).
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Chernoff’s inequality. Let n ∈ N and p ∈ (0, 1), and let a > 0. Then

P
(∣∣ξn,p − pn∣∣ > a

)
< 2 exp

(
− a2

4pn

)
(16)

if a 6 pn/2, and P
(
|ξn,p − pn| > a

)
< 2 exp

(
− pn/16

)
otherwise. If p = 1/2, then (16)

holds for every a ≥ 0.

We shall also use the following simple property of the binomial distribution, which follows
by Stirling’s formula.

Observation 5.3. There exists C > 0 such that for any n ∈ N, p ∈ (0, 1) and a ∈ N,

P
(
ξn,p = a

)
6

C√
np(1− p)

.

We are now ready to prove Proposition 5.2.

Proof of Proposition 5.2. We assume as usual that p 6 1/2, and note that the proof for
p > 1/2 is similar. Let f : {0, 1}n → [0, 1] and ∅ 6= K ⊂ [n] (if |K| = 0 then both sides are
zero). We begin by defining our coupling; the purpose is to make the values of Xi outside V
independent of those inside.

We shall obtain the random variables X and Z, defined in (7), as follows. Let Z1 ∈ {0, 1}K ,
Z2 ∈ {0, 1}[n]\K and Z3, Z4 ∈ {0, 1}n be such that

P
(
Zj
i = 1

)
= p,

independently for each i and j. Similarly, let W 1 ∈ {0, 1}K , W 2 ∈ {0, 1}[n]\K and W 3 ∈
{0, 1}n be independent of the Zj

i , and such that

P
(
W j
i = 1

)
=

1− 2p

2(1− p)
,

independently for every i and j. Set Xj
i = max

{
Zj
i ,W

j
i

}
, and observe that

P
(
Xj
i = 1

)
= P

(
Zj
i = 1

)
+ P

(
Zj
i = 0

)
P
(
W j
i = 1

)
= p+

(1− p)(1− 2p)

2(1− p)
=

1

2

for every i and j.
Next, we describe how to use the Xj

i and Zj
i to assign values to coordinates, depending on

the order in which they are queried by A. Indeed, run the algorithm, and do the following:

1. If j ∈ K is queried, and is the kth element of K to have been queried by A, then set
Zj := Z1

k and Xj := X1
k .

2. If j 6∈ K is queried, and is the kth element of [n] \K to have been queried by A, then
set Zj := Z2

k and Xj := X2
k .

3. When the algorithm stops, let π : K \ V → [|K \ V |] be an arbitrary bijection, and
for each j ∈ K \ V set Zj := Z3

k and Xj := X3
k , where k = π(j).

4. Finally, let Zj := Z4
j and Xj := X4

j for each j ∈ [n] \ (V ∪K).
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Note that X is chosen uniformly and Z according to the product measure with density p.
Moreover, note that if Zi = 1 then Xi = 1, so the coupling is as in (7), as claimed.

Let V ⊂ [n] be the (random) set of coordinates which are queried by the algorithm, and
note that V is independent of Z3 and W 3. We first show that the set V ∩K is likely to be
small. Indeed, we have

E
[
|V ∩K|

]
=
∑
j∈K

δj(A, p) 6 |K|δK(A, p),

and so, if we define

B1 :=
{
|V ∩K| > |K|δK(A, p)2/3

}
,

then P(B1) 6 δK(A, p)1/3, by Markov’s inequality.
Next we shall deduce that, with high probability, the difference between the number of 0s

and 1s on V ∩K is less than that on K \ V . Indeed, let Sk :=
∑k

j=1(2X1
j − 1) denote this

difference on the first k coordinates of X1, and let Tk :=
∑k

j=1(2X3
j − 1) denote the same

thing for X3. Let

B2 :=
{
∃ k 6 |K|δK(A, p)2/3 : |Sk| >

√
|K|δK(A, p)1/3 log n

}
,

and let

B3 :=
{
|T|K\V || 6

√
|K|δK(A, p)1/3 log n

}
.

Claim: P
(
B1 ∪B2 ∪B3

)
= O

(
δK(A, p)1/3 log n

)
.

Before proving the claim, let’s see how it implies the proposition. Set Q =
(
B1∪B2∪B3

)c
,

and let F be the sigma-algebra generated by Z1, Z2 and W 1. Then

E
[
MK(X)1Q

∣∣F] = Pp
(
Q
∣∣F)E[MK(X)

∣∣F , Q] = 0,

by symmetry, since T|K\V | is equally likely to be positive or negative, and Q implies |T|K\V || >
|S|V ∩K||. Thus by the claim, and since F determines f(Z), we have∣∣E[f(Z)MK(X)

]∣∣ 6 ∣∣E[f(Z)MK(X)1Q
]∣∣ + P(Qc)

=
∣∣∣E[f(Z)E

[
MK(X)1Q

∣∣F]]∣∣∣ + P(Qc) = O
(
δK(A, p)1/3 log n

)
,

as required.
Thus, it only remains to prove the claim, which follows easily using Chernoff’s inequality.

We have already shown that P(B1) 6 δK(A, p)1/3, and so it will suffice to prove corresponding
bounds for B2 and B3 ∩Bc

1. The bound for B2 follows using Chernoff and the union bound.
Indeed, let t = |K|δK(A, p)2/3, and recall that X1 was chosen uniformly. Thus, by Chernoff’s
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inequality,

P(B2) 6
t∑

k=1

P
(∣∣2 · ξk,1/2 − k∣∣ >√|K|δK(A, p)1/3 log n

)
6 2

t∑
k=1

exp

(
−|K|δK(A, p)2/3 log2 n

8k

)
6 2t · e− log2 n/8 = O

(
δK(A, p)1/3

)
,

as required.
Finally, we shall bound the probability of B3 ∩Bc

1; that is, the probability that

|V ∩K| 6 t = |K|δK(A, p)2/3 and |T|K\V || 6
√
|K|δK(A, p)1/3 log n.

By Observation 5.3 and the union bound, we have

P
(∣∣2 · ξm,1/2 −m∣∣ 6√|K|δK(A, p)1/3 log n

)
6
√
|K|δK(A, p)1/3 log n · C1√

m
,

for some constant C1 > 0 and every m > 1. Since V is determined by the information in F ,
and since X3 is uniformly distributed, we have

P(B3 ∩Bc
1) = E

[
P(Bc

1 ∩B3|F)
]

= E
[
1Bc1 · P(B3|F)

]
6 E

[
1Bc1 ·

√
|K|δK(A, p)1/3 log n

C1√
|K \ V |

]

6
√
|K|δK(A, p)1/3 log n

2C1√
3|K|

= O
(
δK(A, p)1/3 log n

)
,

where we in the second inequality used that on Bc
1, we have |K \ V | > |K| − t > 3|K|/4,

assuming that t 6 |K|/4 (since otherwise δK(A, p) > 1/8, and the proposition is trivial).
This completes the proof of the claim, and hence of the proposition as well. �

It is now easy to deduce Theorem 2.5. We shall use the following straightforward opti-
mization lemma.

Lemma 5.4. If a1 > a2 > . . . > an > 0, then

max

{
n∑
i=1

c2
i : c1 > c2 > . . . > cn > 0 and

k∑
i=1

ci 6
k∑
i=1

ai for every k ∈ [n]

}
=

n∑
i=1

a2
i .

We are ready to prove Theorem 2.5.

Proof of Theorem 2.5. Let r ∈ N be fixed, and let (fn)n>1 be a sequence of monotone func-
tions fn : {0, 1}n → [0, 1]. For each n ∈ N, let A1, . . . ,Ar ∈ A∗(f) and let K1, . . . , Kr be a
partition of [n]. Let p ∈ (0, 1), and suppose that

δKi(Ai, p)
(

log n
)6 → 0

as n → ∞ for each i ∈ [r]. We shall show that IIp(fn) → 0 as n → ∞, and hence deduce,
by Theorem 1.2, that (fn)n>1 is NSp.
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Choose C > 0 so that Propositions 5.1 and 5.2 both hold for C, and assume that n ∈ N
is sufficiently large so that δKi(Ai, p)1/3 log n 6 1/(2C) for each i ∈ [r]. To bound IIp(fn) =∑n

j=1 Infp,j(fn)2 from above, we shall first bound
∑

j∈K Infp,j(fn) for every K ⊂ [n], and

then apply Lemma 5.4. Let us assume for simplicity that δKi(Ai, p) > 1/n for some i ∈ [r];
the other case follows by an almost identical calculation.

Claim: For every K ⊂ [n], we have∑
j∈K

Infp,j(fn) 6
C2r

min{p, 1− p}
√
|K|max

i∈[r]

{
δKi(Ai, p)1/3

}(
log n

)3/2
.

Proof of claim. By Proposition 5.1, for every K ⊂ [n] we have∑
j∈K

Infp,j(fn) 6
C

min{p, 1− p}
√
|K|E

[
fn(Z)MK(X)

](
1 +

√
− logE

[
fn(Z)MK(X)

])
.

Moreover, by Proposition 5.2, for every i ∈ [r] and every K ⊂ Ki,

E
[
fn(Z)MK(X)

]
6 C δKi(Ai, p)1/3 log n.

Note that x
(
1+
√
− log x

)
is increasing on (0, 1/2), and recall that C δKi(Ai, p)1/3 log n 6 1/2.

Thus, if K ⊂ Ki for some i ∈ [r], then∑
j∈K

Infp,j(fn) 6
C2

min{p, 1− p}
√
|K|max

i∈[r]

{
δKi(Ai, p)1/3

}(
log n

)3/2
,

since maxi∈[r] δKi(Ai, p) > 1/n. Summing over i ∈ [r], the claim follows. �

Without loss of generality, assume that

Infp,1(fn) > . . . > Infp,n(fn),

and apply Lemma 5.4 with cj = Infp,j(fn), and

aj =
C2r

min{p, 1− p}
max
i∈[r]

{
δKi(Ai, p)1/3

}(
log n

)3/2(√
j −

√
j − 1

)
.

By the claim applied to K = [k], we have, for each k ∈ [n],

k∑
j=1

cj =
k∑
j=1

Infp,j(fn) 6
C2r

min{p, 1− p}
√
kmax
i∈[r]

{
δKi(Ai, p)1/3

}(
log n

)3/2
=

k∑
j=1

aj,

and hence, writing C ′ =
(
C2r/min{p, 1 − p}

)2
, since p is fixed and

∑
j

(√
j −
√
j − 1

)2
=

O
(

log n
)
, by Lemma 5.4 we have

n∑
j=1

Inf2
p,j(fn) 6

n∑
j=1

a2
j = C ′max

i∈[r]

{
δKi(Ai, p)2/3

}(
log n

)3
n∑
j=1

(√
j −

√
j − 1

)2

= C ′max
i∈[r]

{
δKi(Ai, p)2/3

}(
log n

)4 → 0
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as n→∞, as claimed. Thus, by Theorem 1.2, (fn)n>1 is NSp, as required. �

We finish this section by proving the following closely related result, which was also proved
in [9, Theorem 1.6] in the case p = 1/2 (and for functions into [0, 1]). In fact we shall not
need it, but since it follows immediately from the uniform case and Proposition 2.4, and may
be of independent interest, we include it for completeness.

Given a function h : {0, 1}n → [0, 1], define

Λ(h) := max
K⊂[n]

E
[
h(X)MK(X)

]
.

In particular, Λ(hf ) = max
K⊂[n]

E
[
f(Z)MK(X)

]
.

Theorem 5.5. There exists a constant C > 0 such that, if f : {0, 1}n → [0, 1] is monotone
and p ∈ (0, 1), then

IIp(f) 6
C

min{p2, (1− p)2}
Λ2(hf )

(
1− log Λ(hf )

)
log n.

Proof. We apply the uniform case to the function hf . By Proposition 2.4, it follows that

4p̄2IIp(f) = II1/2(hf ) 6 CΛ2(hf )
(
1− log Λ(hf )

)
log n,

as required. �

6. Hypergraphs

In this section we shall prove Theorem 1.4, which will allow us to bound the variance (in
Pλc/p) of the probability of crossing a rectangle in the model PBp . Although one can think
of all the results in this section in terms of events on the cube {0, 1}n, it will be convenient
for us to use the language of hypergraphs. For background on Graph Theory, see [12].

Recall that a hypergraph H is just a collection of subsets of [n], which we refer to as the
edges of H. We shall write Hm for the m-uniform hypergraph contained in H, that is, the
collection of edges with m elements, and recall that

rH(B, p) := PBp
(
A ∈ H

)
,

where A is a p-subset of B. Throughout this section, B will denote a q-subset of [n].
The proof of Theorem 1.4 is in two parts: first we shall prove the corresponding result for

sets A and B of fixed size; then we shall deduce the result for p- and q-subsets.

6.1. The proof for sets of fixed size. Let us begin by informally illustrating the central
idea with a simple example. Let G be a (large) graph with vertex set [n], and consider the
restriction of G to a random subset S ⊂ [n] selected uniformly at random from the sets of
size k. If k = 2 then the resulting graph G[S] will have density either 0 or 1, which will
typically be quite far from the density of the original graph. However, once k is a large
constant the density of G[S] is already unlikely to be far from the density of G. Indeed, it
is elementary to bound the variance of this density.
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The following proposition extends this result to hypergraphs. Given a hypergraph H on
vertex set [n], a subset S ⊂ [n] and an integer 0 6 m 6 n, define

Xm(S) :=
∣∣{e ∈ Hm : e ⊂ S

}∣∣,
and X̃m(S) := Xm(S)/

(|S|
m

)
.

Proposition 6.1. Let n,m, k ∈ N, and suppose that n > k > m, and that n > 3m3 and
n > km/2. Let H be a hypergraph on vertex set [n], and let Bk ⊂ [n] be a uniformly chosen
subset of size k. Then

Var
(
Xm(Bk)

)
6

48m

k

(
k

m

)2

and

Var
(
X̃m(Bk)

)
6

48m

k
.

We remark that with a little extra effort, one could improve the upper bounds in Propo-
sition 6.1 by a factor of βm = e(Hm)/

(
n
m

)
. Since we shall not need such a strengthening,

however, we leave the details to the reader. In order to keep the presentation simple, we also
make no attempt to optimize the constant.

We shall use some straightforward relations between binomial coefficients in the proof of
Proposition 6.1; we state them here for convenience.

Observation 6.2. Let n, k,m, t be integers such that k > m > t > 1 and n > 3m3. Then

(a)

(
k

m

)2

=
m∑
t=0

(
k

2m− t

)(
2m− t
m

)(
m

t

)
.

(b)

(
m− 1

t

)(
n

m

)2

6

(
n

2m− t

)(
2m− t
m

)(
n− 1

t

)
.

(c)

(
m− 1

t− 1

)(
n− t− 1

m− t

)(
n

m

)
6

2t

m

(
n

2m− t

)(
2m− t
m

)(
m

t

)
.

Proof. For (a), note that both sides count the number of pairs of m-subsets of a fixed k-set;
on the right-hand side we have partitioned according to their intersection. For (b) and (c)
simply cancel common terms, and note that, for fixed m and t,

(n−m)!2

(n− 2m+ t)!(n− t)!
→ 1

as n→∞. More careful calculation shows that n > 3m3 suffices. �

We shall use Bey’s inequality in order to prove the following lemma, from which Proposi-
tion 6.1 follows easily. Let

Yt(k,m) :=

(
k

2m− t

)(
2m− t
m

)(
m

t

)
denote the number of pairs of m-subsets of a fixed k-set which have t common elements.
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Lemma 6.3. Let k,m, n ∈ N, with n > k > 2m and n > 3m3. Let H be a hypergraph on
[n], and let Bk ⊂ [n] be a uniformly chosen subset of size k. Then

Var
(
Xm(Bk)

)
6 2βm

m∑
t=1

(
t

m
+

k

2n

)
Yt(k,m).

Proof. Let α(H, t) :=
∣∣{(e, f) : e, f ∈ H and |e ∩ f | = t

}∣∣ denote the number of pairs (e, f)
of edges of H such that |e ∩ f | = t. We first claim that

E
[
Xm(Bk)

2
]

=
m∑
t=0

α(Hm, t)

(
k

2m−t

)(
n

2m−t

) . (17)

Indeed, writing 1A for the indicator function of the event A, and
(

[n]
k

)
for the collection of

subsets of [n] of size k, we obtain

E
[
Xm(Bk)

2
]

=
1(
n
k

) ∑
S∈([n]

k )

∑
e,f∈Hm

1{e∪f⊂S} =
1(
n
k

) m∑
t=0

∑
e,f∈Hm

1{|e∩f |=t}
∑

S∈([n]
k )

1{e∪f⊂S}.

But if |e ∩ f | = t then |e ∪ f | = 2m − t, and so there are exactly
(
n−2m+t
k−2m+t

)
sets S of size k

such that e ∪ f ⊂ S. Moreover,
(
n−2m+t
k−2m+t

)(
n

2m−t

)
=
(
n
k

)(
k

2m−t

)
, and hence

E
[
Xm(Bk)

2
]

=
m∑
t=0

∑
e,f∈Hm

1{|e∩f |=t}

(
k

2m−t

)(
n

2m−t

) ,
as claimed.

Next, observe that α(Hm, t) 6 d2(Hm, t), where d2(Hm, t) denotes the sum of dH(T )2

over all t-sets in [n], and recall that e(Hm) = βm
(
n
m

)
. Hence, by Bey’s inequality and

Observation 6.2,

α(Hm, t)

(
k

2m−t

)(
n

2m−t

) 6 ((
m
t

)(
m−1
t

)(
n−1
t

) e(Hm)2 +

(
m− 1

t− 1

)(
n− t− 1

m− t

)
e(Hm)

) (
k

2m−t

)(
n

2m−t

)
6

(
β2
m +

2t

m
· βm

)(
k

2m− t

)(
2m− t
m

)(
m

t

)
(18)

for every 1 6 t 6 m. Moreover, α(Hm, 0) 6 e(Hm)2 = β2
m

(
n
m

)2
, so by Observation 6.2(a)

α(Hm, 0)

(
k

2m

)(
n

2m

) 6 β2
m

(
n

m

)2
(
k

2m

)(
n

2m

) = β2
m

(
k

2m

)(
n

2m

) m∑
t=0

(
n

2m− t

)(
2m− t
m

)(
m

t

)
.

Cancelling common terms, we easily see that for each 1 6 t 6 m(
k

2m

)(
n

2m−t

)(
n

2m

)(
k

2m−t

) 6 (
k

n

)t
6

k

n
.
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Hence,

α(Hm, 0)

(
k

2m

)(
n

2m

) 6 β2
m

(
k

2m

)(
2m

m

)
+
k

n
· β2

m

m∑
t=1

(
k

2m− t

)(
2m− t
m

)(
m

t

)
. (19)

Finally,

E
[
Xm(Bk)

]2
= β2

m

(
k

m

)2

= β2
m

m∑
t=0

(
k

2m− t

)(
2m− t
m

)(
m

t

)
, (20)

by Observation 6.2(a). Combining (17), (18), (19) and (20), we obtain

Var
(
Xm(Bk)

)
6

m∑
t=1

(
2t

m
· βm +

k

n
· β2

m

)(
k

2m− t

)(
2m− t
m

)(
m

t

)
,

as required. �

It is easy to deduce Proposition 6.1 from Lemma 6.3.

Proof of Proposition 6.1. We shall prove the claimed bound on Var
(
Xm(Bk)

)
; the second

statement follows immediately from the first, since Xm(Bk) =
(
k
m

)
X̃m(Bk). The result is

trivial for m 6 k 6 48m, so we can assume that k > 48m. (In fact we shall only use that
k > 4m.)

First, note that by Lemma 6.3, and since n > km/2, we have

Var
(
Xm(Bk)

)
6 2

m∑
t=1

t+ 1

m
Yt(k,m), (21)

where Yt(k,m) =
(

k
2m−t

)(
2m−t
m

)(
m
t

)
. We shall see that most of the weight of the Yt(k,m) is

concentrated on terms with small t. We split into two cases, depending on the size of m.

Case 1: k > 3m2.

We shall prove that
m∑
t=1

t+ 1

m
Yt(k,m) 6

4

m
Y1(k,m) 6

4m

k

(
k

m

)2

. (22)

Indeed, first note that

(t+ 2)Yt+1(k,m)

(t+ 1)Yt(k,m)
=

(t+ 2)(m− t)2

(t+ 1)2(k − 2m+ t+ 1)
6

3m2

2(t+ 1)(k − 2m)
6

1

2
, (23)

since k − 2m > k/2 and (t + 1)k > 2k > 6m2. This proves the first inequality in (22); for
the second, observe that

Y1(k,m) =
k(k − 1) . . . (k − 2m+ 2)

(m− 1)!2
6

m2

k

(
k

m

)2

,

as claimed. By (21), we obtain Var
(
Xm(Bk)

)
6

8m

k

(
k

m

)2

.
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Case 2: k 6 3m2.

Let a :=
⌊
6m2/k

⌋
, and observe that (23) holds whenever t > a. Thus

m∑
t=a

t+ 1

m
Yt(k,m) 6

2(a+ 1)

m
Ya(k,m) 6

18m

k

(
k

m

)2

, (24)

since Ya(k,m) 6
(
k
m

)2
and a+ 1 6 9m2/k. Moreover, it is immediate that

a−1∑
t=1

t+ 1

m
Yt(k,m) 6

a

m

a−1∑
t=1

Yt(k,m) 6
6m

k

(
k

m

)2

. (25)

By (21), we obtain Var
(
Xm(Bk)

)
6

48m

k

(
k

m

)2

, as required. �

6.2. The proof for random-sized sets. We shall now deduce Theorem 1.4 from Propo-
sition 6.1. Using the conditional variance formula Var(X) = Var

(
E[X|Y ]

)
+ E

[
Var(X|Y )

]
,

the variance we want to control may be expressed as

Varq
(
rH(B, p)

)
= Varq

(
Eq
[
rH(B, p)

∣∣ |B|])+ Eq
[
Varq

(
rH(B, p)

∣∣ |B|)], (26)

where |B| denotes the size of the set B. The latter of the two terms can be controlled
using Proposition 6.1 and Chernoff’s inequality. The challenge will be the former term. To
see, heuristically, why Varq

(
Eq
[
rH(B, p)

∣∣ |B|]) should be small, note that |B| will roughly
fluctuate by

√
qn around its mean. This will influence the size of a p-subset A of B roughly

by p
√
qn. However, |A| will naturally vary by

√
pqn which is much larger than p

√
qn when p

is small. Hence, conditioning on the size of B will not affect the size of A much, and should
imply that the former term in (26) is small.

We begin with the latter term in (26). The first step is to prove the result corresponding
to Proposition 6.1 for fixed size k of B and a randomly chosen subset thereof. Indeed, given
a hypergraph H on vertex set [n], a subset S ⊂ [n] of size k, and p ∈ (0, 1), observe that

rH(S, p) =
k∑

m=0

P
(
ξk,p = m

)
X̃m(S),

where ξk,p ∼ Bin(k, p), as in the previous section. The following proposition is an easy
consequence of Proposition 6.1.

Proposition 6.4. Let p ∈ (0, 1) and let n, k ∈ N, with n > 24(pk)3 and n > 2pk2. Let H be
a hypergraph on vertex set [n], and let Bk ⊂ [n] be a uniformly chosen subset of size k. Then

Var
(
rH(Bk, p)

)
6 96p + 4 exp

(
− pk/16

)
.

Proof. The result follows from Proposition 6.1 and Chernoff’s inequality, since if m 6 2pk
then the variance of X̃m(Bk) is at most 96p, and the probability that ξk,p > 2pk is at most
2e−pk/16.
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To spell it out, note that if p 6 1/2 and m 6 2pk, then m 6 k, n > 3m3 and n > km/2,
and so, by Proposition 6.1,

Var
(
X̃m(Bk)

)
6

48m

k
6 96p.

Since Var
(
X̃m(Bk)

)
6 1, the same bound trivially holds for p > 1/2.

Now since rH(Bk, p) =
∑k

m=0 P
(
ξk,p = m

)
X̃m(Bk),

Var
(
rH(Bk, p)

)
=

∑
m1,m2

P
(
ξk,p = m1

)
P
(
ξk,p = m2

)
Cov

(
X̃m1(Bk), X̃m2(Bk)

)
.

By Cauchy-Schwarz, we have Cov(X, Y ) 6
√

Var(X)Var(Y ), and thus

Var
(
rH(Bk, p)

)
6

∑
m1,m2

P
(
ξk,p = m1

)
P
(
ξk,p = m2

)√
Var
(
X̃m1(Bk)

)
Var
(
X̃m2(Bk)

)
6 96p + 2 · P

(
ξk,p > 2pk

)
6 96p + 4 exp

(
− pk/16

)
,

where the last step is by Chernoff’s inequality, as required. �

In order to deduce Theorem 1.4 from Proposition 6.4, we shall use the following simple
bounds on binomial random variables, which follow immediately from Chernoff’s inequality.

Observation 6.5. Let p ∈ (0, 1/2], q ∈ (0, 1) and n ∈ N, with pqn > 32 log(1/p). Then

(a) P
(∣∣ξn,q − qn∣∣ > 2

√
qn log(1/p)

)
6 2p.

(b) P
(
ξn,q <

16

p
log

1

p

)
6 P

(
ξn,q < qn/2

)
6 2e−qn/16 6 2p.

We shall also need the following bound, relating nearby binomial coefficients.

Lemma 6.6. Let p ∈ (0, 1/4], q ∈ (0, 1) and n ∈ N be such that pqn > 32 log(1/p). If

qn − 2
√
qn log(1/p) 6 k 6 k′ 6 qn + 2

√
qn log(1/p),

and
∣∣m− pqn∣∣ 6 4

√
pqn log(1/p), then

P
(
ξk′,p = m

)
P
(
ξk,p = m

) = 1 +O

(
√
p log

1

p

)
.

Since this lemma follows from a straightforward calculation, we shall only sketch the proof
of the upper bound.

Sketch of proof. We claim that, for each k 6 ` 6 k′,

P
(
ξ`,p = m

)
P
(
ξ`−1,p = m

) =
(1− p)`
`−m

6 1 +O

(√
p log(1/p)
√
qn

)
.
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Indeed, note that m 6 p`+ 6
√
pqn log 1

p
, and so

(1− p)`
`−m

6

(
1−

8
√
pqn log(1/p)

`

)−1

6 1 +O

(√
p log(1/p)
√
qn

)
.

Now we simply take the product over ` and note that this range is at most of size 4
√
qn log(1/p),

to obtain
P
(
ξk′,p = m

)
P
(
ξk,p = m

) 6 exp

[
O

(
√
p log

1

p

)]
= 1 +O

(
√
p log

1

p

)
,

as required. The proof of the lower bound is the same. �

We are now ready to prove Theorem 1.4.

Proof of Theorem 1.4. Note that the result is trivial for any p ∈ (1
4
, 1

2
], since the variance

is at most 1. Let 0 < p 6 1/4, 0 < q < 1 and n ∈ N, and suppose that n > 200(pqn)3,
n > 8p(qn)2 and pqn > 32 log(1/p). Observe that therefore Observation 6.5 and Lemma 6.6
hold, and that Proposition 6.4 holds for every k 6 2qn.

For each k ∈ [n], let αk := E
[
rH(Bk, p)

]
, where Bk ⊂ [n] is a uniformly chosen set of

size k. Let K and K ′ be independent random variables, each with distribution Bin(n, q).

Claim 1: Varq
(
rH(B, p)

)
=

1

2
E
[(
αK − αK′

)2
]

+ O(p).

Proof of Claim 1. Applying the conditional variance formula we obtain as in (26)

Varq
(
rH(B, p)

)
= Var

(
E
[
rH(B, p)

∣∣ |B|]) +
n∑
k=0

Var
(
rH(B, p)

∣∣ |B| = k
)
P
(
ξn,q = k

)
.

Note that in the first term, the variance is over the choice of ` := |B|, and the expectation
over the (uniform) choice of a set B of size `. In the sum, the variance is over the uniform
choice of a k-set B.

Now, E
[
rH(B, p)

∣∣ |B| = k
]

= αk, so the first term may be re-written as

Var
(
αK
)

=
1

2
E
[(
αK − αK′

)2
]
.

For the sum, first note that P
(
ξn,q <

16
p

log 1
p

)
6 2p, by Observation 6.5. On the other

hand, P(ξn,q > 2qn) 6 2 exp(−qn/16) 6 2p, by Chernoff. For k 6 2qn we have 24(pk)3 6
192(pqn)3 6 n and 2pk2 6 8p(qn)2 6 n, so if 16

p
log 1

p
6 k 6 2qn, then, by Proposition 6.4,

we have

Var
(
rH(Bk, p)

)
= O(p),

and the claim follows. �

By Observation 6.5, the probability that

qn− 2

√
qn log

1

p
6 K,K ′ 6 qn+ 2

√
qn log

1

p
(27)
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is at least 1− 4p. Hence, it will suffice to prove the following claim.

Claim 2: If qn− 2
√
qn log 1

p
6 k 6 k′ 6 qn+ 2

√
qn log 1

p
, then

∣∣αk′ − αk∣∣ = O

(
√
p log

1

p

)
.

Proof of Claim 2. Note that

αk = E
[
rH(Bk, p)

]
=

k∑
m=0

P
(
ξk,p = m

)
E
[
X̃m(Bk)

]
=

k∑
m=0

P
(
ξk,p = m

)
βm,

and set S =
{
m : |m − pqn| 6 4

√
pqn log(1/p)

}
. We assume for simplicity that αk′ > αk;

the other case is the same. We have

αk′ − αk =
k′∑
m=0

P
(
ξk′,p = m

)
βm −

k∑
m=0

P
(
ξk,p = m

)
βm

6
∑
m∈S

∣∣P(ξk′,p = m
)
− P

(
ξk,p = m

)∣∣ + O(p),

since, by Chernoff’s inequality and the triangle inequality, P
(
ξk,p 6∈ S

)
+P
(
ξk′,p 6∈ S

)
= O(p).

Moreover, by Lemma 6.6, we have∣∣P(ξk′,p = m
)
− P

(
ξk,p = m

)∣∣ = O

(
√
p log

1

p

)
· P
(
ξk,p = m

)
for every m ∈ S. We conclude that∣∣αk′ − αk∣∣ = O

(
√
p log

1

p

)
,

as required. �

It is now easy to deduce Theorem 1.4 from Claims 1 and 2, and (27). Indeed,

Varq
(
rH(B, p)

)
=

1

2
E
[(
αK − αK′

)2
]

+ O(p)

6
1

2
· 2 · P

(∣∣ξn,q − qn∣∣ > 2
√
qn log(1/p)

)
+ O

(
p

(
log

1

p

)2)
= O

(
p

(
log

1

p

)2)
,

as required. �

We end the section by noting a couple of easy consequences of Theorem 1.4. The first
is a generalization, to an arbitrary event on {0, 1}n, of the method we shall use to deduce
Proposition 2.3 from Theorem 2.2. It follows almost immediately from Theorem 1.4, via
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Chebychev’s inequality. First, note that a p-subset of a q-subset of [n] is a pq-subset of [n].
In particular,

Eq
[
rH(B, p)

]
= Eq

[
PBp (A ∈ H)

]
= Ppq(A ∈ H). (28)

Corollary 6.7. For every ε > 0 there exists p0 = p0(ε) > 0 such that if p ∈ (0, p0), r ∈ (0, p),
and n ∈ N satisfy n > 200(rn)3, n > 8(rn)2/p and rn > 32 log 1

p
, then

Pr/p
(∣∣∣PBp (A ∈ H)− Pr(A ∈ H)

∣∣∣ > ε
)
< ε,

for every event (or hypergraph) H ⊂ {0, 1}n.

Proof. Given ε > 0, choose p0 > 0 in accordance to Theorem 1.4 such that

Varr/p
(
rH(B, p)

)
< ε3

for all p < p0, and for all H. By Chebychev’s inequality and (28),

Pr/p
(∣∣rH(B, p)− Pr(A ∈ H)

∣∣ > ε
)
6

Varr/p
(
rH(B, p)

)
ε2

< ε,

as required. �

Finally, we state the following extremal result of hypergraphs, which may be of indepen-
dent interest, and follows easily from Proposition 6.1. Say that a hypergraph H is δ-quasi
monotone with respect to (k,m) if∣∣{e ∈ Hm : e ⊂ B

}∣∣ > (1− δ)( k
m

)
for every B ∈ Hk.

Corollary 6.8. For each δ > 0, there exists C > 0 such that the following holds for every
k,m ∈ N, and every n > max{3m3, km/2}. If H is a δ-quasi monotone hypergraph with
respect to (k,m), then either

|Hm| >
(
1− 2δ

)(n
m

)
or |Hk| 6

Cm

k

(
n

k

)
.

Proof. Note that E
[
Xm(Bk)

]
= βm

(
k
m

)
, and apply Chebychev, using Proposition 6.1 to

bound the variance. The theorem follows with C = O(1/δ2). �

7. Proof of Theorem 1.1

In this section we shall put together the pieces, and prove Theorem 1.1. We shall first
deduce Propositions 2.1 and 2.3 from Theorem 1.4; then we shall use the deterministic
algorithm method to prove Theorem 1.3; finally we shall deduce Theorem 1.1.

Throughout this section, B will be chosen according to Pλc/p, and η will be chosen ac-
cording to the conditional measure PBp .
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7.1. Variance bound – Proof of Propositions 2.1 and 2.3. We shall prove the following
slight generalization of Proposition 2.1, which follows easily from Theorem 1.4, together with
an easy discretization argument.

Proposition 7.1.

lim
p→0

lim sup
a,b→∞

Varλc/p

(
PBp
(
H(η,Ra×b, •)

))
= 0.

In order to apply Theorem 1.4 we need to construct a discrete probability space which
closely approximates the continuous space with measure Pλc/p on the rectangle Ra×b. In
order to do so, for each δ > 0 consider the lattice

Λ = Λδ
a,b := R(a+2)×(b+2) ∩ δZ2,

and set n = |Λδ
a,b|, the number of vertices of δZ2 in the rectangle R(a+2)×(b+2). (Note that

we consider the rectangle R(a+2)×(b+2) because it contains all the points which can affect the
event H(η,Ra×b, •).) Let p > 0, set q = q(n) to be

q := 1− e−λcδ2/p, (29)

and note that pqn ≈ λcab. In this subsection, since we shall be dealing with both continuous
and discrete probability spaces, we shall write B̂ ⊂ Λ to denote a q-subset of Λ and η̂ ⊂ B̂

to denote a p-subset of B̂. Recall that PΛ
q and PB̂p denote the corresponding probability

measures.
The following lemma is an immediate consequence of Theorem 1.4.

Lemma 7.2. For every p ∈
(
0, 1

2

]
, if a = a(p), b = b(p) > 1 are sufficiently large and

δ = δ(a, b) > 0 is sufficiently small, then the following holds. Let Λ = Λδ
a,b, n = |Λ| and

q > 0 be as defined in (29). Then

VarΛ
q

(
PB̂p
(
H(η̂, Ra×b, •)

))
= O

(
p

(
log

1

p

)2)
.

Proof. We apply Theorem 1.4 to the hypergraph H which encodes crossings of the rectangle
Ra×b. That is, we identify the vertices of Λ = Λδ

a,b with the elements of [n], and set

η̂ ∈ H ⇔ H
(
η̂, Ra×b, •

)
occurs.

It only remains to check that the conditions of Theorem 1.4 are satisfied if δ is sufficiently
small. To see this, simply note that, by our choice of q, we have that pqn = Θ(ab) and
n/ab→∞ as δ → 0. �

In order to deduce Proposition 7.1, we need to provide a coupling between our two prob-
ability spaces – one discrete, the other continuous – which approximately maps the crossing
event H(η,Ra×b, •) onto H(η̂, Ra×b, •). In fact this is easy: simply map each point of B into
the `∞-nearest point of Λ = Λδ

a,b, and take δ = δ(a, b) sufficiently small.
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To spell it out, cover R(a+2)×(b+2) with disjoint δ × δ squares, centred on elements of Λδ
a,b,

and let ψ map points of B to the centre of the square in which they lie. Given a finite subset
B ⊂ R(a+2)×(b+2), let

B̂ :=
{
y ∈ Λδ

a,b : ψ(x) = y for some x ∈ B
}
,

and observe that if B ⊂ R(a+2)×(b+2) is chosen according to Pλc/p, then B̂ is a q-subset of

Λδ
a,b, where q = 1− e−λcδ2/p, as before.

We define a bad event Eδ
a,b on subsets B ⊂ R2, by saying that E occurs if either of the

following holds:

(a) Two points of B lie in the same δ× δ square, i.e., |ψ−1(y)∩B| > 1 for some y ∈ Λδ
a,b.

(b) There exist x, y ∈ B with 2− 2δ 6 ‖x− y‖2 6 2 + 2δ.
(c) There exist x ∈ B such that 1− δ 6 ‖x− ∂Ra×b‖ 6 1 + δ,

where ∂Ra×b denotes the boundary of Ra×b and the distance between a point and a set is
defined in the canonical way. Observe that if Eδ

a,b does not occur, then the graphs naturally

induced by the points of B and B̂ are identical, and the vertices are in 1-1 correspondence.
Hence, conditional on

{
Eδ
a,b

}c
, the events H(η,Ra×b, •) and H(η̂, Ra×b, •) have the same

probability, in PBp and PB̂p respectively.

The following lemma shows that, if δ is sufficiently small, then the coupling (B, B̂) has
the desired properties.

Lemma 7.3. For every a, b > 1 and p > 0, there is δ0 = δ0(a, b, p) > 0 such that for all
δ ∈ (0, δ0)

Pλc/p

(
PBp
(
H(η,Ra×b, •) 6= PB̂p

(
H(η̂, Ra×b, •)

))
6 Pλc/p

(
Eδ
a,b

)
6
√
δ.

Proof. The first inequality holds by the observations above, since if Eδ
a,b does not occur, then

the graphs defined by the points of B and B̂ are identical.
To bound Pλc/p

(
Eδ
a,b

)
, we estimate the probabilities of (a), (b) and (c). For property (a),

this is O(δ2ab/p2), since each square has probability O(δ4/p2) of containing at least two
points of B, and there are O(ab/δ2) such squares.

For property (b), it is O(δab/p2). Informally, the reason is that two points uniformly
distributed in Ra×b has probability of order δ/(ab) of falling within the right distance of each
other. Furthermore, since there are order (λcab/p)

2 pairs of points, we arrive at the claimed
probability. It is not hard to make this argument precise.

For property (c), a similar argument shows that the probability is O(δab). �

We can now easily deduce Proposition 7.1 from Lemmas 7.2 and 7.3.

Proof of Proposition 7.1. Let p > 0, and choose a, b > 1 sufficiently large and δ ∈ (0, p2)
small enough for Lemma 7.2 to hold. Let n = |Λδ

a,b| and q > 0 be as described above. Then,
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by Lemmas 7.2 and 7.3,

Varλc/p

(
PBp
(
H(η,Ra×b, •)

))
6 VarΛ

q

(
PB̂p
(
H(η̂, Ra×b, •)

))
+
√
δ = O

(
p

(
log

1

p

)2)
.

Since this is o(1) as p→ 0, the proposition follows. �

Our second corollary of Theorem 1.4 is Proposition 2.3. To save us from repeating the
discretization, we shall deduce it from Proposition 7.1.

Proof of Proposition 2.3. Let t, γ > 0, and recall that, by Theorem 2.2, we have

c 6 Eλc/p

[
PBp
(
H(η,RN×tN , •)

)]
6 1− c

for some c(t) > 0. Moreover, by Proposition 7.1, there exists a constant p0 = p0(t, γ) > 0
such that

lim sup
N→∞

Varλc/p

(
PBp
(
H(η,RN×tN , •)

))
<

c2γ

4
,

for every 0 < p < p0. Now, setting c′ = c/2, we obtain

Pλc/p

(
PBp
(
H
(
η,RN×tN , •

))
6∈ (c′, 1− c′)

)
< γ,

for every sufficiently large N ∈ N, by Chebychev’s inequality, as required. �

7.2. (fBN )N>1 is NSp: Proof of Theorem 1.3. Our proof that the model PBp is noise
sensitive (for Pλc/p-almost every B) for all sufficiently small p > 0 is based on Theorem 2.5,
the deterministic algorithm method. We begin by defining the algorithm which we shall use;
it is a straightforward adaptation of that used in [9] to prove noise sensitivity of crossings in
bond percolation.

Recall that, given a finite set B ⊂ RN+2, the function fBN : {0, 1}B → {0, 1} is defined by

fBN (η) = 1 ⇔ H
(
η,RN , •

)
occurs.

The following ‘Water Algorithm’ determines fBN (η) for any finite set B ⊂ RN+2, and any
η ∈ {0, 1}B. The name of the algorithm is inspired by the following way of visualizing it:
imagine pouring water into the left-hand side of RN , and allowing it to fill every ball D(x)
which it meets such that η(x) = 1, i.e., for which x ∈ η. If water can flow to the other side
of RN , then the event H(η,RN , •) holds.

The Water Algorithm, AW . Let B ⊂ RN+2 and let η ∈ {0, 1}B. Let

A0 :=
{

(x, y) ∈ R2 : x = −N/2
}

and Q0 := ∅ denote the ‘active’ and ‘queried’ points at time zero. For each k ∈ N, if Qk−1

and Ak−1 have already been chosen, then define Qk and Ak as follows:

1. Set Qk := D
(
D(Ak−1)

)
∩B, and query the elements of Qk.

2. Let Ak denote the set x ∈ Qk such that η(x) = 1.

3. If Ak = Ak−1, then stop, and set A∞ = Ak, otherwise go to step 1.

4. If H(A∞, RN , •) holds, then output 1, otherwise output 0.



34 DANIEL AHLBERG, ERIK BROMAN, SIMON GRIFFITHS, AND ROBERT MORRIS

Define the ∗-Water Algorithm A∗W similarly, except with A0 :=
{

(x, y) ∈ R2 : x = N/2
}

.

To see that the Water Algorithm determines fBN (η), simply note that an element x ∈ B is
queried if and only if there is a path from the left edge of RN to D(x), using only points of
D(η) ∩ RN+2. Thus, if fBN (η) = 1 then the algorithm will find a horizontal path across RN

in D(η) ∩RN ; conversely, if fBN (η) = 0 then the algorithm will output zero, since A∞ ⊂ η.

We shall apply the Water Algorithm for the vertices in the right-hand half of RN+2, and
the ∗-Water Algorithm for those in the left-hand half. Define

KL
N := RN+2 ∩

((
−∞, 0

)
× R

)
and KR

N := RN+2 ∩
([

0,∞
)
× R

)
,

and recall that for fixed B ⊂ R2 and v ∈ B ∩KR
N ,

δv(AW , p) = PBp
(
AW queries v when determining fBN (η)

)
and δB∩KR

N
(AW , p) = max

v∈B∩KR
N

δv(AW , p).

The following lemma will allow us to apply Theorem 2.5.

Lemma 7.4. For every C > 0, there exists δ > 0 and p0 = p0(C) > 0 such that if p ∈ (0, p0),
then

Pλc/p

(
δB∩KR

N

(
AW , p

)
> N−δ

)
6 N−C

for every sufficiently large N ∈ N.

In order to prove Lemma 7.4, we first partition RN+2 into (N + 2)2 squares of side-
length 1 in the canonical way, and denote these squares by S1, . . . , S(N+2)2 . Define A` to be
the annulus centred at the origin, and consisting of all points with `∞-norm between ` and
2`, and for each 1 6 i 6 (N + 2)2, let A`(Si) denote A` shifted to be concentric to Si. Let
C
(
A`(Si), η

)
denote the (monotone decreasing) event that there is a loop of vacant space in

A`(Si); equivalently, it is the event that there is no path between the two faces of A`(Si)
using only points of D(η).

Now, consider the t = blog4(N/4)c annuli A`(1)(Si), . . . ,A`(t)(Si), where `(j) = 4j. Note
that the distance between A`(j)(Si) and A`(j+1)(Si) is at least 2 for each j, so the events

C
(
A`(j)(Si), η) are independent.
The following lemma easily implies Lemma 7.4.

Lemma 7.5. For every C > 0, there exists δ > 0 and p0 = p0(C) > 0 such that if p ∈ (0, p0),
then for every Si that intersects KR

N

Pλc/p

(
δB∩Si

(
AW , p

)
> N−δ

)
6 N−C (30)

for every sufficiently large N ∈ N.

Proof of Lemma 7.5. First note that, for a given B and Si ⊂ KR
N , if the event C

(
A`(j)(Si), η

)
occurs for some 1 6 j 6 t, then no point v ∈ B ∩ Si will be queried by the algorithm AW .
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This follows because v ∈ KR
N , so v is `∞-distance at least N/2 from the left edge of RN .

Thus, by independence,

δB∩Si
(
AW , p

)
6

t∏
j=1

(
1 − PBp

(
C
(
A`(j)(Si), η

)))
. (31)

Next, by Proposition 2.3 and the FKG inequality (together with the union bound) it follows
that for any γ > 0, if p ∈ (0, p0), then

Pλc/p

(
PBp
(
C
(
A`(Si), η

))
> c′′

)
> 1− 4γ, (32)

for all sufficiently large ` ∈ N, where c′′ = (c′)4 and p0 = p0(γ) > 0 are constants given by
Proposition 2.3.

Using (32), we have that

Pλc/p

(∣∣∣{j > t/4 : PBp
(
C
(
A`(j)(Si), η

))
> c′′

}∣∣∣ 6 t

2

)
6 2t(4γ)t/4 6 N−C , (33)

if γ = γ(C) is sufficiently small, and N (hence also t) is sufficiently large, as required.
Finally, if B is such that PBp

(
C
(
A`(j)(Si), η

))
> c′′ for at least t/2 of the annuli A`(j)(Si),

then for this B,

t∏
j=1

(
1 − PBp

(
C
(
A`(j)(Si), η

)))
6
(
1− c′′

)t/2
6 N−δ, (34)

for some (small) δ > 0.
Combining (31), (33) and (34), it follows that

Pλc/p

(
δB∩Si

(
AW , p

)
> N−δ

)
6 N−C ,

as required. �

It is now easy to deduce Lemma 7.4.

Proof of Lemma 7.4. Since there are exactly (N + 2)2/2 6 N2 squares Si in KR
N , it follows

immediately from Lemma 7.5, and the union bound, that

Pλc/p

(
δB∩KR

N

(
AW , p

)
> N−δ

)
6 N−C+2,

as required. �

We can now deduce Theorem 1.3.

Proof of Theorem 1.3. We prove that for each sufficiently small p > 0, the model PBp is NSp
for Pλc/p-almost every B. To do so we must prove that the sequence of crossing functions
(fBN )N>1 is NSp for Pλc/p-almost every B, for all sufficiently small p > 0.
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According to Lemma 7.4 and Borel-Cantelli, there are δ > 0 and p0 such that for every
p ∈ (0, p0) we have

Pλc/p

(
δB∩KR

N

(
AW , p

)
> N−δ for at most finitely many N

)
= 1. (35)

By symmetry, it follows that also δB∩KL
N

(
A∗W , p

)
> N−δ for at most finitely many values of

N , with probability one, and hence(
δB∩KR

N
(AW , p) + δB∩KL

N

(
A∗W , p

))(
logN

)6 → 0

as N → ∞, for Pλc/p-almost every B. Since fBN is monotone, we may apply Theorem 2.5,
which implies that (fBN )N>1 is NSp with probability one, as required. �

7.3. The Poisson Boolean model is noise sensitive. We are finally ready to deduce
Theorem 1.1; as we remarked in Section 2, it follows easily from Theorem 1.3 and Proposi-
tion 2.1. The key observation is that the following two constructions are equivalent:

(a) Pick η according to the measure Pλc , construct ηε by deleting each element of η
independently with probability ε, and add a new independent configuration picked
according to the measure Pελc . We consider the pair (η, ηε).

(b) Pick B according to the measure Pλc/p, and let η be a p-subset of B. Setting

ε′ = ε/(1 − p), construct ηε
′

by re-randomizing the second step with probability
ε′, independently, for every v ∈ B. We consider the pair (η, ηε

′
).

It is easy to see that picking (η, ηε) according to the first construction is equivalent to picking
(η, ηε

′
) according to the second construction.

Now, recall that fGN is the function, defined on subsets η of the plane R2, which encodes
whether or not there is a horizontal crossing of RN in the occupied space D(η) ∩ RN . To
prove the noise sensitivity of the Poisson Boolean model we must prove that for every ε > 0

lim
N→∞

Eλc

[
fGN (η)fGN (ηε)

]
− Eλc

[
fGN (η)

]2
= 0, (36)

where the pair (η, ηε) is obtained by the first construction above.

Proof of Theorem 1.1. Fix ε > 0. We have, by the observations above,

Eλc

[
fGN (η)fGN (ηε)

]
− Eλc

[
fGN (η)

]2
= Eλc/p

[
EBp
[
fBN (η)fBN (ηε

′
)
]]
− Eλc/p

[
EBp
[
fBN (η)

]]2

= Eλc/p

[
EBp
[
fBN (η)fBN (ηε

′
)
]
− EBp

[
fBN (η)

]2]
+ Varλc/p

(
EBp
[
fBN (η)

])
. (37)

Proposition 2.1 shows that the second term in (37) can be made arbitrarily small by taking
p > 0 sufficiently small and N sufficiently large. Theorem 1.3 implies in turn that for small
(but fixed) p > 0, the first term converges to 0 as N →∞. Since (37) holds for every p > 0,
it follows that the limit (36) holds, and, since ε > 0 was arbitrary, the Poisson Boolean
model is noise sensitive at criticality, as claimed. �
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We observe that in the extremal case when ε = 1− p, (37) reduces to

Eλc

[
fGN (η)fGN (η1−p)

]
− Eλc

[
fGN (η)

]2
= Varλc/p

(
EBp
[
fBN (η)

])
.

Thus, as an immediate consequence of Theorem 1.1 we obtain the following strengthening
of Proposition 2.1.

Corollary 7.6. For every p ∈ (0, 1)

lim
N→∞

Varλc/p

(
PBp
(
H(η,RN , •)

))
= 0.

Apart from its independent interest, we shall use Corollary 7.6 in the next section to
obtain a quantitative bound on the noise sensitivity exponent associated with the Poisson
Boolean model.

8. Quantitative noise sensitivity

Several years after the introduction of noise sensitivity in [9], an important breakthrough
was obtained by Schramm and Steif [35], who established a direct connection between re-
vealment and the Fourier spectrum of a function via the use of randomized algorithms2.
Recall Lemma 4.1, which shows that a sufficiently strong bound on the Fourier coefficients is
enough to deduce noise sensitivity. We here outline how the ‘randomized algorithm’ method
of [35] can be used to prove Corollary 1.5, and hence strengthen Theorem 1.1.

Let p = 1/2, and observe that, by Corollary 7.6, the final term in the right-hand side
of (37) vanishes as N →∞, and does not depend on ε. As a consequence, in order to prove
Corollary 1.5 it suffices to show that there exists α > 0 such that, with ε(N) = N−α,

lim
N→∞

EB1/2
[
fBN (η)fBN (ηε(N))

]
− EB1/2

[
fBN (η)

]2
= 0, for P2λc-almost every B. (38)

In other words, we need to prove that the noise sensitivity exponent for the PB1/2 model is

(a.s.) bounded away from zero. In particular, this means that we do not need to extend the
approach of [35] from the uniform case to the biased setting; Theorem 1.1 (via Corollary 7.6)
does the job for us.

The randomized algorithm method is based on the following relation between Fourier
coefficients of a function and the revealment of an algorithm.

Proposition 8.1 (Schramm and Steif [35]). Let f : {0, 1}n → R be a function and let A be
a randomized algorithm determining f . For every k ∈ [n] we have∑

|S|=k

f̂(S)2 6 k · ‖f‖2
2 · δ[n](A, 1/2),

where ‖f‖2 denotes the L2-norm of f with respect to uniform measure.

We continue with a rough sketch of how Proposition 8.1 can be used to deduce (38), which
in turn implies Corollary 1.5. We proceed as follows:

2In a randomized algorithm, the bit to be queried next is chosen according to a probability distribution
that is allowed to depend on the information received so far.
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1. First define a suitable algorithm A to be used; in fact, it is straightforward to adapt
the algorithm which was used in [35] to the continuum setting. Roughly speaking,
the algorithm chooses a starting point uniformly at random from the middle third of
the left-hand side of the square RN , and then investigates (in two stages) whether
or not there is an occupied crossing of RN originating above the starting point, and
whether or not there is one originating below it.

2. Partition RN+2 into n = (N + 2)2 unit squares S1, . . . , Sn, and observe that if the
algorithm is to examine a point in B ∩ Si, then the exploration path from the start-
ing point must reach Si. The probability that this occurs can be bounded by the
probability of a one-arm event originating from the square Si. (Some care needs to
be taken with squares within distance, say, N1/2 of the boundary of RN , but this is
easily adjusted for.)

3. For small p > 0, an estimate on the probability of the one-arm event was obtained in
Lemma 7.5, based on Proposition 2.3. To estimate δ[n](A, 1/2), we need to extend this
statement to cover also p = 1/2. Note that Corollary 7.6 together with Chebychev’s
inequality gives a statement very similar to Proposition 2.3 (valid for all p ∈ (0, 1)),
but for crossings of the square RN instead of the rectangle RN×tN . Perhaps the
easiest way to convince oneself that the statement holds also for rectangles, is to
observe that there is nothing special about the choice of a square in our study of the
sensitivity of crossings. Indeed, one may easily verify that the proof of Theorem 1.1
goes through (practically word for word) in the case where RN is replaced by RN×tN .
Consequently, Corollary 7.6 also holds for rectangles, and hence for every t > 0 there
exists a constant c = c(t) > 0 such that, for every p ∈ (0, 1),

lim
N→∞

Pλc/p

(
PBp
(
H(η,RN×tN , •)

)
6∈ (c, 1− c)

)
= 0.

A bound on the one-arm event centred around a unit square Si is now easily obtained
for p = 1/2, exactly as in Lemma 7.5.

4. Using the union bound and the Borel-Cantelli lemma, we conclude (exactly as in
Section 7.2) that there exists δ > 0 such that, for all but finitely manyN , the following
holds for P2λc-almost every B: given any unit square S in RN , the probability (in
PB1/2) of the one-arm event centred around S is at most N−δ.

5. An upper bound on the revealment of the algorithm was in step 2 argued to be given
by the (maximal) probability of the one-arm event around a unit square Si. It follows
that there exists δ > 0 such that

P2λc

(
δB∩RN+2

(A, 1/2) > N−δ for at most finitely many N
)

= 1.

6. Via Proposition 8.1, it follows that for each α < δ/2∑
0<|S|6Nα

f̂BN (S)2 6
∑

0<k6Nα

k · ‖fBN ‖2
2 · δ[n](A, 1/2) 6 N2α ·N−δ → 0, (39)

for P2λc-almost every B.
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7. As is easily verified (see the proof of Lemma 4.1), the noise sensitivity exponent for

a sequence of Boolean functions (fn)n>1 is at least α if limn→∞
∑

0<|S|6nα f̂n(S)2 =

0. Consequently, (39) implies that the noise sensitivity exponent for the sequence
(fBN )N>1 is at least δ/2, for P2λc-almost every B. Thus, (38) holds.

By the observations above, this completes (the sketch of) the proof of Corollary 1.5.

9. Open problems

In this paper we have laid out a fairly general approach to the problem of proving noise
sensitivity in models of Continuum Percolation, and we expect that our method could be
extended to prove similar results in more general settings. In this section we shall state a
few of these open problems.

9.1. More general Poisson Boolean models. The simplest extension of Theorem 1.1
would be to the Poisson Boolean model with (bounded) random radii. To obtain this model,
let R > 0 and fix an (arbitrary) distribution µR on (0, R). Now let η ⊂ R2 be chosen
according to a Poisson point process, and place a disc of radius r(x) on each vertex x ∈ η,
where r(x) is chosen according to µR, independently for each vertex. There are various
ways to perturb a configuration in this model. One may leave the positions of the points
unaffected, but re-randomize some of the radii, or add and remove a small proportion of the
balls, much like in this paper. We have foremost the latter choice in mind. Indeed, for this
model the only missing ingredient is an RSW Theorem for the occupied space.

Conjecture 9.1. For every R > 0 and µR, the Poisson Boolean model with random radii
chosen according to µR is noise sensitive at criticality.

An alternative generalization would allow us to use an arbitrary shape S instead of a disc.
Given such an S ⊂ R2, and a set η chosen according to a Poisson point process, place a copy
of S on every point x ∈ η; that is, set D(η) =

⋃
x∈η x+ S.

Conjecture 9.2. If S is bounded and simply connected, then the Poisson Boolean model for
S is noise sensitive at criticality.

Of course, one could construct a much more general model, in which a random shape (of
random size) is placed on each point in η. We suspect that such a model will also exhibit
the same behaviour. The corresponding question for higher dimensions is likely to be much
harder.

Question 1. Is the Poisson Boolean model noise sensitive at criticality in d dimensions?

9.2. Voronoi percolation. Given a set η ⊂ R2, the Voronoi tiling of η (see [14], for exam-
ple) is constructed by associating each point of R2 with the point of η closest to it. We call
the set of points associated to x ∈ η in this way the Voronoi cell of x. In Voronoi percolation
we choose a random subset of the cells, by colouring each blue with probability p, and say
that the model percolates if there exists an unbounded component of blue space. Bollobás
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and Riordan [13] proved that if η is chosen according to Pλ, then this model has critical
probability 1/2.

Given a Voronoi tiling V of R2, let fVN : {0, 1}VN → {0, 1} be the function which encodes
crossings of RN , where VN denotes the collection of cells which intersect RN . Say that
Voronoi percolation is noise sensitive at criticality if (fVN )N>1 is NS, almost surely (in Pλ).

Benjamini, Kalai and Schramm [9, Section 5] asked whether knowing the Voronoi tiling,
but not the colouring, gives (a.s.) any information as to whether or not there exists a blue
horizontal crossing of RN . We make the following, complementary conjecture.

Conjecture 9.3. Voronoi percolation is noise sensitive at criticality.

Alternatively, one could define noise sensitivity by resampling the Poisson point process,
as well as the colouring; we expect the corresponding result to hold for this definition also.

9.3. Stronger results for the Gilbert model. In Corollary 1.5 we show that it is possible
to obtain quantitative estimates on how sensitive percolation crossings are to noise. Recently,
very strong results have been obtained by Schramm and Steif [35] and Garban, Pete and
Schramm [21] in the discrete case. In [35] it was proven that the noise sensitivity exponents
for bond percolation on the square lattice, and for site percolation on the triangular lattice,
are positive. The latter was improved in [21] to show that the noise sensitivity exponent
for the triangular lattice equals 3/4. Such a precise result was possible to obtain due to the
very precise information available on the decay rate of arms events. It would be interesting
to determine the precise value of the noise sensitivity exponent in the continuum setting.

Problem 1. Determine for which α > 0 we with ε(N) = N−α have

lim
N→∞

Eλc

[
fGN (η)fGN (ηε(N))

]
− Eλc

[
fGN (η)

]2
= 0.

One possible application of a solution to Problem 1 would be to Dynamical Continuum
Percolation. To define this model, consider a set η chosen according to a Poisson point
process of intensity λc in three dimensions (two space and one time), and suppose points
of η disappear at rate one. By Corollary 3.2, at any given time there is (almost surely)
no infinite component in D(η); we therefore say that t is an exceptional time if there is an
infinite component in D(η) at time t.

The following conjecture was proved for site percolation on the triangular lattice in [35],
and for bond percolation on Z2 in [21].

Conjecture 9.4. There exist exceptional times in Dynamical Continuum Percolation at
criticality, almost surely.

A related problem was studied by Benjamini and Schramm [8]. Alternatively, one might
first choose the points of η according to a Poisson point process of intensity λc, and then
allow each to perform an independent Brownian motion (see also [16]); an interesting first
step would be to prove a result corresponding to Theorem 1.1 for this model.
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