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Abstract

We consider the Poisson cylinder model in d-dimensional hyperbolic space. We
show that in contrast to the Euclidean case, there is a phase transition in the
connectivity of the collection of cylinders as the intensity parameter varies. We also
show that for any non-trivial intensity, the diameter of the collection of cylinders
is infinite.

1 Introduction

In the recent paper [6], the authors considered the so-called Poisson cylinder model in
Euclidean space. Informally, this model can be described as a Poisson process w on
the space of bi-infinite lines in R%. The intensity of this Poisson process is u times a
normalized Haar measure on this space of lines. One then places a cylinder ¢ of radius
one around every line L € w, and with a slight abuse of notation, we say that ¢ € w. The
main result of [6] was that for any 0 < u < oo and any two cylinders ¢, ¢y € w, there
exists a sequence ¢!,...¢?2 € wsuch that ¢; Ne' 0, !N #0,...¢2Ncy #0. In
words, any two cylinders in the process is connected via a sequence of at most d — 2 other
cylinders. Furthermore, it was proven that with probability one, there exists a pair of
cylinders not connected in d — 3 steps. The result holds for any 0 < u < 0o, and therefore
there is no connectivity phase transition.

This is in sharp contrast to what happens for other percolation models. For example,
ordinary discrete percolation (see []), the Gilbert disc model (see [I1]), and the Voronoi
percolation model (see [5]) all have a connectivity phase transition. A common property
that all the above listed models exhibit is something that we informally refer to as a ”lo-
cality property” and can be described as follows. Having knowledge of the configuration
in some region A, gives no, or almost no, information about the configuration in some
other region B, as long as A and B are well separated. For instance, in ordinary discrete
percolation the configurations are independent if the two regions A, B are disjoint, while
for the Gilbert disc model with fixed disc radius r, the regions need to be at Euclidean
distance at least 2r in order to have independence. For Voronoi percolation, there is a
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form of exponentially decaying dependence, i.e. the probability that the same cell in a
Voronoi tessellation contains both points x and y decays exponentially in the distance
between x and y.

This is however not the case when dealing with the Poisson cylinder model in Eu-
clidean space. Here, the dependency is polynomially decaying in that

]P)E[B(x? 1) A B(Z/a 1)] ~ dE(xay)i(dilh (1'1)

where the index E stresses that we are in the Euclidean case, and where < denotes the
existence of a cylinder ¢ € w connecting B(x, 1) to B(y, 1). Of course, this "non-locality”
stems from the fact that the basic objects of our percolation model are unbounded cylin-
ders.

In Euclidean space, the non-locality property of and the fact that the basic
percolation objects (i.e. the cylinders) are unbounded are, at least in some sense, the
same thing. However, in hyperbolic space, the result corresponding to is quite
different (see Lemma in that

Py[B(x,1) < B(y,1)] ~ e~ @ Ddul@y), (1.2)

(where Py stresses that we are in the hyperbolic case and dy denotes hyperbolic distance).
Since the decay is now exponential, this is a form of locality property. Thus, by studying
this model in hyperbolic space, we can study a model with unbounded percolation objects,
but with a locality property. This is something that does not occur naturally in the
Euclidean setting.

Before we can present our main results, we will provide a short explanation of our
model, see Section [2| below for further details. Consider therefore the d-dimensional
hyperbolic space H? for any d > 2. We let A(d, 1) be the set of geodesics in H? and let
a1 be the unique (up to scaling) measure on A(d, 1) which is invariant under isometries.
We will sometimes simply refer to the geodesics of A(d, 1) as lines.

Let w be a Poisson point process on A(d, 1) with intensity wupg 1, where u > 0 is our
parameter. As in the FEuclidean case, given a line L € w, we will let ¢(L) denote the
corresponding cylinder, and abuse notation somewhat in writing ¢ € w. Let

C:= U (L),

Lew
be the occupied set and let V := H? \ C be the vacant set. Furthermore, define
Ue = Ue(d) :=1inf{u : C is a.s. a connected set}.

We note that by Proposition [2.1] below, we have that P[C is connected] € {0, 1}.
Our main result is the following.

Theorem 1.1. For any d > 2 we have u.(d) € (0,00). Furthermore, for any u > u., C
is connected.

Remarks: Theorem indicates that even though the cylinders are unbounded, the
exponential decay of ([1.2)) seems to be the important feature in determining the existence
of a phase transition. The second part of the theorem is a monotonicity property, proving
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that when w is so large that C is a connected set, then we cannot have that C is again
disconnected for an even larger u.

In [I7] a result similar to Theorem 1.1{for the random interlacements model on certain
non-amenable graphs was proven. The random interlacements model (which was intro-
duced in [16]) is a discrete percolation model exhibiting long-range dependence. However,
the dependence structure for this model is very different from that of the Poisson cylinder
model. To see this, consider three points z,y,z € H¢ (or R? in the Euclidean case). If
we know that there is a geodesic L € w such that x,y € L, then this will determine
whether z € L. For a random interlacement process, the objects studied are essentially
trajectories of bi-infinite simple random walks, and so knowing that a trajectory contains
the points z,y € Z? will give some information whether the trajectory contains z € Z,
but not ”full” information. Thus, the dependence structure is in some sense more rigid
for the cylinder process.

Knowing that C is connected, it is natural to consider the diameter of C defined as
follows. For any two cylinders ¢,, ¢, € w, let Cdist(c,,¢,) be the minimal number & of
cylinders ¢y, ... ¢, € w such that

k
o Uy U C;
i=1

is a connected set. If no such set exists, we say that Cdist(c,, ;) = 0co. We then define
the diameter of C as

diam(C) = sup{Cdist(ca, ¢p) : Ca,¢p € W}.
Our second main result is

Theorem 1.2. For any u € (0,00), we have that
P[diam(C) = oo = 1.

Remark: Of course, the result is trivial for u < wu..

When 0 < u < u.(d), it is natural to ask about the number of unbounded components.
Our next proposition addresses this.

Proposition 1.3. For any u € (0,u.) the number of infinite connected components of C
s a.s. infinite.

One of the main tools will be the following discrete time particle process. Since we
believe that it may be of some independent interest, we present it here in the introduction,
along with our main result concerning it. In essence, it behaves like a branching process
where every particle gives rise to an infinite number of offspring whose types can take
any positive real value.

Formally, let &, (fk,n)?fn:l be an i.i.d. collection of Poisson processes on R with
intensity measure ue™*®®dx. Let (° = {0}, and we think of this as the single particle
in generation 0. Then, let ¢! = {x > 0: x € &} be the particles of generation 1, and let
Z11 = min{x € ¢'} and inductively for any k > 2, let Z;; = min{x € (' : 2 > Z;_11}.
Thus Z11 < Zsy < -+ and {Z11,Z21,...} = ¢'. We think of these as the offspring of



Z1o = {0}. In general, if (" has been defined, and 7 ,, < Zs,, < --- are the points in (",
we let

chntl = U {x+ Zpn}, (1.3)

xegk,n:m+zk,n20

and ("t = U, ¢F" T We think of ("™ as the particles of generation n + 1, and
¢t as the offspring of Z,, € ¢ From ([1.3), we see that ¢(*"*1 C R*. Furthermore,
conditioned on Zj, = x, Z, gives rise to new particles in generation n + 1 according
to a Poisson process with intensity measure dyu, = I(y > O)ue*(x*yﬁdy (where I is an
indicator function and (z —y)™ = max(0,x —y)). We let ¢ = ({™)5°; denote this particle
process. We point out that in our definition, any enumeration of the particles of (" would
be as good as our ordering Z; , < Z,, < ---, as long as the enumeration does not depend
on "the future”, i.e. (§n41)52, or such.

Informally the above process can be described as follows. Thinking of a particle as a
point in R* corresponding to the type of that particle, it gives rise to new points with a
homogeneous rate forward of the position of the point, but at an exponentially decaying
rate backward of the position of the point. Of course, since any individual gives rise to
an infinite number of offspring, the process will never die out. However, it can still die
out weakly in the sense that for any R there will eventually be no new points of type R
or smaller.

For any n, let

Xty = D1 (D € [a.b)). (1.4)
k=1

Thus, X [Z,b} is the number of individuals in generation n of type between a and b. We
have the following theorem

Theorem 1.4. There exists a constant C' < oo such that for u < 1/4, and any R < 0o

64uR

n=1

That is, ¢ dies out weakly. Furthermore, for any u > 1/4,

JL%OE[X£7R}] = 00.

Theorem will be used to prove that u.(d) > 0 (part of Theorem through
a coupling procedure informally described in the following way (see Section for the
formal definition). Consider a deterministic cylinder ¢, passing through the origin o € H¢
and a Poisson process of cylinders in H? as described above. Let 11,621, ... be the set
of cylinders in this process that intersect ¢g. These are the first generation of cylinders
(and correspond to ¢'). In the next step, we consider independent Poisson processes
(we1)52, and the collection of cylinders in wy; that intersect ¢x; (these collections will
correspond to (¢%?)2°, and the union of them corresponds to ¢?). We then proceed for
future generations in the obvious way. By a straightforward coupling of this ”independent
cylinder process” and the original one described above (and since in every step we use an
independent process in the entire space H?), we get that the set of cylinders connected to
¢o through this procedure, will contain the set of cylinders in C U ¢, connected to ¢y. With

4
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some work, the independent cylinder process can be compared to the particle process as
indicated. By Theorem [1.4] for u < 1/4, the latter dies out weakly. We will show that
this implies that the number of cylinders (in the independent cylinder process) connected
to ¢o and intersecting B(o, R) will be of order at most e*““* where ¢ < co. However, the
number of cylinders in C intersecting B(o, R) must be of order /D% which of course
is strictly larger than e**“® for 4 > 0 small enough. Assuming that C is connected then
leads to a contradiction.

We end the introduction with an outline of the rest of the paper. In Section [2] we
give some background on hyperbolic geometry and define the cylinder model. In Section
[3, we establish some preliminary results on connectivity probabilities that will be useful
in later sections. In Section [4] we prove that u.(d) < oo and the monotonicity part of
Theorem In Section [5| we prove Theorem [I.4] which (as described) will be a key
ingredient in proving u.(d) > 0, which is done in Section 6] In Sections[7] and [§ we prove
Theorem and Proposition respectively.

2 The model

In this section we will start with some preliminaries of hyperbolic space which we will
have use for later, and proceed by defining the model.

2.1 Some facts about d-dimensional hyperbolic space

There are many models for d-dimensional hyperbolic space (see for instance [2],[12] or
[14]). In this paper, we prefer to consider the so-called Poincaré ball model. Therefore,
we consider the unit ball Uy = {z € R? : dg(o,x) < 1} (where dg denotes Euclidean
distance) equipped with the hyperbolic metric dy(x,y) given by

— cos —1 dE(x7y)2
dr(7,y) = cosh (1 T Gl — 4o, y>2>) ' (2.)

We refer to Uy equipped with the metric dy as the Poincaré ball model of d-dimensional
hyperbolic space, and denote it by H¢.

For future convenience, we now state two well known (see for instance Chapter 7.12 of
[2]) rules from hyperbolic geometry. Here, we consider a triangle (consisting of segments
of geodesics in H?) with side lengths a, b, c and we let «, 3, denote the angles opposite
of the segments corresponding to a, b and ¢ respectively.

Rule 1:
cosh(c) = cosh(a) cosh(b) — sinh(a) sinh(b) cos(y) (2.2)

Rule 2:
cos(a) cos(f3) + cos(y)

sin(a) sin(/3)
These rules are usually referred to as hyperbolic cosine rules.
Let S?! denote the unit sphere in R?. We will identify OH¢ with S%~!. Any point
x € H? is then uniquely determined by the distance p = dy (0, ) of = from the origin o,
and a point s € S by going along the geodesic from o to s a distance p from o. If we let

cosh(c) = (2.3)

eqn:hyp-eq



dvgy_q denote the solid angle element so that Oy = fsdfl dvg_1 is the (d —1)-dimensional
volume of the sphere S!, then the volume measure in H? can be expressed in hyperbolic
spherical coordinates (see [14], Chapter 17) as

dvg = sinh®*(p)dpdvy_,.

Thus, for any A C H%, the volume vg(A) can be written as
vg(A) = / sinh® ! (p)dpdvg_;. 2.4) |egn:volume
(4) A (p) 1 (2.4)

2.2 The space of geodesics in H".

. geodesics

Let A(d, 1) be the set of all geodesics in H¢. As mentioned in the introduction, a geodesic
L € A(d,1) will sometimes be referred to as a line. Although it will have no direct
relevance to the paper, we note that it is well known (see [7], section 9) that in the Poincaré
ball model, A(d, 1) consists of diameters and boundary orthogonal circular segments of
the unit ball Uj.

For any K C H% we let Lx = {L € A(d,1) : LN K # 0}. If g is an isometry on
H?¢ (i.e. g is a Mobius transform leaving U, invariant, see for instance [I] Chapters 2
and 3), we define gLy := {gL : L € A(d,1)} (where of course gL = {gz : © € L}).
There exists a unique measure pg; on A(d,1) which is invariant under isometries (i.e.
pa1(9Lk) = paa1(Lx)), and normalized such that pg1(Lpo1)) = Oa—1 (see [14] Chapter
17 or [3] Section 6).

For any L € A(d, 1) we let a = a(L) be the point on L minimizing the distance to the
origin, and define p = p(L) = dg(o,a). Note that p = dy(o,L). Let L} := {L € Lk :
a(L) € K}. According to (17.52) of [14], we have that

Hd,1 (L:B(o,r)) - ,ud,l(cg(oﬂ,)) (25)

_ [d=1D0us / cosh(p) sinh®?(p)dp = Oa

= —— = sinh®(r).
sinh® (1) Jo sinh?~!(1) (r)

2.3 The process

We consider the following space of point measures on A(d, 1):

Q={w= ZéLZ. where L; € A(d, 1), and w(L4) < oo for all compact A C H?}.

1=0

Here, &1, of course denotes Dirac’s point measure at L.

We will often use the following standard abuse of notation: if w is some point measure,
then we will write ” L € w” instead of ” L € supp(w)”. We will draw an element w from §2
according to a Poisson point process with intensity measure upg; where u > 0. We call
w a (homogeneous) Poisson line process of intensity v in H.

If L € A(d, 1), we denote by ¢(L, s) the cylinder of base radius s centered around L,
ie.

¢(L,s) ={x c H? : dy(x, L) < s}.



If s = 1 we will simplify the notation and write ¢(L, 1) = ¢(L). When convenient, we will
write ¢ € w instead of ¢(L) where L € w. Recall that the union of all cylinders is denoted

by C,

Lew

and that the vacant set V is the complement H? \ C. For an isometry g on H? and an
event B C ), we define ¢B := {w' € Q : W' = gw for some w € B}. We say that an event
B C Q, is invariant under isometries if ¢B = B for every isometry ¢g. Furthermore, we
have the following 0 — 1 law.

Proposition 2.1. Suppose that B is invariant under isometries. Then P[B] € {0, 1}.

The proof of Proposition is fairly standard, so we only give a sketch based on the
proofs of Lemma 3.3 of [I8] and Lemma 2.6 of [9]. Below, wp(, ) denotes the restriction
of wto Lp(zk)-

Sketch of proof. Let {z;}r>1 C H? be such that for every k > 1, dy(o, z;) = €*, and
let gr be an isometry mapping o to z;. Define I, = I(w € {P[Blwpx)] > 1/2}), and
note that by Lévy’s 0-1 law,

lim I, = Ip a.s.

k—o0
Using that B is invariant under isometries, it is straightforward to prove that the laws
of (Ig,1,1) and (Ip, Iy, (o)) are the same, and so Iy, (), converges in probability to I5.
Thus,
lim ]P[Io,k = ng(o),kz = 13] =1. (26)

k—oo
The next step is to prove that I, and Iy, ), are asymptotically independent, i.e.
kh—{EO |P[ ok = 1 ] k(O),k = 1] — P[Io,k = 1]1?[]%( ]| = O (27)
Essentially, (2.7) follows from the fact that when k is large, the probability that there is
any cylinder in w which intersects both B(o, k) and B(gx(0), k) is very small (this is why
we choose dy (0, z;) to grow rapidly). For this, one uses the estimate of the measure of
lines intersecting two distant balls, see Lemma [3.3| below.
Since I, and Iy, (o) are asymptotically independent, we get
lim Pl =1, Iy, (o) = 0] = P[B](1 — P[B]). (2.8)

k—o0

The only way both (2.6) and (2.8)) can hold is if P[B] € {0,1}.

We note that the laws of the random objects w, C and V are all invariant under
isometries of H.

3 Connectivity probability estimates.

The purpose of this section is to establish some preliminary estimates on connectivity
probabilities, and in particular to establish (1.2]). This result will then be used many
times in the following sections.

e.asymptin
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For any two sets A, B C H? we let A <+ B denote the event that there exists a
cylinder ¢ € w such that ANc¢ # () and BN ¢ # 0. We have the following key estimate.

Lemma 3.1. Let s € (0,00). There exists two constants 0 < ¢(s) < C(s) < oo such that
for any z,y € He, and u < 2/1ta,1(LB(o,s+1)) we have that

C(S) uef(dfl)dH(fL”,y) < IED[B(QJ, S) PN B(Z/7 S)] < C(S) ue*(d*l)dH(:p,y).

Lemma [3.1] will follow easily from Lemmas and below, and we defer the proof of
Lemma [B.1] till later.

Recall that we identify S%~! with OH? in the Poincaré ball model. Fix a half-line L, /2
emanating from the origin. For 0 <0 <, let Ly, , ¢ be the set of all half-lines L’l/2 such
that L} /o €manates from the origin and such that the angle between L/, and L /2 is at
most 0. Let Sp(L1/2) be the set of all points s € OHY such that s is the limit point of
some half-line in Ly, 2 Then Sp(L4 /2) is the intersection of OHY with a hyperspherical
cap of Euclidean height h = h(), where

h(6) =1 — cos(0). (3.1)

The (d — 1)-dimensional Euclidean volume of Sy is given by

Og— d—1 1
A(B) = ; L Lo p2 (T 5) (3.2)

where Oy4_; (as above) is the (d — 1)-dimensional Euclidean volume of S¢~!, and Iyj,_p»
is a regularized incomplete beta function (this follows from [I0], equation (1), by noting
that sin?(6) = 2h — h?).

Lemma 3.2. There are constants 0 < ¢ < C' < oo such that for any 0 < 1/10, we have
chTt < A(0) < 0o

Proof. First observe that if 0 < § < 1/10, then 1 — #%/2 < cos(f) < 1 — 6?/4.
Therefore, from (3.1]) we have

2
1
<h< % < 500 whenever 6 € [0,1/10]. (3.3)

N

We have

2h—h?
d—1 1 DL — )12 dt

) 1

2 2 fo t(dfl)/Qfl(l _ t)1/271 dt

The denominator in (3.4)) is a dimension-dependent constant. Furthermore, if 0 < h <

1/8, then 0 < 2h — h? < 1/4, and if 0 <t < 1/4, then 1 < 1/4/1 —t < 2. Hence, for
h <1/8,

2h—h? d—1 1 2h—h?
Cy / t@=D2 gt < Loy o | ——, = | < Oy / tld=1/2=1 gy
0 2 2 0

e.hthetain
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which after integration gives

—1 —11 —1
Cs(2h — BT < Lyp_pe (dT 5) < Cy(2h— W) 7.

Hence, for h < 1/8,

—-11
Cgh(d—l)/z < Iy pe <dT’§) < 04(2h)(d_1)/2. (3.5)

The lemma now follows from (3.2)), (3.3) and (3.5)). 5

Lemma 3.3. Let s € (0,00). There exists two constants 0 < ¢(s) < C(s) < oo such that
for any x,y € HY, we have that

c(s) e IEY) <y (Lpas) N Lpy,s) < C(s) e DY),

Proof. For convenience, we perform the proof in the case s = 1. The general case is
dealt with in the same way. The proof is somewhat similar to the proof of Lemma 3.1 in
[18]. Recall that we use the Poincaré ball model, and keep in mind that OH is identified
with S971. Let R = dy(x,y) and without loss of generality assume that = o and so
y € 0B(0, R). We can assume that R > 2 as the case R < 2 follows by adjusting the
constants ¢, C. For any R € (0,00] and A C 0B(o, R), let

Tr(A) := pa1(LBo,1) N La).

The projection Ilyya(A) of A onto OH? is defined as the set of all points y in OH? for
which there is a half-line emanating from o, passing through A and with its end-point at
infinity at y.

We now argue that

tai (Lo1))0r(A) < TrR(A) < 2p41(LB0o1))orR(A), (3.6)

where o is the unique rotationally invariant probability measure on 0B(o, R). Here, o4,
is the rotationally invariant probability measure on OH?, which is just a constant multiple
of the Lebesgue measure on S~!. For A C dB(o, R), let Na(w) denote the number of
points in A that are intersected by some line in Lpo1) Nw. If L € Lp1) N L then L
intersects A at one or two points. Hence

Na(w)/2 < w(LpoiyNLa) < Na(w). (3.7)

In addition, every line intersecting B(o, 1) intersects 0B(o, R) exactly twice. Hence,
Nop(o.r) (W) = 2w(LB(1))- (3.8)

For A C 0B(o, R) define pr(A) = E[N4(w)]. Taking expectations in (3.7)) we obtain

pr(A)/2 <uTr(A) < pr(A). (3.9)

e.rotinv



It is easily verified that pr(A) is invariant under rotations. Hence, pg is a constant
multiple of og. Taking expectations in (3.8)), we obtain

pr(0B(0, R)) = 2upta1(Lp(o,1)),

from which it follows that

Pr(:) = 2upta1 (L)) or(-). (3.10)
Combining (3.9) and (3.10]) we obtain (3.6). Since or(A) = 0o (IIgna(A)), this gives
pa,1 (L5(0,1))000 (o (A)) < Tr(A) < 204.1(LB(0,1)) 000 (Homa (A)). (3.11)

Having proved (3.6]) and (3.11]), we now proceed to prove the lower bound. We observe
that

L1 N LBy D LB, N LBy, 1)naB(o,R)-

Hence, in view of (3.6]), we need to estimate og(E) from below, where E = B(y,1) N
0B(o0, R). Let L; be any line containing o and intersecting 0B(y, 1) N 0B(o, R), and let
L, be the line intersecting o and y. Denote the angle between L; and L, by 6§ = 6(R).
Observe that I ga(E) is the intersection of OH? and a hyperspherical cap of Euclidean
height 1 — cos(#), and so we need to find bounds on 6.

Applying to the triangle defined by L; N B(o, R), the line segment between o
and y, and the line segment between L; N dB(o, R) and y, we have

cosh(1) = cosh®(R) — sinh?(R) cos(). (3.12)
Solving (3.12)) for 6 gives

Observe that for any 0 < x <1,
arccos(1 — x) = arcsin(v2z — 22) > arcsin(y/z) > /.
Hence for R > 1,

0> ¢
~ sinh(R)

> Ce . (3.13)

By Lemma |3.2|, we have
Ooo(Igma(E)) > 0771, (3.14)

and so the lower bound follows by combining (3.11)), (3.13)) and (3.14)).

We turn to the upper bound. Let ¢ be the point on 0B(y, 1) closest to the origin,
and let H be the (d — 1)-dimensional hyperbolic space orthogonal to L, and containing
y'. Let Hyge(H) C OHY be the projection of H onto OH?. Since for any z € H, dy(y, z) >
dy(y,y") we get that

L1 N LBy C Lo N »CHBHd(H)-

Next we find an upper bound of o, (Ilsge(H)), which will imply the upper bound of
,ud,1(£B(o,1) OEB(y,l)). Let L, be any geodesic in H, and let s and s’ be the two end-points

10
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at infinity of Ly. Let L3 be the half-line between 0 and s, and let 7 = y(R) be the angle
between L3 and L,. Applying (2.3)) to the triangle defined by L, the half-line between s
and y’ and the line-segment between 0 and y’, we obtain
cos(0) = — cos(7/2) cos(7y) + sin(7/2) sin(y) cosh(R — 1),
which gives
1 = sin(y) cosh(R — 1).

Observe that we here applied (2.3) to an infinite triangle, which can be justified by a
limit argument. Hence

. 1
Y = arcsin (m) .
Observe that arcsin(z) < 2z for every 0 < z < 1, so that
2

< Ce (3.15) |eqn:gammaR

< -
7= cosh(R—1) —

We observe that [lgga(H) is the intersection between a hyperspherical cap of Euclidean
height 1 — cos(v) and OHY. Hence, according to Lemma

[eqn: gammak
Ooo(Mgma(H)) < cy?1. (3.16)

The upper bound follows by combining (3.11)), (3.15) and (3.16)), which concludes the
proof.

Lemma 3.4. Suppose dy(z,y) = R and that r,s € (0,00). There is a constant c(d, s) <
oo such that if R > r + s, then

ta1 (LB,s) N Lpwry) < c(d,s)exp(—(d —1)(R—r1)).

Proof. The proof is nearly identical to the proof of the upper bound in Lemma [3.3]
and therefore we leave the details to the reader.

We can now prove Lemma [3.1]
Proof of Lemma [3.1 We perform the proof in the case s = 1 as the general case
follows similarly. First observe that

{B(z,1) = By, 1)} = {w(Lp@2 N Lpy) = 1}
Using that 1 —e™® < z for x > 0, we have that
P[B(z,1) < B(y,1)] = 1 = P[B(z,1) # B(y,1)]
=1 — e aCpeE8w2) < upy) (Lppa) N Lpga) < Cue™ D@y
by Lemma |3.3| with C' as in the same lemma.

Using that 1 —e™ > /2 if 2 < 2, and that w1 (L2 N LBw,2) < Utai(Lp@se) =
ufta1(LBo2)) < 2 by assumption, we get as above that

upta1(LB@2 N LBe2)
2
by again using Lemma [3.3] and letting ¢ be half of that of Lemma [3.3]

P[B(x,1) < B(y,1)] > > cue~ (- Ddu(@y)

11



4 Proof of u. < co and monotonicity of uniqueness

sec:ubamou

We start by proving the monotonicity of uniqueness. For convenience, in this section we
denote by w, a Poisson line process with intensity u. In addition, we will let E and P
denote expectation and probability measure for several Poisson processes simultaneously.
Recall also that A(d, 1) is the set of all geodesics in H.

Lemma 4.1. If for uy > 0 P[C(w,,) is connected] = 1, then P[C(wy,) is connected] = 1

for every us > u;.

Proof. It is straightforward to show that for any L € A(d, 1), puq1(Ler)) = oo. Hence,

for any L € A(d, 1),
Ple(L) N C(wy,) # 0] = 1. (4.1) |e.easytosh,

Let u' = uy—wuy and let w, be a Poisson line process of intensity v/, independent of w,,. By
the Poissonian nature of the process, C(wy,) has the same law as C(w,,) UC(w,/). Hence
it suffices to show that the a.s. connectedness of C(w,,) implies the a.s. connectedness
of C(wy, ) UC(w, ). To show this, it suffices to show that a.s., every line in w,, intersects
C(wy, ). To this end, for L € A(d, 1), define the event S(L) = {¢(L) NC(w,,) # 0}. Then
let

D = ﬂLEWu,S(L).

We will show that P[D¢] = 0 and we start by observing that

P[D] =P [Upen, S(L)] <E | Y I(S(L))
Lewu/
For clarity, we let E“+ and E““1 denote expectation with respect to the processes w,, and

wy, respectively, and we will let E denote expectation with respect to w,s Uw,,. We use
similar notation for probability. We then have that,

E| > I(S(L))

Lew,,

=B B | ) I(S(L))

— B | 3 P [S(L) Jwu] | =B | 3T B [S(L)]| =0,

where we use the independence between w,, and w,, in the penultimate equality and that
P[S(L)‘] = 0 which follows from (4.1)). This finishes the proof of the proposition.

The aim of the rest of this section is to prove the following proposition, which is a
part of Theorem

Proposition 4.2. For any d > 2,

ue(d) < oo.

12



In order to prove Proposition [£.2] we will need some preliminary results and termi-
nology. Recall the definition of £} for A C H? and the definitions of a(L) and p(L), all
from Section . Using the line process w, we define a point process 7 in H? as follows:

T=7(w) = Z Sa(L)-

Lew

In other words, 7 is the point process induced by the points that minimize the distance
between the origin and the lines of w. We observe that since w is a Poisson process,
it follows that 7 is also a Poisson process (albeit inhomogeneous). We will consider
a percolation model with balls in place of cylinders, using 7 as the underlying point
process. Our aim is to prove that )V does not percolate for u < oo large enough by
analyzing this latter model. For this, we will need Lemma 4.4] which provides a uniform
bound (in z € HY) of the probability that a point of 7 falls in the ball of radius 1/2
centered at z € H®. Before that, we present the following lemma, which will be useful on
several occasions.

Lemma 4.3. There exists a set D of points in H? with the following properties:
1. dy(z,D) < 1/2 for all z € H.
2. Ifx,y € D and x # y, then dy(x,y) > 1/2.

Furthermore, for any such set, there exist constants 0 < c¢1(d) < ca(d) < oo so that for
any x € HY, and r > 1,

c1(d)vg(B(o,7)) < |DN B(x,r)| < ca(d)vg(B(o,r + 1)). (4.2)

Proof. We give an explicit construction of the set D. First let D; = {o} and E; =
{x € H? : dy(o,z) = 1/2}, and define Dy = D; U {x;} where x; is any point in E.
Inductively, having defined D,,, we let E, = {z € H? : dy(D,,z) = 1/2} and define
D1 = D, U{x,} where x, is any point in F, such that dy(o,z,) = dg(o, E,) which
exists by compactness of the set E,,. Finally we let D = U, D,,. By construction, any
two points in D will then satisfy condition 2. Assume now that there exists a point z € H?
such that dg(z, D) > 1/2, and let m be any integer such that dg (o, x,,) > dg(o, z). Since
di(z, D) > dg(z, D) > 1/2 we have that

dy <z, U B(m,l/Z)) > 0. (4.3)

Let 5. be the line segment from o to z, and observe that since o € U ., B(w,1/2), there
must be some point s = s(F,,, z) belonging to S, N E,,. Because of (4.3)), we see that for
some € > 0, we have that dy (o, 2) = dy(o,s) + € and so we get that

dy(o,z) =dy(o,8) +€>dy(o, Ep) + € =dy(o, ) + € > dg(o, ),

leading to a contradiction.
We now turn to (4.2) and start with the upper bound. Let y,...,yx be an enu-
meration of D N B(z,r). By construction, the balls B(yx, 1/5) are all disjoint, and

13
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so Nvy(B(0,1/5)) < wva(B(o,r + 1)) from which the upper bound follows with ¢, =

1/v4(B(0,1/5)).
For the lower bound, it suffices to observe that from the construction we have that

B(o,r) C | B(yx, 1),

sothat N > v4(B(o,r))/va(B(o,1)). Hence, the lower bound follows with ¢; = 1/v4(B(0,1)).
U

pointbound| Lemma 4.4. There is a constant c(d) > 0 such that for any z € H¢,

ﬂd,l(ﬁg(m/z)) > c

Proof. We first claim that there is a constant ¢; = ¢;(d) € (0, 00) such that for any r > 0,
the shell B(o,r +1/4)\ B(o, (r —1/4)*%) can be covered by at most N, = [c;e!®"Y"] balls
of radius 1/2 centered in dB(o,r). For this, we observe that by modifying the proof of
Lemma we can obtain a set of points £ C H? with the properties that d(z, E) < 1/4
for all x € H and |E N B(o,r +1/2)| < cvy(B(o,r + 3/2)) for some constant ¢ < oo and
all r > 1. Let B, = EnN (B(o,r +1/2) \ B(o, (r —1/2)%). Since d(x, E) < 1/4 for all
r € H? we have
B(o,r +1/4)\ B(o, (r — 1/4)") ¢ | J Bz, 1/4).

IEET

For x € E, let 2’ be the point on dB(0, r) minimizing the distance between x and dB(o, r),
and let E! C dB(o,r) denote the collection of all such z’. Since d(z,2") < 1/4 we have
B(z,1/4) C B(a',1/2). Hence

B(o,r + 1/4)\ B(o,(r — 1/4)") C | ] B(2',1/2).

2/ €l

The claim follows, since |E.| < |E N B(o,r + 1/2)| < cvg(B(o,7 + 3/2)) < celd=1r,
Now fix z € H? and let r := d (0, z). The p4;-measure of lines that have their closest
point to the origin inside the shell B(o,r + 1/4) \ B(o, (r — 1/4)") is given by

Md,l(ﬁB(o,r+1/4) \ EB(O,(T—1/4)+)) (44)
= l’[’d,l(/CB(O,T+1/4)) - Md71(£B(O’(T_1/4)+))
= C(d)(Sinhd_l(T + 1/4) _ Sinhd_l((r . 1/4>+) Z C/(d) e(d*I)T’

where the second equality uses (2.5) with C(d) = (d — 1)/sinh® *(1). Let (x;)Y7, be a
collection of points in dB(o, ) such that

B(o,r+1/4)\ B(o,(r — 1/4)") c UY B(x;,1/2). (4.5)
From (4.4) and (4.5) we obtain

N,
O 3 has L 17m) = Mot (Cfiay) (16)

i=1
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where we used that p,;; is invariant under rotations in the last equality. From (4.6 we
conclude that
Md,l(‘cl—;(z,lﬂ)) > C'(d)e!™ V" /N, > ¢(d) > 0,

finishing the proof of the lemma.

p.pbunique| Proposition 4.5. For any d > 2, the set V' does not percolate if u is large enough.

Proof. The proof follows the proof of Lemma 6.5 in [4] quite closely. Let

W= <U B(m,l))c.

TET

Then it is clear that W D V so it suffices to show that VW does not percolate when u is
large.

For z € H? let Q(z) be the event that z is within distance 1/2 from W. Then Q(z)
is determined by 7N B(z,3/2) so that Q(z) and Q(z’) are independent if dy(z,2") > 3.
Let A be the event that o belongs to an infinite component of W. If A occurs, then there
exists an infinite continuous curve vy : [0,00) — W with the properties that v(0) = o
and dg(o,7(t)) — 0o as t — oo. Let tg = 0 and yo = o, and for k£ > 1 let inductively
tr = sup{t : dg(y(t),yx—1) = 6} and yp = (tx). For each k, let y, be a point in
D which minimizes the distance to y,. By definition dy(y;,yx) > 6 if j # k, and
since dg(y;,y;) < 1/2 and dy(yr,y,) < 1/2, we get du(y),y,) > 5 if j # k. Since
dg (Y Yr+1) = 6 we also have dg(y;,,y;,,,) < 7. Observe that since y, € W, the event

Q(y,.) occurs.
Let D be as in Lemma[£.3] and let X,, be the set of sequences xy, ..., x,, of points in D

such that dy(o0,z0) < 1/2, dy(xp, xpy1) < 7 and dy(xj, x5) > 5 if j # k. Furthermore,
let N,, denote the number of such sequences. We have that

PAI< Y PIQU) NN Q) (4.7

and that
e.AQeq?2
N, <sup{|DN B(z,7)|"" : z e H} < c (4.8)

for some constant ¢(d) < oo. By independence,

|2-AQeq2]
PlQ(20) N .. N Q)] = T, PlQ(ay)]: (4.9)
>

Observe that if 7(B(z,1/2)) > 1, then B(z,1/2) C W¢°. Hence we have

P[Q(2)] = P[B(z,1/2) N W # 0] (4.10)
< P[T(B(Z, 1/2)) = ()] = efu,ud,l(l:;(zg/z)) < e—uc(d)’

where the last inequality follows from Lemma 1.4l From ({.7), (£.8), (4.9), and (4.10)

it follows that
P[A] < (ci(d)e D) — 0. (4.11) [e.Aprobupp
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as n — oo if u < oo is large enough. We conclude that P[A] = 0 for u large enough but
finite. 0

We can now prove Proposition [4.2]

Proof of Proposition If C is disconnected, then it consists of more than one
infinite connected component. Since any two disjoint infinite components of C must be
separated by some infinite component of V, we get that the disconnectedness of C implies
that V percolates. According to Proposition , there is no percolation in V when u is
large enough. Hence C is connected when w is large enough.

5 Proof of Theorem [1.4.

Before we can prove Theorem [[.4], we will need to do some preliminary work. To that
end, let {Ck,n}nZO,—lngn be defined by lettlng Co0 = Cp1 = C11 = 1 and C_1n = 0 for
every n and then inductively for every 0 < k& < n letting

n—1

Ckn = Z Cln—1, (5.1) |eqn:cattri

l=k—-1

where we define ¢,,41, = 0. Note that by this definition, ¢;, = cx—1n—1 + Ck+1,,. These
numbers constitute (a version) of the Catalan triangle, and it is easy to verify that

C2n—=k)(E+1) k+1(2n—k)
T )+ ) el

52)

for every n and 0 < k < n. This follows by using that if (5.2)) holds for c¢x_;,-1 and
Ck+1.n, We get that

n

Ckn = Ck—1,n—1 + Ck+1,n

@n—k—Dk  (2n—k—1)(k+2)

(n — k)n! (n—Fk—1)!(n+1)!
Cn—k-Dk(n+1)+2n—k—-1k+2)(n—k)
B (n— k) (n+1)!
C@Cn—k-D2kn—k+2n—k) (©2n—k)l(k+1)

(n—k)!(n+1)! S (n—k)!(n+ 1)

By an induction argument, we see that (5.2]) holds for every 0 < k < n.
Consider the following sequence {g,(x)},>o of functions such that g, : R* — R* for
every n. Let go(z) = 1, and define g;(x), g2(x), . .. inductively by letting

g1 () = / 9n(y)dy + / e Y gn(y)dy, (5.3)
0 T

for every n > 1.
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op:fcniter| Proposition 5.1. With definitions as above, we have that

contbranch

gn($) = ch,ny-
k=0
Proof. We start by noting that
g1(z) = / ldy + ex/ e Vdy = x +1,
0 T

and since ¢ 1 = ¢p; = 1 the statement holds for n = 1. Assume therefore that it holds
for n — 1 and observe that with c_;,, =0,

gn(2) / o (y)dy + ¢ / gnr(y)edy
0 T

x k oo .k
¥ z Yy
/0 k!dy+e /x k!e dy)

By using (5.1)), we conclude the proof.

Our next result provides a link between the particle process ( defined in the intro-
duction, and the functions g,(x). Recall the interpretation that a particle at position
Zyn = x, independently gives rise to new particles according to a Poisson process with
intensity measure du, = I(y > 0)ue*(y*x)+dy, so that in particular the entire process is
restricted to R*. Recall also the definition of X fa,p 10 (11.4).

Proposition 5.2. Let
Fo(R) = E[X[g pl-

For any u < oo, F,,(R) is differentiable with respect to R, and we have that with f,(R) :=
FL(R),

n—1 Rk
fn(R) =u" Z Ck,nflﬁ = u"gnfl(R),
k=0

for every n > 1.

Proof of Proposition We will prove the statement by induction, and so we start
by noting that
Fi(R) = E[X{ g] = uR,
which follows since Z; g is of type 0. Therefore, the statement holds for n = 1.
Assume now that the statement holds for some fixed n > 1. Let R,AR > 0 and
consider

Fopi(R+AR) — Foi(R) = E[X{H;HAR}]'

17



Any particle in generation n of type smaller than R gives rise to individuals in [R, R+ AR)
(in generation n+ 1) at rate u. Furthermore, any individual of type « € [R, R+ AR)] gives
rise to individuals in [R, R+ AR] at most at rate u while individuals of type x > R+ AR
produce individuals in [R, R + AR] at rate at most ue®T28=% We therefore get the
following upper bound

EX[i pan) < AR (E[X bream] + D EX(ani/v parsgnmle N) , (54)
k=0

where N is an arbitrary number. By assumption, F,(R) is differentiable, and by the
mean value theorem,

n fa(R+AR+ (k+1)/N)
E[X[R+AR+k/N,R+AR+(k+1)/N]] = N )

since f,(x) is increasing. Thus, we conclude from (5.4)) that

E[XG%+}15+AR]]
A k+1)/N
N—oo — N
N
<limsupuAR <Fn (R+ AR) + f" R+AR; (y+1)/N) —(y—l)/Ndy)
N—o0
—hmsupuAR(FnR—i—AR —i—el/N/ fo(R+AR+ 24 1/N)e” )
N—o0
:uAR(F (R+AR) + / fo(R+ AR+ 2)e *dz )

by the dominated convergence theorem. Hence, we conclude that

lim sup Fri(R+ AR) Foia(F) (5.5)

AR—0
< /fnR+z —d )—u</ folz dz—l—/ falz RZdz)

again by the dominated convergence theorem.
Similarly, we get the following lower bound

EX[ 5 ar) (5.6)

N—oo

> vARliminf <E[X% R+ ZE Xikar/n, R+(k+1)/N]]6_(k+1)/N>

N
r R / LSRR PR

:uAR( (R) + /fnR+z g >

18
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> uARhm mf <Fn Z JulB+ k/N) (k-i-l)/N)
)+

eqn:indUB



upperbound

which together with ({5.5)) gives us

A —F, R oo B

Thus, we conclude that F,1(R) is differentiable and that

R 00
fri1(R) = u™t! (/0 Gn-1(2)dz —|—/ gnl(z)eRZdz) =u" g, (R),

R

where the last equality follows from (5.3). o

Remarks: The proof shows that for u = 1, the functions f,(z) = F/(x) satisfies (5.3)),
which is of course why is introduced in the first place.

For future reference, we observe that F,(R) in fact depends on u, and we sometimes
stress this by writing F, (R, u). Furthermore, it is easy to see that for any 0 < u < oo,
we have that F,(R,u) = u"F,(R, 1) for every n > 1.

We have the following result
Proposition 5.3. Let u < 1/4, then for every x > 0,

64ux

ni:;fn(di) = T

Proof. By Propositions [5.1] and

Y falz) =D ugaa(x) = u g (w) (5.7)
n=1 n=1 n=0
"kl k! "
n=0 k=0 k=0 n=~k

Furthermore, by using that (’T’L‘) is increasing in m > n, we see that

k1

2n
2n — k 2n 2n " :
=i () = () =2 () = 59
Combining (5.7) and (5.8]), we see that for u < 1/4,

if< ) < ZOO b & (4u)" U = (dux)* . pAuz 59) . .
n\¥) = __4L§£: u)y = § : = ) . e.fupperbo
n=1 k=0 k‘ n=k 11— 4U k=0 k' 1-— 4U II

finishing the proof.

Remark: As pointed out to us by an anonymous referee, a variant of Proposition [5.3
can be proved along the following lines. Let T be the integral operator defined by

T(g) = /0 xg(y)dy + /x N e g(y)dy.
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It is easy to check that g(z) = (z + 2)e™/? is an eigenfunction of T satisfying T'(g) = 4g¢.
Thus, since go(x) = 1 < g(x) we get that g1 = T(g0) < T(g9) = 4g, and iterating we
see that g,.1 = T(g,) < T(4"g) = 4"*1g. This can then be used in conjunction with
Proposition to prove the desired result.

The justification for obtaining and using the explicit forms of g,, f,, and F}, is twofold.
Firstly, these forms will be convenient when proving the second part of Theorem and
also when proving Lemmal[7.1]below. Secondly, we believe that the infinite type branching
process ( is of independent interest, and therefore a detailed analysis is intrinsically of
value.

We can now prove Theorem [I.4]
Proof of Theorem [1.4. We have that

Rr) = [ @

so that
o} o] R
> Fu(R) :Z/ fol)d.
n=1 n=1 0

Furthermore, for u < 1/4, we can use Proposition and the dominated convergence
theorem to conclude that

dux 4quR

iF(R)</R A
B R T T TR

We can now use Propositions [5.1 and [5.2] to get that

R R n k
Fu(R) = w1 [ gu(a)do = ™' [ 3" e, rda

n Rk+1 unJrl m un+14n
_ ,ntl n—> n+1 nR:— R>__—_— ~ R
B %C’“’ CES n+1(n) = 2n+1)2"

by using that 2(n + 1)(2:) > 21220 (21”) = 4™ which follows since [ = n maximizes (21" )

We see that if v > 1/4, the right hand side diverges, and so the statement follows.

6 Proof of u.(d) > 0.

The aim of this section is to prove the lower bound of Theorem [I.I, We will do this by
establishing a link between the cylinder process w and the particle process of Section [f
As an intermediate step, we will in Section [6.1] consider particle processes with offspring
distributions that can be weakly bounded above by (. In Section [6.2] these new particle
processes and the cylinder process in H? will be compared. Thereafter, this link is used
in Section to obtain the required lower bound.
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subsec :mbp

6.1 Particle processes weakly dominated by (

Recall that du,(y) = l(yzo)ue_(’”_y)+ dy and suppose that (v,),cg+ is a family of measures
with the following property: there is a constant ¢ € (0,00) such that for all integers
k,1>0

sup vi((k,k+1]) <c inf p.((k k+ 1)), (6.1)

ze(ll+1] x€(l,141]

and moreover, v,({0}) = 0 for all x > 0. This last assumption is made only for con-
venience; if one allows the measures to have an atom at 0 what follows below can be
modified fairly easy to get similar conclusions. The particle processes that we consider
here are defined as the one in Theorem [I.4] but using v, as the offspring distribution
in place of u, for a particle of type x. Recall that we think of the position of a particle
in R* as being the type of that particle. Of course, we still assume that every particle
produces offspring independently. For this process, let X’g be the number of individuals
in generation n of type in D C R,. Furthermore let

Fo(R) = E[XF ]

Lemma 6.1. With c € (0,00) as in (6.1), we have that for every R € N

F,(R) < ¢"Fo(R).

Proof. Let R € N,. It suffices to show that with c as in (6.1]), and any integers n > 1
and k > 0, we have .
EX G prn] < " EXG ] (6.2)
Since F,(0) = F,(0) = 0, the claim of the lemma will then follow by summing the two
sides of (6.2]) from k =0 to k = R — 1. We proceed by induction in n. For any k € N we
have that

N
E[X (o pn] = vol(k k+1]) < cpo((k,k +1]) = cB[X( 1y

so that (6.2) holds for n = 1. Assume therefore that (6.2)) holds for some n > 1 and every
k > 0. Let Y}", denote the number of individuals in generation n of type in (k, k+ 1] with
parents of type in (I,1 + 1]. We have

B[X ()] (6.3)
= E[Y/knfq] < Z sup  vy((k, k + 1])E[X(7,1+1]]
—0 —0 ze(l,141]
- : n n n n
< Z c mel(znzfﬂ] pa((k, ke + 1])e E[X(l,l—l-l}] <c +1]E[X(k—,~_k1+1}]‘

This finishes the proof of the lemma.
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6.2 The independent cylinder process

subsec:icp

We now turn to the independent cylinder process discussed in the introduction. We
start by defining the process itself, and the coupling with the ordinary line process w.
Thereafter we establish a link between our independent cylinder process and the particle
process studied in Section [6.1]

Formally, we define the independent cylinder process as follows. Let w, (wkn)i5,—; be
an i.i.d. collection of Poisson line processes with intensity ujiq ;. We use w to define C(w).
Fix any (deterministic) line L; such that o € Ly o. This is the single line of generation
0. Let

n'={Lew:c(L)Nc(Liy) # 0}

Thus 7' is simply the collection of lines in w such that the corresponding cylinders inter-
sect ¢(Ly ). Recall the definition of p(L) for L € A(d, 1) from Section[2.2] Let Ly, Loy, . ..
be the enumeration of the lines in n' satisfying p(Ly1) < p(Ljs11) for every k > 1. As
when we defined the particle process ( in the introduction, the particular choice of enu-
meration is somewhat arbitrary. Define

771’2 = {L < W\ﬁl . C(L)QC<L1’1> 7£ @}U{L € Wi, - C(L)QC(L1,1> 7£ (Z), C(L)ﬂC(LLo) # @}

The first set of lines corresponds to the cylinders in w that intersect ¢(L;;) but are
not included in the definition of ' (i.e. intersect ¢(L1)). The second set of lines is an
independent copy of the set of lines in w that intersects both ¢(L; ) and ¢(Ly ;). Thus, we
see that n%? and n! are created in the same way, i.e. by considering the set of cylinders
of a Poisson cylinder process intersecting ¢(L; 1) and ¢(L; o) respectively. For any k& > 1,
let

N2 i={Lew\ (0" UZ) 1") s (L) Ne(Lya) # 0}
U{L S W1 - C(L) N C(Lk’l) 7é @, C(L) N (C(LLo) Ufz_ll C(Llyl)) 7£ @}
We think of 7?2 as being created from w where w has not already been used, and from wy, ;

where w has been used. From this construction it is obvious that given n!, the sequence
n'2 1?2, ... is independent. We let

772 — Uzo:1nk27

and let Ly o, Los, ... be the enumeration of the lines in n? satisfying p(L12) < p(La2) <
---. These are the lines belonging to generation 2.
We proceed in the obvious way, defining 7" and n™ for k,n > 1. Finally, let

n-= U;L.Ozlnnu

and

Co(n) = ¢(L1y) U ¢(L). (6.4) |eqn:defCOe

Len

Consider the set ¢(Lq ) UC(w), and define Cy(w) C ¢(Lq1p) UC(w) to be the maximally
connected component of the origin. By our construction,

Co(w) C Co(n). (6.5) |eqn:COcoup
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Indeed, any cylinder in Cy(w) intersecting L; is by definition in 7', and in general, any
cylinder in Cy(w) separated from L; o by k other cylinders will belong to n**+?.

From 7, a particle process ( is induced in the following way. With Ly ,,, Ly, ... being
the enumeration of n" satisfying p(L1,) < p(Lan) < -+, we let Zy, = Zpn(Liy) =
p(Ly.y) for every k = 1,2, . ... Furthermore, (*" = {Z,,.(Li,) : Li,, € 7"}, and of course
(" = Upe, ", Since given 1", the sequence nt" n>m 1 s independent, it follows
that ¢Lm+t (2741 are independent given (". Therefore, ¢ = (¢")%°, has the desired
independence properties. We note the similarities between ¢ and ¢, and that the only
essential difference lies in the offspring distributions, which we address next.

Fix some L, € n" and consider an offspring L € n®"+1 If L is at distance between
[ and [ + 1 from the origin, then this corresponds to an offspring Z € (*"*! of Z,,, such
that Z € (I,1 + 1]. Furthermore, the expected number of offspring (of Ly,) belonging
t0 Lot1) \ Lo equals upig, (EC(LM@ N (LB(o+1) \EB(OJ))) , and so we see that the
particle process  can be described using the intensity measures {7, },>0 where

Tx((l, [+ 1]) = U4, (‘Cc(Lm,2) N (EB(o,l+1) \ﬁB(o,l))) ) (6-6)

with L, satisfying * = dg(o, L;). Our next result will be used to prove that {7,}.>0
satisfies (6.1 for some ¢ < oco.

Lemma 6.2. Let x € R and L € A(d,1) be such that dy(o,L) = x. There exists a
constant C(d) € (0,00) such that for any k > 0,

11 (Lez,2) N (Laors+1) \ LBory)) < Cexp(—(d —1)(z —k)*).

Proof. Fix k € N. Suppose that L = {y(t) : —oo <t < oo} where the parametriza-
tion of v is chosen to be unit speed and so that dy(o, L) = dy(0,7(0)). For i € Z let
y; = (i) and B; = B(y;,3). Then ¢(L,2) C UB; since any point in ¢(L,2) is at distance
at most 2 from L, and any point in L is at distance at most 1/2 from some y;. We now
claim that

dH(0> yi+1) - dH(07 yZ) > (67)

for every ¢ > 0, and some constant ¢; > 0. To see this, assume that ¢ > 0, and observe

that by (22,
d(0,5;) = cosh™*(cosh(x) cosh(7)),

since the angle between L and the geodesic from o to L is 7/2. Equivalently, we get that

di(0,y;) = log (cosh(x) cosh(i) + \/coshQ(x) cosh?(i) — 1) :
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Hence,

dp (0, yit1) — du (0, y;)
cosh(x) cosh(i + 1) + \/coshQ(x) cosh?(i +1) — 1

o cosh(z) cosh (i) + 1 cosh? (z) cosh?(i) — 1
o cosh(x) cosh(i) cosh(1) + y/cosh? () cosh?(i) cosh?(1) — 1
cosh(z) cosh(i) + \/cosh?(x) cosh?(i) — 1
o cosh(x) cosh(i) cosh(1) + y/cosh? (x) cosh?(i) cosh?(1) — cosh?(1)
cosh(x) cosh(i) + y/cosh? (x) cosh? (i) — 1
= log(cosh(1)),

where we use that cosh(i + 1) > cosh() cosh(1) which holds since i > 0. Hence, (/6.7))
follows with ¢; = log(cosh(1)).

Assume first that &k < . From (6.7)), we get that d(y;,0) > x + ¢1]¢| for every i using
symmetry. We get that

1a.1(Lez.2) N (Loox+1) \ LBow))
< pai (Ler,zy N (»CB(o,kJrl))) < Z ta1 (L, N LBok+1))

i€Z
<> Cexp(—(d = 1)(z + c1]i| — k) < C'exp(—(d — 1)(z — k),
icZ
where the penultimate inequality follows from Lemma [3.4, Now assume instead that
x < k. Let p=inf{|i| : dg(o,y;) > k — 3}. Using the union bound and that pq;(Lp, N
(LBok+1) \ LBox))) = 0 when |i| < p, we get
11 (Lez.2) N (Loor+1) \ LBow))

< Z ,ud,l(‘CBi N (EB(o,k+1) \ ‘CB(ka))>

iet
<2 Z a1 (Le, N Leokt1)) < 2 Z cexp(—(d —1)(c1(i —p))) < C,
i=p i=p

where again we use Lemma [3.4]

Let -
Z{&R] = Z[(Zk,n < R)7
k=1

and let H,(R,u) = IE[Z[%? r1]- It is not hard to show that, similarly to the observation after
the proof of Proposition H,(R,u) = u"H,(R,1). This follows from the Poissonian
nature of the process.

We can now use Lemma to show the following result (recall the definition of
F,(R) = F,(R,u) from Section [j)).
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Lemma 6.3. There is a constant c(d) € (0,00) such that for every R € N, and 0 <

u < 00,
H,(R,u) < c(d)"F,(R,u).

Proof. Since H,(R,u) = E[Z[% R}], and the particle process ¢ uses {7, }.>0 as intensity
measures, it suffices in view of Lemma [6.1] to show that there is a constant ¢ < co such
that for every integer k,1 > 0,

sup 7((L,L+1]) <c inf . ((l, 1+ 1]). 6.8
s m((LI ) St (414 1) (©5)

From Lemma 6.2, we have
sup  7((1,1+1]) (6.9)
x€(k,k+1]
<cu sup exp(—(d—1)(x—1") < duexp(—(d—1)(k—-01").
ze(k,k+1]

On the other hand

I+1
inf 1]) = inf —(z—y)* > —(k=0D%). (6.1
Lt @) = [ el =) ) dy > cuesp(=(k=1)). (610

Equations and ((6.10)) establishes , and the lemma follows.

In what follows, we drop the explicit dependence on u from the notation and simply write
H,(R) and F,(R).

6.3 Proof of Theorem [1.1]

We now have all the ingredients to prove our main result.
Proof of Theorem [1.1l
Using Lemma and Proposition , we only need to prove that u.(d) > 0. To that
end, let

V(R) =E[{L € Co(w) : LN B(o, R) # 0}],
that is, V(R) is the expected number of cylinders in Cy(w) which intersect B(o, R).
Recall that Cy(w) is the maximally connected component of ¢(L;o) U C(w), and recall
also the definition of Cy(n) from (6.4). By we can couple Co(w) and Cy(n) so that
Co(w) C Co(n), and so we have as in the proof of Theorem [L.4] that for u < 1/(4c) with
¢ = ¢(d) as in Lemma [6.3]

V(R) <) Hu(R) <Y ¢"Fy(R) < %

n=0

by using Lemma [6.3]in the second inequality.
Hence, we see that when 0 < u < 1/(4c), V(R) grows at most exponentially in R at
a rate which is strictly smaller than 1. On the other hand, we have that

E[|L € w: LN B(o,R)|] = upa1(Lpor) = Cu sinhd’l(R),

by (2.5). This grows exponentially at rate (d — 1)R and so we see that with probability
one, Cy(w) is a strict subset of ¢(L; ) UC(w). We conclude that C(w) is a.s. not connected
for this choice of u.
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7 Proof of Theorem [1.2.

Similar to the notation of Section @ we let A &5 B denote the event that there exists
1 <1 < m and a sequence of cylinders ¢!, -+, ¢! € w such that Anc¢! # 0, ¢! N #
0,...,cdN B # 0. That is, the sequence ¢!, --- , ¢/ connects A to B in [ steps. We observe
that {A < B} = {4 & B}.

We start with the following lemma.

Lemma 7.1. There exists a constant D(m) < oo (depending only on u and m) such that
for any x,y € HY we have that

P[B(z,1) & B(y,1)] < D(m)dy(z,y)™e @ Ddu(@y), (7.1)

Proof. Assume without loss of generality that x = o and let dy(o,y) = R. As in
Section [6.2] the expected number of cylinders in 7 up to generation m that intersect the
ball B(o, R) is bounded by

> Hy(R) <> c(d)"Fu(R)
n=1 n=1
m R m R
= Z c(d)” fo(x)dx = Z c(d)"u"/ Gn—1(x)dx
n=1 0 n=1 0
m Rn—1 SL’k m rRn—1
= Zc(d)"u”/ Z Ck n,lydw < Zc(d)"u”(M"/ Z Fdx
n=1 0 k=0 n=1 0 k=0
= c(d)"urCary = > ¢ > (4cu)"” < D(m)R™,
n=1 k=1 k=1 n=k

for some constant D(m) < oo.

There exists a collection Bg of balls of radius 1/4 with centers in 0B(o, R) such that
|Bg| > ce!"DE for some ¢ > 0 and such that any cylinder intersecting B(o, R) intersects
at most ¢(d) < oo balls in Bg. To construct such a collection B, we consider first D as
in Lemma[1.3] Let Gg = DN (B(o, R+3/2)\ B(o, (R—1/2)")). By a slight modification
of the lower bound in (#.2)), we get that |Gr| > ce!® VD /v (B(0,1/2)) = celdVDE  For
x € Gg, let 2’ be defined as the point on dB(o, R) such that 2’ minimizes the distance
to 0B(o, R), and let G'; be the collection of all such z’. Obviously, the collection of
balls Br := {B(z,1/4)}seqr, satisfies |Bg| > 'el™ D% Now let L be a line intersecting
B(o, R+5/4) (only cylinders centered around such lines might intersect some ball in Bg).
Using (6.7)), there is a universal constant ¢ < co and two points z1, x5 € dB(o, R) (these
points depend on L) such that ¢(L) N (B(o, R+ 1/4) \ B(o,(R —1/4)")) C B(x1,¢) U
B(x, c2). Hence the number of balls from Bp intersecting ¢(L) is bounded by the number
of points in D N (B(x1, ¢y +2) U B(xg, ce +2)). This in turn is bounded by some constant
c3(d) < 00, by the upper bound of ([4.2). Hence, the existence of the B is verified.

Using Bpr, we see that the probability that a fixed ball at distance R from o will be
intersected by any cylinder in 7 of generation less than or equal to m is bounded by

€3 D(m)R™
Bl 2} Ho(R) < =i
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by possibly increasing the value of D(m).
The statement follows by using that Cy(w) C Cy(n) and noting that any cylinder that
intersects B(o,1) must also intersect the cylinder ¢(L; ).

Proof of Theorem [1.2] Let m € N, and fix € € (0,1). Using Lemma [7.1] we
can choose r = r(m,e) < oo so large that the probability that any two fixed cylinders
separated by distance r will be connected in at most m steps is less than €. Indeed, take r
so large that the probability that B(o,1) and B(y, 1) (where y € 0B(o0,7)) are connected
in at most m + 2 steps is less than e. Consider then two cylinders ¢, ¢s separated by
distance r, and assume without loss of generality that ¢;NB(o0,1) # () and coNB(y, 1) # 0.
Then, if the probability that ¢q, ¢; are connected in at most m steps is larger than ¢, this
would lead to a contradiction.

For lines Ly, Ly € A(d,1), let E,, (L1, Ly) be the event that ¢(Ly) and c¢(Ly) are
connected in at most m steps. Define the event

H={ Y I(BEa(Li, L)) >1,

2
(L1 ,Lz)ew;t

where the union is over all 2-tuples of distinct lines in w. In words, H is the event that
there is at least one pair of lines in w whose corresponding cylinders are not connected in
at most m steps. We now let EL1L2 denote the expectation with respect to w+ &z, +dz,.
Using the Slivnyak-Mecke formula ([I5] Corollary 3.2.3) we get that

E| Y I(EallyLo))

\Y
:l\D

(L1, Lz)ew
= u2/ / ELl L2 (L17 L2) )] lud71(dLl)ud7l(dL2)
A(d A(d
A(d A(d
= u2/ / m(L1y La)¢) pta1(dLy) praq (dLs)
A(d A(d,1)
fue

/ H(dn (L, Ls) > 1)P (B (Ln, L)) pras (L1 )pias (dLs)
A

Y

Uu / / I(dH(Ll, Lg) 2 T)(l — e)ﬂd,l(dLl)Hd,l(dLZ)-
A(d,1) JA(d,1)

Obviously, the expression on the right hand side diverges for any 0 < u < oo, so that

E| Y I(BallyL))| =,

2
(L1,L2)€w¢

and from this, it follows that P[H] > 0. Since the event H is invariant under isometries
of HY, it follows from Proposition that P[H] = 1. Hence for any m € N, we have
P[diam(C) > m — 2] = 1, from which we conclude that P[diam(C) = oco] = 1.
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8 Proof of Proposition [1.3

In this section, we prove that when u < wu.(d), there are a.s. infinitely many connected
components in C. Let N(w) =the number of connected components in C.

Proof of Proposition Obviously, the event N(w) = k is invariant under isome-
tries of H? and so using Proposition 2.1} we have that for any u there is k = k(u) € NU{oo}
such that P[N(w) = k] = 1. Suppose u < u.(d) and suppose that 1 < k(u) < co. It is
not hard to show that there exist points yi, ..., yx € H? such that the event

A= {Uf_y; intersects all components of C(w)} N {w(Lp,1)) = 0}

1=

has positive probability.
Now let w; be the restriction of w to Lp(,1), and let w, be the restriction of w to
(LB(oy))¢- Since P[A] > 0, it follows that

B := {U¥_,y; intersects all components of C(w,)}
has positive probability. Define the event
C = {U"_y; € C(w1)} N{C(w,) is connected}.

It is easy to see that P[C] > 0 (indeed, w; might consist of k lines L,...,L; such that
¢(L;) contains o and y;). Since w; and wy are independent, it follows that B and C are
independent and hence P[B N C] > 0. The event B N C implies that N(w) = 1, whence
P[N(w) = 1] > 0 which contradicts P[N(w) = k] = 1. We conclude that N(w) € {1, 00},
and since u < u. by assumption, it follows that a.s. N(w) = co.
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