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Abstract

For n > 1 let X,, be a vector of n independent Bernoulli random
variables. We assume that X, consists of M “blocks” such that the
Bernoulli random variables in block ¢ have success probability p;. Here
M does not depend on n and the size of each block is essentially linear
in n. Let X, be a random vector having the conditional distribution
of X, conditioned on the total number of successes being at least kj,
where k, is also essentially linear in n. Define Y, similarly, but with
success probabilities ¢; > p;. We prove that the law of X, converges
weakly to a distribution that we can describe precisely. We then prove
that sup ]P(Xn < Yn) converges to a constant, where the supremum
is taken over all possible couplings of X,, and Y,. This constant is
expressed explicitly in terms of the parameters of the system.

MSC 2010: Primary 60E15, Secondary 60F05

1 Introduction and main results

Let X and Y be random vectors on R™ with respective laws p and v. We say
that X is stochastically dominated by Y, and write X <Y, if it is possible to
define random vectors U = (Uy,...,U,) and V = (V4,..., V) on a common
probability space such the laws of U and V' are equal to p and v, respectively,
and U < V (that is, U; <V, for all i € {1,...,n}) with probability 1. In
this case, we also write u < v. For instance, when X = (Xy,...,X,,) and
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Y = (Y1,....Y,) are vectors of n independent Bernoulli random variables
with success probabilities py, ..., p, and qq, ..., ga, respectively, and 0 < p; <
¢ <1lforie{l,...,n}, we have X <Y

In this paper, we consider the conditional laws of X and Y, conditioned
on the total number of successes being at least k, or sometimes also equal
to k, for an integer k. In this first section, we will state our main results and
provide some intuition. All proofs are deferred to later sections.

Domination issues concerning the conditional law of Bernoulli vectors
conditioned on having at least a certain number of successes have come up
in the literature a number of times. In [2] and [3], a simplest case has been
considered in which p; = p and ¢; = ¢ for some p < ¢. In [3], the conditional
domination is used as a tool in the study of random trees.

Here we study such domination issues in great detail and generality. The
Bernoulli vectors we consider have the property that the p; and ¢; take only
finitely many values, uniformly in the length n of the vectors. The question
about stochastic ordering of the corresponding conditional distributions gives
rise to a number of intriguing questions which, as it turns out, can actually
be answered. Our main result, Theorem 1.8, provides a complete answer to
the question with what maximal probability two such conditioned Bernoulli
vectors can be ordered in any coupling, when the length of the vectors tends
to infinity.

In Section 1.1, we will first discuss domination issues for finite vectors X
and Y as above. In order to deal with domination issues as the length n of the
vectors tends to infinity, it will be necessary to first discuss weak convergence
of the conditional distribution of a single vector. Section 1.2 introduces
the framework for dealing with vectors whose lengths tend to infinity, and
Section 1.3 discusses their weak convergence. Finally, Section 1.4 deals with
the asymptotic domination issue when n — oo.

1.1 Stochastic domination of finite vectors

As above, let X = (Xi,...,X,) and Y = (Y3,...,Y,) be vectors of in-
dependent Bernoulli random variables with success probabilities pq,...,p,
and ¢, ..., qn, respectively, where 0 < p; < ¢; < 1 for i € {1,...,n}. For
an event A, we shall denote by £(X|A) the conditional law of X given A.
Our first proposition states that the conditional law of the total number of
successes of X, conditioned on the event {d ", X; > k}, is stochastically
dominated by the conditional law of the total number of successes of Y.

Proposition 1.1. For all k € {0,1,...,n},
£(Z?:1 Xi| Z?:l X = k) = E(Z?:l Yi| Z?:l Y > k)



In general, the conditional law of the full vector X is not necessarily
stochastically dominated by the conditional law of the vector Y. For exam-
ple, consider the case n = 2, p; = ps = ¢ = p and ¢ = 1 — p for some p < %,
and k = 1. We then have

PX) =1 X1+ X, > 1) = ——,
2—p
_r
1—(1-pp
Hence, if p is small enough, then the conditional law of X is not stochastically
dominated by the conditional law of Y.

We would first like to study under which conditions we do have stochastic
ordering of the conditional laws of X and Y. For this, it turns out to be very
useful to look at the conditional laws of X and Y, conditioned on the total
number of successes being ezxactly equal to k, for an integer k. Note that if we
condition on the total number of successes being exactly equal to k, then the
conditional law of X is stochastically dominated by the conditional law of Y
if and only if the two conditional laws are equal. The following proposition
characterizes stochastic ordering of the conditional laws of X and Y in this
case. First we define, for i € {1,...,n},

P, =1|Y+Y,>1) =

pi 1—gq
1—pi a (

The 3; will play a crucial role in the domination issue throughout the paper.

Proposition 1.2. The following statements are equivalent:

(1) All B; (i € {1,...,n}) are equal;

(ii) L(X|> 0 Xi=k)=LY|> Yi=k) forallk € {0,1,...,n};
(iii) L(X|>" Xs=k) =LY |>,Yi=k) for some k€ {l,...,n—1}.

We will use this result to prove the next proposition, which gives a suffi-
cient condition under which the conditional law of X is stochastically dom-
inated by the conditional law of Y, in the case when we condition on the
total number of successes being at least k.

Proposition 1.3. If all 8; (i € {1,...,n}) are equal, then for all k €
{0,1,...,n},

LX|N X >k) LYY, Y > k).

The condition in this proposition is a sufficient condition, not a necessary
condition. For example, if n = 2, p; = py = %, G = % and ¢o = %, then
B1 # (2, but we do have stochastic ordering for all k& € {0, 1, 2}.
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1.2 Framework for asymptotic domination

Suppose that we now extend our Bernoulli random vectors X and Y to in-
finite sequences X1, Xo,... and Y7, Y5, ... of independent Bernoulli random
variables, which we assume to have only finitely many distinct success prob-
abilities. It then seems natural to let X,, and Y,, denote the n-dimensional
vectors (X1,...,X,) and (Y7,...,Y},), respectively, and consider the domi-
nation issue as n — oo, where we condition on the total number of successes
being at least k, = |an] for some fixed number o € (0, 1).

More precisely, with k,, as above, let X,, be a random vector having the
law £(X,| 32", X; > ky), and define ¥;, similarly. Proposition 1.3 gives a
sufficient condition under which X, is stochastically dominated by Y, for
each n > 1. If this condition is not fulfilled, however, we might still be able
to define random vectors U and V', with the same laws as X, and Y, on
a common probability space such that the probability that U < V is high
(perhaps even 1). We denote by

supP(X, < Y,) (2)

the supremum over all possible couplings (U, V) of (X,,Y,) of the prob-
ability that U < V. We want to study the asymptotic behaviour of this
quantity as n — oo.

As an example (and an appetizer for what is to come), consider the follow-
ing situation. For ¢ > 1 let the random variable X; have success probability p
for some p € (0, %) Fori > 1 odd or even let the random variable Y; have suc-
cess probability p or 1 — p, respectively. We will prove that sup P(Xn < f’n)
converges to a constant as n — oo (Theorem 1.8 below). It turns out that
there are three possible values of the limit, depending on the value of «a:

(i) If a < p, then supP(X, <Y,) — 1.
(i) If & = p, then sup P(X,, < Y;) — 8,
(iif) If @ > p, then sup P(X, < Y,) — 0.

In fact, to study the asymptotic domination issue, we will work in an even
more general framework, which we shall describe now. For every n > 1, X,
is a vector of n independent Bernoulli random variables. We assume that this
vector is organized in M “blocks”, such that all Bernoulli variables in block ¢
have the same success probability p;, for ¢ € {1,..., M}. Similarly, Y, is
a vector of n independent Bernoulli random variables with the exact same
block structure as X,,, but for Y,,, the success probability corresponding to
block i is g;, where 0 < p; < ¢; < 1 as before.
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For given n > 1 and i € {1,..., M}, we denote by m;, the size of block i,
where of course Zf\il m;, = n. In the example above, there were two blocks,
each containing (roughly) one half of the Bernoulli variables, and the size of
each block was increasing with n. In the general framework, we only assume
that the fractions m;,/n converge to some number a; € (0,1) as n — oo,
where Zf\il a; = 1. Similarly, in the example above we conditioned on the
total number of successes being at least k,, where k, = [an| for some fixed
a € (0,1). In the general framework, we only assume that we are given
a fixed sequence of integers k, such that 0 < k, < n for all n > 1 and
kn/n — o € (0,1) as n — 0.

In this general framework, let X,, be a random vector having the con-
ditional distribution of X,,, conditioned on the total number of successes
being at least k,,. Observe that given the number of successes in a particular
block, these successes are uniformly distributed within the block. Hence, the
distribution of X, is completely determined by the distribution of the M-
dimensional vector describing the numbers of successes per block. Therefore,
before we proceed to study the asymptotic behaviour of the quantity (2), we
shall first study the asymptotic behaviour of this M-dimensional vector.

1.3 Weak convergence

Consider the general framework introduced in the previous section. We de-
fine X, as the number of successes of the vector X,, in block ¢ and write
Y= Zf\il X, for the total number of successes in X,,. Then X, has a bi-
nomial distribution with parameters m;, and p; and, for fixed n, the Xj;, are
independent. In this section, we shall study the joint convergence in distri-
bution of the X, as n — oo, conditioned on {¥,, > k,}, and also conditioned
on {3, = k,}.

First we consider the case where we condition on {3, = k,}. We will
prove (Lemma 3.1 below) that the X, concentrate around the values ¢;,m;,,
where the ¢;, are determined by the system of equations

Cin _Di  _ Cn_Pj Vi,jge{l,...,M};
Cin 1= cin 1 —=p; (3)

M
Zizl CinMMip = kn-
We will show in Section 3 that the system (3) has a unique solution and that
Cin — € as n — 00,

for some ¢; strictly between 0 and 1. As we shall see, each component X,
is roughly normally distributed around the central value c¢;,m;,, with fluc-
tuations around this centre of the order /n. Hence, the proper scaling is
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obtained by looking at the M-dimensional vector

X — Xln — CinMin X2n — CopTlop XMn — CMnMMMn (4)
n = \/ﬁ s \/ﬁ ey \/ﬁ .

Since we condition on {3, = k,}, this vector is essentially an (M — 1)-
dimensional vector, taking only values in the hyperplane

S()I:{<Zl,...,ZM>ERM221+"'+2M:0}.

However, we want to view it as an M-dimensional vector, mainly because
when we later condition on {¥, > k,}, X, will no longer be restricted to
a hyperplane. One expects that the laws of the X, converge weakly to a
distribution which concentrates on Sy and is, therefore, singular with respect
to M-dimensional Lebesgue measure. To facilitate this, it is natural to define
a measure 14 on the Borel sets of RM through

v(+) = Xo(- N So), (5)

where \g denotes ((M — 1)-dimensional) Lebesgue measure on Sy, and to
identify the weak limit of the X, via a density with respect to vy. The
density of the weak limit is given by the function f: R — R defined by

1= 150 e (g ) ©)

Theorem 1.4. The laws L(X,|X, = k,) converge weakly to the measure
which has density f/ [ f dvy with respect to vy.

We now turn to the case where we condition on {¥,, > k,}. Our strategy
will be to first study the case where we condition on the event {%,, = k,, + ¢},
for ¢ > 0, and then sum over ¢. We will calculate the relevant range of ¢ to
sum over. In particular, we will show that for large enough ¢ the probability
P(3,, = k,+Y{) is so small, that these ¢ do not have a significant effect on the
conditional distribution of X',,. For k, sufficiently larger than (X,,), only ¢
of order o(y/n) are relevant, which leads to the following result:

Theorem 1.5. Ifa > Zf\il pic; or, more generally, (k, —TE(X,))//n — oo,
then the laws L(X |5, > k) also converge weakly to the measure which has
density f/ [ f dvy with respect to vy.

Finally, we consider the case where we condition on {X, > k,} with k,
below or around E(X,), that is, when (k, — E(X,))/v/n — K € [—00, ).
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An essential difference compared to the situation in Theorem 1.5, is that the
probabilities of the events {3, > k,} do not converge to 0 in this case, but
to a strictly positive constant. In this situation, the right vector to look at
is the M-dimensional vector

P .=

n

(Xm —pimin Xop — PaMmay, X — pMmMn)

VOV Vi

It follows from standard arguments that the unconditional laws of X® con-
verge weakly to a multivariate normal distribution with density h/ [ hdX
with respect to M-dimensional Lebesgue measure )\, where h: R® — R is
given by

If k,, stays sufficiently smaller than E(X,,), that is, when K = —o0o, then the
effect of conditioning vanishes in the limit, and the conditional laws of A
given {¥, > k,} converge weakly to the same limit as the unconditional
laws of X?. In general, if K € [—00,00), the conditional laws of X given
{¥, > k,} converge weakly to the measure which has, up to a normalizing
constant, density h restricted to the half-space

HK::{(Zl,...,ZM)E]R,MZ21+"'+ZM2K}. (8)

Theorem 1.6. If (k, — E(X,))/v/n — K for some K € [—00,00), then
the laws L(XP|E,, > k) converge weakly to the measure which has density
hlp,/ [hlg, d\ with respect to .

Remark 1.7. If (k, — E(X,))/+/n does not converge as n — oo and does not
diverge to either oo or —oo, then the laws L(X? |3, > k,) do not converge
weakly either. This follows from our results above by considering limits along
different subsequences of the k,,.

1.4 Asymptotic stochastic domination

Consider again the general framework for vectors X, and Y, introduced
in Section 1.2. Recall that we write X,, for a random vector having the
conditional distribution of the vector X,,, given that the total number of
successes is at least k,. Forn > 1 and ¢ € {1,..., M}, we let X, denote the
number of successes of X, in block i. We define Y, and Y}, analogously. We
want to study the asymptotic behaviour as n — oo of the quantity

sup P(X, < Y,),
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where the supremum is taken over all possible couplings of X, and Y.

Define §; for i € {1,..., M} as in (1). As a first observation, note that
if all §; are equal, then by Proposition 1.3 we have sup ]P(Xn < f’n) =1
for every n > 1. Otherwise, under certain conditions on the sequence k,,
sup ]P(Xn < f’;) will converge to a constant as n — oo, as we shall prove.

The intuitive picture behind this is as follows. Without conditioning,
X, )Y, for every n > 1. Now, as long as k, stays significantly smaller
than [E(X,), the effect of conditioning will vanish in the limit, and hence we
can expect that sup IP(X < Y) — 1 as n — oo. Suppose now that we
start making the k, larger. This will increase the number of successes X,
of the vector X, in each block 7, but as long as k, stays below the expected
total number of successes of Y,,, increasing k, will not change the numbers
of successes per block significantly for the vector Y.

At some point, when k, becomes large enough, there will be a block 7
such that Xm becomes roughly equal to ffm. We shall see that this happens
for k, “around” the value k,, defined by

_ PiMin
Z Di + ﬁmax( pi) ’

where [pax = max{f,...,Ou}. Therefore, the sequence k, will play a
key role in our main result. What will happen is that as long as k;, stays
significantly smaller than km Xin stays significantly smaller than Y, for each
block i, and hence supP(X, < Y,) — 1 as n — oo. For k, around kn
there is a “critical window” in which interesting things occur. Namely, when
(kn — kn)/+/1o converges to a finite constant K, sup P(X,, < Y,) converges
to a constant Pg which is strictly between 0 and 1. Finally, when k, is
sufficiently larger than k;n, there will always be a block ¢ such that X, 18
significantly larger than Y;,. Hence, sup P(X, < Y,) — 0 in this case.

Before we state our main theorem which makes this picture precise,
let us first define the non-trivial constant Px which occurs as the limit of
sup ]P(Xn < f/;) when £, is in the critical window. To this end, let

I := {ie{l,...,M}:ﬁizﬁmax}v

and define positive numbers a, b and ¢ by

CL2 _ Z ﬁmaxpi( pz az Z Qz . a“ (9&)

(pz + Bmax(]- - pz

el el
Brmaxpi(1 — pi)a
b= ; 9b
D) o o)
& =a®+ b (9¢)



As we shall see later, these numbers will come up as variances of certain
normal distributions. Let ®: R — (0,1) denote the distribution function of
the standard normal distribution. For K € R, define Px by

e e—72/2 @(M) _ (I)(K

Py = (10)
bK 1 K b
ac a a ac

where R = /K2 + ?log(c?/b?). It will be made clear in Section 4 where
these formulas for Px come from. We will show that Py is strictly between 0
and 1. In fact, it is possible to show that both expressions for Py are strictly
decreasing in K from 1 to 0, but we omit the (somewhat lengthy) derivation
of this fact here.

Theorem 1.8. If all §; (i € {1,...,M}) are equal, then we have that
supP(X,, <Y,) =1 for every n > 1. Otherwise, the following holds:

(i) If (k, — kn)/\/n — —00, then supP(X, <Y,) — 1.
(ii) If (k, — I%n)/\/ﬁ — K for some K € R, then supP(X, <Y,) — Px.
(iii) If (K, — kn)/\/m — o0, then sup P(X,, < Y,) — 0.

Remark 1.9. If §; # B; for some i # j, and (k,, — l%n)/\/ﬁ does not converge
as n — oo and does not diverge to either oo or —oo, then sup P(X, <Y,)
does not converge either. This follows from the strict monotonicity of Pk,
by considering the limits along different subsequences of the k,.

To demonstrate Theorem 1.8, recall the example from Section 1.2. Here
Buax = 1, ky =pn, I = {1} and a® = b2 = (1 —p). If o = p, then we have
that (k, — kn)/v/n — 0 as n — co. Hence, by Theorem 1.8, sup P(X, < Y,,)
converges to

0 o=2%/2 3

R (P(—2) —1/2) dz = -.

4
In fact, Theorem 1.8 shows that we can obtain any value between 0 and 1
for the limit by adding | K'v/n| successes to k,, for K € R.
Next we turn to the proofs of our results. Results in Section 1.1 are
proved in Section 2, results in Section 1.3 are proved in Section 3 and finally,
results in Section 1.4 are proved in Section 4.
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2 Stochastic domination of finite vectors

Let X = (X1,...,X,) and Y = (Y3,...,Y,) be vectors of independent
Bernoulli random variables with success probabilities py,...,p, and q1, ..., qn
respectively, where 0 < p; < ¢; < 1fori e {1,...,n}.

Suppose that p; = p for all i. Then > | X; has a binomial distribution
with parameters n and p. The quotient

PO, Xi=k+1) _n—k p
PO, Xi=k)  k+ll-p

is strictly increasing in p and strictly decreasing in k, and it is also easy to
see that
LOX|Y0, X = k) < L(X| Y, X, =k + 1).

The following two lemmas show that these two properties hold for general
success probabilities pq, ..., py.

Lemma 2.1. For k € {0,1,...,n — 1}, consider the quotients

CTTRCL X =h)

(11)

and

PR Xizk+1)
P>, X = F)
Both (11) and (12) are strictly increasing in p1, ..., py, for fized k, and strictly
decreasing in k for fived pi, ..., py.

(12)

Proof. We only give the proof for (11), since the proof for (12) is similar.
First we will prove that @} is strictly increasing in py, ..., p, for fixed k. By
symmetry, it suffices to show that @)} is strictly increasing in p;. We show
this by induction on n. The base case n = 1, k£ = 0 is immediate. Next note
that for n > 2 and k € {0,...,n — 1},

Qn _ P(Z?;ll Xi - k)pn =+ P(Z?;ll Xi =k+ 1)(1 - pn)
P X =k = D + P(C X = k)1 - )
_ Pt inl(l — Dn)
B pn/QZ:% + (1 - pn)7

which is strictly increasing in p; by the induction hypothesis (in the case
k=mn—1,use Q" =0, and in the case k = 0, use 1/Q}~| = 0).
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To prove that ()} is strictly decreasing in & for fixed py, ..., p,, note that

since QY is strictly increasing in p, for fixed k € {1,...,n — 2}, we have
0 o _ 0 Pt Q' (A—p)  1-Qy'/Qi
0< a Qk - 8 n—1 _ n—1 2"
Pn Pn pn/ k-1t (1 - p”) (pn/Qk_1 + (1 - pn))

Hence, Q7" < Q7. This argument applies for any n > 2. O

Let X* = (X7, ..., X¥) have the conditional law of X, conditioned on the
event {7 | X; = k}. Our next lemma gives an explicit coupling of the X*
in which they are ordered. The existence of such a coupling was already
proved in [1, Proposition 6.2], but our explicit construction is new and of
independent value. In our construction, we freely regard X* as a random
subset of {1,...,n} by identifying X* with {i € {1,...,n}: XF = 1}. For
any K C {1,...,n}, let {Xx = 1} denote the event {X; = 1 Vi € K}, and
for any I C {1,...,n} and j € {1,...,n}, define

1(j € L) n
Vid = > g DX =100, X =[] +1).

ret = PN

Lemma 2.2. For any I C {1, n} the collectzon {vi 1}j€{1 R\ 05 @

77777

.....

distribution as if it was pzcked according to X* 1. Therefore we can couple
the sequence { X*}1_| such that P(X!' < X2 < ... < X" 1< X") =1.

Proof. Throughout the proof, I, J, K and L denote subsets of {1,...,n},
and we simplify notation by writing ¥, := >""" | X;. First observe that
= Y, PXo=1]%,=I]+1) =1,
IT34 L: |L|=|T]+1

which proves that the {v;};¢; form a probability vector, since ;; > 0.
Next note that for any K containing 7,

P(Xx=1|%,=|K|) _P(X;=)P(S, = K] - 1)
P(Xi =115, = |K] - 1) P(X;=0) P(5, = |K)

Now fix J, and for j € J, let I = I(j,J) = J\ {j}. Then for j € J, by (13),

BB M) g 10D
L2 I

)
JP<XJ=1\2 - 1) 1 ¢ K)
) Z x| DX

(13)

P( Xy =1|%, = |I])

, K =1|%, =),
K |K|=l1]
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where the second equality follows upon writing K = L\ {j}, and using
IL\I|=|L\J|4+1=|K\J|+1=|J\ K| in the sum. Hence, by summing
first over j and then over K, we obtain

> i P(X =13, =) =P(X, =1|%, = |J)). O
jeJ
Corollary 2.3. For k €{0,1,...,n— 1} we have
LX[Y 0, Xi > k) 2 LX| >, X > k+1).

Proof. Using Lemma 2.2, we will construct random vectors U and V on
a common probability space such that U and V have the conditional dis-
tributions of X given {d ", X; > k} and X given {d ", X; > k + 1},
respectively, and U < V with probability 1.

First pick an integer m according to the conditional law of >""" | X; given
{370, X, > k}. If m > k+ 1, then pick U according to the conditional
law of X given {}> "  X; = m}, and set V. = U. If m = k, then first
pick an integer m + ¢ according to the conditional law of Y " | X; given
{35, X; > k+1}. Next, pick U and V such that U and V have the
conditional laws of X given {}"" | X; = m} and X given {>"" | X; = m+(},
respectively, and U < V. This is possible by Lemma 2.2. By construction,
U < V with probability 1, and a little computation shows that U and V
have the desired marginal distributions. O

Now we are in a position to prove Propositions 1.1, 1.2 and 1.3.

Proof of Proposition 1.1. By Lemma 2.1 we have that for £ € {1,...,n—k},

P, X, > k+0) i-[ zl 1X >k4j+1)

P>, Xi > k) > Xi > k+ )

is strictly increasing in py,...,p,. This implies that for ¢ € {1,...,n — k},
PO Xizk+0 X0 Xi>k) <P Yi>k+0]>0" Y, >k). O

Proof of Proposition 1.2. Let z,y € {0,1}" be such that Y » ,z; = » ¥y
and let k = Y x;. Write I = {i € {1,...,n}: z; = 1} and, likewise,

J={ie{l,...,n}: y; = 1}, and recall the definition (1) of ;. We have

) _ Hie[pi Hi¢[(1 — i)
) Hie]pi Hi¢J(1 —pi)
1

S e | iens BiP(Y =2 | 31, Yi=k) (14)
iel\J pi ieJ\I Di HieJ\I Bi ]P(Y =Y | Zi:l Y, = k)

12



Since |I| = |J| = k, we have |I \ J| = |J\ I|. Hence, (i) implies (ii),
and (ii) trivially implies (iii). To show that (iii) implies (i), suppose that
LX|Y 0!, X;=k) =LY|>,Yi=k)foragiven ke {l,...,n—1}. Let
i € {2,...,n} and let K be a subset of {2,...,n} \ {i} with exactly £k — 1
elements. Choosing [ = {1}UK and J = K U{i} in (14) yields §; = 8;. O

Proof of Proposition 1.3. By Proposition 1.2 and Lemma 2.2, we have for
m€{0,1,...,n}and £ € {0,1,...,n —m}

LIX|Y0 Xi=m) < LY, Yi=m+0).

Using this result and Proposition 1.1, we will construct random vectors U
and V on a common probability space such that U and V have the condi-
tional distributions of X given {}_" | X; > k} and Y given {> " | Y; > k},
respectively, and U < V with probability 1.

First, pick integers m and m + ¢ such that they have the conditional
laws of > 77 | X; given {>"  X; > k} and > " Y given {d Y > k},
respectively, and m < m + ¢ with probability 1. Secondly, pick U and V'
such that they have the conditional laws of X given {> "  X; =m} and Y
given {>1" | Y; = m + (}, respectively, and U < V with probability 1. A
little computation shows that the vectors U and V have the desired marginal
distributions. O

We close this section with a minor result, which gives a condition under
which we do not have stochastic ordering.

Proposition 2.4. If p; = q; for some i € {1,...,n} but not for all i, then
forke{l,...,n—1},

LX[D 0, Xi = k) 2 LY, Y = k).
Proof. Without loss of generality, assume that p, = ¢,. We have
P(Xn =113, Xi > k)
WP X > k= 1)
PO 1X >k—1)+(1-p) POCS X, > k)
DPn
+ (1= pa) PO Xi 2 )/ P(C Xi 2 k= 1)

dn
G+ (1= q) P Y > k) /P Y, > k- 1)

>

=PY,=1|>",Y:>k),

where the strict inequality follows from Lemma 2.1. O
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3 Weak convergence

We now turn to the framework for asymptotic domination described in Sec-
tion 1.2 and to the setting of Section 1.3. Recall that Xj;, is the number of
successes of the vector X, in block i. We want to study the joint convergence
in distribution of the X;, as n — oo, conditioned on {¥, > k,}, and also
conditioned on {¥,, = k,}. Since we are interested in the limit n — oo, we
may assume from the outset that the values of n we consider are so large that
k, and all m,, are strictly between 0 and n, to avoid degenerate situations.
We will first consider the case where we condition on the event {¥, = k,}.
Lemma 3.1 below states that the X, will then concentrate around the values
CinMin, Where the ¢y, are determined by the system of equations (3), which
we repeat here for the convenience of the reader:
L=Cin_pi 17 b Vi,je{1,..., M};
Cin 1= Cin 1 —=p; (3)

M
Zizl CinMip = kn

Before we turn to the proof of this concentration result, let us first look at
the system (3) in more detail. If we write
l=cn pi

A, = 15
Cin 1—1p; ( )

for the desired common value for all 7, then
_ Pi
pi + An(1 —ps)

Note that this is equal to 1 for A, = 0 and to p; for A, = 1, and strictly
decreasing to 0 as A,, — 00, so that there is a unique A,, > 0 such that

Cin

M M

i=1 i=1

It follows that the system (3) does have a unique solution, characterized
by this value of A,. Moreover, it follows from (16) that if k, > E(X,) =
Zi]\il PiMin, then A, < 1. Furthermore, k,/n — a and m;,/n — «;. Hence,
by dividing both sides in (16) by n, and taking the limit n — oo, we see that
the A,, converge to the unique positive number A such that

M

Pit
it Al —p;)

Q,

14



where A =1if a = Zf\il pi;. As a consequence, we also have that
Di

Cin — € = ——————— as n — 0o.
T pi+ AL - )
Note that the ¢; are the unique solution to the system of equations
l—c pi_1—-¢ pj

Vi,je{l,... MY
C; 1—])1 Cj 1_pj bJ { }

Zi]‘il cioy = Q.

Observe also that ¢; = p; in case A = 1, or equivalently Zf\il P =
which is the case when the total number of successes k,, is within o(n) of the
mean E(X,). The concentration result:

Lemma 3.1. Let ¢y, ..., cum satisfy (3). Then for each i and all positive
integers r, we have that

P(| X — Cintin| > Mr | S, = ky) < 2Me=M=0r%/m,

Proof. The idea of the proof is as follows. Condition on {¥, = k,}, and
consider the event that for some ¢ # j we have that X;, = ¢;,;m;, + s, and
Xjn = ¢jnMmj, — t, for some positive numbers s and t. We will show that if
the ¢;, satisfy (3), the event obtained by increasing X, by 1 and decreasing
Xjn by 1 has smaller probability. This establishes that the conditional dis-
tribution of the Xj;, is maximal at the central values c¢;,m;, identified by the
system (3). The precise bound in Lemma 3.1 also follows from the argument.

Now for the details. Let s and ¢ be nonnegative real numbers such that
CinMin, + s and c¢j,mj, — t are integers. By the binomial distributions of X,
and X, and their independence, if it is the case that 0 < ¢;pmiy, + 5 < Mgy,
and 0 < ¢jmj, —t < myy, then

IP(Xm = CinMip, + s+ ]-7Xjn = cjnmjn —t— 1)
P(in = CinMin + S, Xjn = CinMjn — t)

. Mip — CinMyin, — S Pi CinMjn — t 1— Py
CinMin +5+1 1—p; Mjn — CjnMjn +t+1  pj

< (mm — CinMin — 5 Pi ) ( CinMyn — 1 1 _pj)
B CinMMin L=pi) \Mjn = ¢inMjn  pj

Hence, if the ¢;, satisfy (3), then using 1 — 2z < exp(—z) we obtain

P(Xin = Cinin + 5+ 1, Xjn = cjumj, —t — 1)
]P(in = CinMyn, + S, Xjn = CjnMjn — t)

t t
Mip — CinMin Cjnmjn n

15




It follows by iteration of this inequality, that for all real s, > 0 and all
integers u > 0,

P(Xin = CinMin + 5+ u, Xjn = Cjnmj, —t —u)

t
S €xp (_ (S * )u> ]P(Xm = CinMyn + S7Xjn = CjinMjn — t) (17)
n
Now fix ¢, and observe that for all integers r» > 0,

= Y 1l = cipmin + Mr)P(Xgy = b VE).
l1,..ey lrr€Np:
O =y,
But if /1 + -+ {4y = k,, and ¢; > ¢;,;my, + Mr, then there must be some
J # 4 such that ¢; < ¢;,m;, — r. Therefore,

li > cipmin + Mr _
SZ Z ﬂ(ﬁj < CjpMyjn — T )P(Xk"_&“ k).
L4+l =kn
By independence of the X;, and using (17) with s = (M — 1)r, t = 0 and

u = r, we now obtain

M
—(M=1)r2/n i 2 CinMin + Mr — =
< M1/ E E 1 < gjng gjnmjn ) P( Xy = Ui Yk)
j=1 ¢1,....LpENp:
G A=k

< MemM=D7/np(y, = k),
This proves that
P(Xin > cinmin + Mr | X, =k,) < Me~(M=1)r2/n.
Similarly, one can prove that
P(Xin < Cinin — Mr | S, = ky) < Me=M-Dr%/n, =

As we have already mentioned, we expect that the X;, have fluctuations
around their centres of the order y/n. It is therefore natural to look at the
M-dimensional vector

X, — Xln_mln X2n_x2n XMn_$Mn
n o \/ﬁ ) \/ﬁ P \/ﬁ )

16
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Figure 1: The shear transformation o (illustrated here for M = 2) maps
sheared cubes to cubes. The dots are the sites of the integer lattice Z2. The
gray band on the left encompasses those sheared cubes that intersect Sj.

where the vector x,, = (Z1p,...,%yp,) represents the centre around which
the X;, concentrate. To prove weak convergence of &', we will not set z;,
equal to ¢;,m;,, because the latter numbers are not necessarily integer, and
it will be more convenient if the x;, are integers. So instead, for each fixed n,
we choose the z;, to be nonnegative integers such that |z, — ¢;m,| < 1 for
all 7, and Zf‘il Tin = kn. Of course, the vector X, as it is defined in (18),
and the vector defined in (4) have the same weak limit. In our proofs of
Theorems 1.4 and 1.5, X', will refer to the vector defined in (18).

If we condition on {¥, = k,}, then the vector X, will only take values
in the hyperplane

So={(z1,...,2m) ERM: 2y + -+ + 25 = 0}

However, as we have already explained in the introduction, we still regard X,
as an M-dimensional vector, because we will also condition on {¥, > k,},
in which case X, is not restricted to a hyperplane. To deal with this, it
turns out that for technical reasons which will become clear later, it is useful

to introduce the projection 7: (21,...,25) — (z1,...,2m—1) and the shear
transformation o: (2q,...,2m) — (21,...,2m-1,21 + - -+ 2ar). We can then
define a metric p on RM by setting p(z,y) := |ox — oy|, where || denotes

Euclidean distance. See Figure 1 for an illustration.
Using the projection 7, we now define a new measure jy on the Borel
subsets of RY, which is concentrated on Sy, by

po(+) = A" (w (- N Sp)),

where is the ordinary Lebesgue measure on R™~!. Note that up to a
multiplicative constant, y is equal to the measure 1 defined in Section 3, so

)\Mfl
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we could have stated Theorems 1.4 and 1.5 equally well with g instead of 1.
In the proofs it turns out to be more convenient to work with pg, however,
so that is what we shall do.

Our proofs of Theorems 1.4 and 1.5 resemble classical arguments to prove
weak convergence of random vectors living on a lattice via a local limit the-
orem and Scheffé’s theorem, see for instance [I, Theorem 3.3]. However,
we cannot use these classic results here, for two reasons. First of all, in
Theorem 1.5 our random vectors live on an M-dimensional lattice, but in
the limit all the mass collapses onto a lower-dimensional hyperplane, leading
to a weak limit which is singular with respect to M-dimensional Lebesgue
measure. The classic arguments do not cover this case of a singular limit.

Secondly, we are considering conditioned random vectors, for which it is
not so obvious how to obtain a local limit theorem directly. Our solution is to
get rid of the conditioning by considering ratios of conditioned probabilities,
and prove a local limit theorem for these ratios. An extra argument will
then be needed to prove weak convergence. Since we cannot resort to classic
arguments here, we have to go through the proofs in considerable detail.

3.1 Proof of Theorem 1.4

As we have explained above, the key idea in the proof of Theorem 1.4 is that
we can get rid of the awkward conditioning by considering ratios of con-
ditional probabilities, rather than the conditional probabilities themselves.
Thus, we will be dealing with ratios of binomial probabilities, and the follow-
ing lemma addresses the key properties of these ratios needed in the proof.
The lemma resembles standard bounds on binomial probabilities, but we
point out that here we are considering ratios of binomial probabilities which
centre around c;,m;, rather than around the mean p;m;,. We also note that
actually, the lemma is stronger than required to prove Theorem 1.4, but we
will need this stronger result to prove Theorem 1.5 later.

Lemma 3.2. Recall the definition (15) of A,. Fizi € {1,2,..., M} and let
bi,ba, ... be a sequence of positive integers such that b,/+/n — 0 as n — oo.
Then, for every z € R,

sup

z
= —ep(——2 )| >0
siesol<in | A PXm=2) ( 2¢i(1 - Ci)ai) ‘ -
r:|r—zy/n|<bp

2

Furthermore, there exist constants B}, B? < oo such that for all n and r,

1 P(Xin =2 +7) 1 rt o 7| 1r?
Ar <B([1+4+— g2t T )
: |£1i£\<bn Ar P(Xp=2) — * nz ) P\ NOPXD

n

18



Proof. Robbins’ note on Stirling’s formula [5] states that for allm =1,2,...,
\/%mm+1/2 €7m+1/(12m+1) <ml < \/%merl/Z 67m+1/(12m)7

from which it is straightforward to show that for all m = 0,1,2,... (so
including m = 0), there exists an 7, satisfying 1/7 < n,, < 1/5 such that

m! = /2n(m+ ny)m™ e =/ 2x[m]m™e™™, (19)

where we have introduced the notation [m] := m + n,.
Since Xj;, has the binomial distribution with parameters m;, and p;,

1 P(Xip=x+7) x! (mip — x)! ( Cin )T

Ar o P(X;, = x) :(:c—i—r)! (M, —x —r)! \ 1 — ¢

Using (19), we can write this as the product of the three factors

ulrn = (ﬂxﬂiﬂrﬂ [[ni[:ii;fﬂr]]y/g

T
CinT; My — X
2 o inlllin mn
P)in(x7r) - ( )

X Min — CinMiin

+ e
x T+r My — T Min—T—T
in(x77ﬂ):
x4+ My, — L — T

for all  and r such that 0 < x < my, and 0 < x +r < m;,.
To study the convergence of P2 (x,r), first write

T+r M —T—T
P2 (z,7) = (1 S ) (1 + ;> :
T+ Mip — T — T

Using the fact that for all u > —1, (1 4 u) lies between exp(u — su?) and
exp(u—3u®/(1+w)), alittle computation now shows that P} (z,r) is wedged
in between

(LTI Y g (L

2x(my, —x—r 2 (z+7r)(mg, —

From this fact, it follows that for fixed z € R,

.2
sup | Py (,7) — exp (—m)‘ — 0,

T |T—Tin|<bn
r:|r—zy/n|<by
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because z;,/m;, — ¢;, hence x = ¢;m;, + o(n) and r = zy/n + o(y/n) under
the supremum, and m;,/n — «;. Since |z, — ¢;nmi,| < 1, we also have that

sup }Pl (x,r —1‘—>0 and sup ’P2 (x,r —1|—>O.
T |T—Tin|<bn T |T—Tin|<bn
r: |[r—zy/n|<bp r: [r—zy/n|<bp

Together with the uniform convergence of P2 (x,r), this establishes the first
part of Lemma 3.2.

We now turn to the second part of the lemma. If z and r are such
that 0 < =z < m;, and 0 < =z +r < my,, then m;, —r > =z > 0 and
Min + 7 > My, —x > 0, hence from the bounds on P32 (z,r) given in the
previous paragraph we can conclude that

172 172
i <o (1) <o (2).
Min n

Next observe that if x is such that |z — x;,| < by, then |z — ¢;ymy,| < 1+ b,
from which it follows that uniformly in n, for all x and r such that 0 < x <
Min, 0 < x4+ 1 < my, and |z — x| < by,

I
P2 (z,7) < (1 + const. x b—”) < exp (const. X ﬂ) :
n vn

To finish the proof, it remains to bound P} (z,r). To this end, observe
first that uniformly in n, for all z and r such that |z —x;,| < b, and |7“| < n¥,
P! (z,r) is bounded by a constant. On the other hand, uniformly for all =
and 7 such that 0 < x < my, and 0 < = +r < my,, Pl (z,r) is bounded by a
constant times n, and n < r*/n? if |r| > n®*. Combining these observations,
we see that uniformly in n, for all x and r satisfying |z — z;,| < b, and
0<x+7r<my,

4
P} (z,7) < const. x (1 + 7’_2) . O
n

Proof of Theorem 1.J. For a point z in R, let [z| be the point in ZM
p-closest to z (take the lexicographically smallest one if there is a choice).
Graphically, this means that the collection of those points z for which [z| = a
comprises the sheared cube a+o~1(—1/2,1/2]M see Figure 1. Now, for each
fixed 2 € RM, set 12 = (r%,,...,7%,) := [2¢/n]. Observe that because (for
fixed n) the x;, sum to k,, if 2 € Sy we have that

P(VnX, =15 | S0 =kn) P(/nX,= ﬁ P(Xp = @i +13,)
P(VnX,=0|%, = k) P(/nX,= 11 ]P = zin)
(20)
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where we have used the independence of the components X;,,. If rZ ¢ Sy, on
the other hand, this ratio obviously vanishes.

We now apply Lemma 3.2 to (20) taking b, = M for every n > 1. Since
ZZM1 r;, = 01if rZ € Sy and hence H "~ Ay =1, the first part of Lemma 3.2

immediately 1mphes that for all z € ]RM

P/ Xy =17 | Sy = k) = 2 _
P(VnX, =05, =kn) Lso (2) geXp (_2@-(1 _ ci)ai> = /)

as n — 00. To see how this will lead to Theorem 1.4, define f,,: RM — R by

fn(z) = (\/E)MP(\/ﬁXn =r, | Xy, = kn)'

Then f, is a probability density function with respect to M-dimensional
Lebesgue measure A. Moreover, if Z,, is a random vector with this density,
then the vector Z! = [Z,4/n]|/\/n has the same distribution as the vec-
tor X,,, conditioned on {3, = k,}. Since clearly Z,, and Z! must have the
same weak limit, it is therefore sufficient to show that the weak limit of Z,
has density f/ [ f duo with respect to fig.

Now, by what we have established above, we already know that

fn(2) _ P(y/nX, =r; | X, =k,)
2000 P(VnX,=0|%,=k,)
Moreover, the second part of Lemma 3.2 applied to (20) shows that the ra-

tios f,(2)/fn(0) are uniformly bounded by some po-integrable function g(z).
Thus it follows by dominated convergence that for every Borel set A € RM,

iy )= [ 1t

Next observe that 1 = [ f, d\ = [n~Y2f, dug, because by the condition-
ing, f, is nonzero only on the sheared cubes which intersect SO Therefore
taking A = RM in the previous equation yields n="/2f,(0) — ([ fduo)™?,
which in turn implies that for every Borel set A,

n_1/2 z w
J A d(e) - T

In general, [, f,dX\ # [, n="2f, duo for an arbitrary Borel set F, but we
have equality here for sufficiently large n if F' is a finite union of sheared
cubes. Hence, if A is open, we can approximate A from the inside by unions
of sheared cubes contained in A to conclude that

.. f d,uo
lim inf / w(2) dA(z AT T O
it [, nle ST

— f(2) for every » € RM.
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3.2 Proof of Theorem 1.5

We now turn to the case where we condition on {¥, > k,}, for the same
fixed sequence k,, — oo as before. To treat this case, we are going to consider
what happens when we condition on the event that ¥, = k, + ¢ for some
¢ >0, and later sum over £. It will be important for us to know the relevant
range of £ to sum over. In particular, for large enough ¢ we expect that the
probability P(X,, = k,+¢) will be so small, that these ¢ will not influence the
conditional distribution of the vector X,, in an essential way. The relevant
range of ¢ can be determined from the following lemma:

Lemma 3.3. For all positive integers s,

(k, — E(X,) + Ms)s
Mn

P(X, >k, +2Ms) < M exp (— ) P(X, > ky).

Proof. Let u be such that 0 < u < (1 — p;)my,. Observe that then, for all
integers m such that pym;, +u < m < my,,

P(Xp=m+1) my,—m p; DiMipn, — Ulfipi

P(X;=m)  m+1 1—p, = pmm+u
hence
]P(Xm:m—i-l)gl_L L+ D <1- u SI—E.
P(Xi = m) PiMin + 1—p; Min n

Since 1 — z < exp(—=z), by repeated application of this inequality it follows
that for all v > 0 and all positive integers ¢, if m is an integer such that
m > p;mg, + u, then

P(Xi = m+1) < exp (—%t) P(X, = m). (21)

Now observe that if ¥, > E(X,) + Mr + 2Ms, where s is a positive
integer, and r a real number such that r 4+ s > 0, then for some k it must be
the case that Xy, > pxmp, + r + 2s. Therefore,

P2, > E(X,) + Mr +2Ms)

< Z Z L(ly > pxmign + 1+ 28) P(X;, = 4; Vi).

l1,...,LpENg: k=1
b4+ >E(Sn)+Mr+2Ms
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But by (21), taking u =7+ s and t = s,

L(ly > pxmign + 1+ 28) P(X;, = 4; Vi)

< exp (—(T * S)s) P(Xpn = b — 5, Xin = £; Yi # k),
n
and therefore

P(X, > E(X,) + Mr +2Ms)

< Mexp (_(r + s)s
n

) P(X, > E(X,) + Mr+2Ms — s)
< M exp (—@) P(%, > E(X,) + Mr).

Choosing 7 such that k, = E(X,,) + Mr yields Lemma 3.3 (observe that the
bound holds trivially if r + s < 0). O

Lemma 3.3 shows that if a@ > Zf\il pi;, then for sufficiently large n,
P(3, > k, + {) will already be much smaller than P(X, > k,) when /¢
is of order logn. However, when a = Zf\il pia;, we need to consider ¢ of
bigger order than /n for P(X, > k, + ¢) to become much smaller than
P(X, > ky). In either case, Lemma 3.3 shows that ¢ of larger order than /n
become irrelevant.

Keeping this in mind, we will now look at the conditional distribution of
the vector X, conditioned on {3, = k, + ¢}. The first thing to observe is
that for £ > 0, the locations of the centres around which the components X;,
concentrate will be shifted to larger values. Indeed, these centres are located
at i my,, where the ¢ are of course determined by the system of equations

1—@6 i 1—C£-n . o
i mlﬁ -5 1% - Vijefl,... M}

2?11 ct My = ky + L.
To find an explicit expression for the size of the shift ¢f — c;,, we can sub-
stitute cfn = Cin + i, into (22), and then perform an expansion in powers of
the correction 9;, to guess this correction to first order. This procedure leads
us to believe that cf, must be of the form
Cin = Cin + Cin(1 = cin)dy, + €5, (23)
where
dl, = !

" (1 = e)myy

23
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and ef, should be a higher-order correction. The following lemma shows that
the error terms e} are indeed of second order in d, so that the effective
shift in ¢;, by adding ¢ extra successes to our Bernoulli variables is given by
Cin(1 — ¢i)dY. For convenience, we assume in the lemma that |d| < 1/2,
which means that |¢| cannot be too large, but by Lemma 3.3, this does not

put too severe a restriction on the range of ¢ we can consider later.

Lemma 3.4. For all { (positive or negative) such that |d°| < 1/2, we have
that |et | < (d%)? foralli=1,..., M.

Proof. For ease of notation, write o;, := ¢ (1 — ¢;,). As before, we write

Af — 1 - cfn Di _ 1—cy— O'mdfl — efn D
"ol L—pi Cintowmdi e, 1—p;

for the desired common value for all i, so

(1 =c. —a.dl) = A% (1 = »:)(c: dt
efn _ pz( Cin den) n( pl)(cm + Cden) ' (24)
AL(1 = ps) + ps

As before, the value of A’ is uniquely determined by the requirement that
ZM ¢ Myp = ky + £. Since Zf‘il CinMin = k,, and Zf\il Oind’ My, = {, this

=1 "in
requirement says that
M

¢
E einMin = 0.

i=1

In particular, the e/ cannot be all positive or all negative, from which we
derive, using (24), that AY must satisfy the double inequalities

min p ( c o n) S Afl S max b ( c g n) ]

A simple calculation establishes that

(1= — g db — . P (—(1 — ¢ VdE Nk
il =i —oud) _1—cu p (1 L3 (L= e )
k=1

(1 —p;i)(Cin + oindt) Cin 1—1p;

from which (using |d’,| < 1/2) we can conclude that

1—cin pi
n —(

1—df) < Al <
Cin 1 —p; Cin 1 —p;

1—dy, +2(d,)?),

n n

since by (3), neither the lower bound nor the upper bound here depends on i.
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Inserting the lower bound on A? into (24) gives

ol < Tin(1 — Cin)<dfz)2
Tl = (1= cp)dt

n

where in the last step we used that |d‘| < 1/2 and oy, < 1/4. Likewise,
substituting the upper bound on A’ into (24) yields

~

(&

, , 02 1 0\3 AV
> _Um(l + Cin)(dy)” + 203 (1 — cin)(dy,) > _QU’”(dn) > _(dfl)2. O
1 — (1 —cin)ds +2(1 — ci)(dE)? 1-1/2

For future use, we state the following corollary:

Corollary 3.5. If (k, — 3™, cimin)/v/n — K for some K € [—o0, 00], then
forie{l,..., M},

(Cin — Ci)Mn, . ¢(l—c)oy

vn S el =)oy

Remark 3.6. If (k, — E(2,))/v/n — K € R, then a = 3. pia; and we
have ¢; = p; for all i € {1,..., M}. In this situation, Corollary 3.5 states
that the vectors X? — X, and hence also the same vectors conditioned on
{¥,, > k,}, converge pointwise to the vector whose i-th component is

pi(l —pi)@i
M
Zj:l pi(1 —pj)a,

Proof of Corollary 3.5. First, suppose that K € R. If / = Zf\il CciMin — ky
and the cf, satisfy (22), then ¢!, = ¢;. Hence, by Lemma 3.4,

Ci — Cin = Czn(l - Czn)df; + O((dfl>2)7

where u
dz _ Zi:l CiMyp — kn _ O(nil/z).

" (1= gn)myy

This implies

(ci = cin)Min (1= cin)min SO0 cimin — Ky

v Y (1= en)my, v

+ O(n_l/Q),

from which the result follows.
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Next, suppose that K = oco. Since ¢;, is increasing as a function of k,,,
we have by the first part of the proof

lim inf (Cm - Ci)min Ci(l - Cz')ai

n—o Vi T Y (- ¢)ay

=1

for all L € R. Hence, the left-hand side is equal to co. The proof for the
case K = —oo0 is similar. O

When we condition on {X,, = k, + ¢}, then in analogy with what we have
done before, the natural scaled vector to consider would be the vector

V4 V4 £
X@ - Xln — Ty, XQ” — Ty, XMTL — Thn
n \/ﬁ ) \/ﬁ ) s \/ﬁ )

where the components of the vector =t = (2 ... 24,,) identify the centres

around which the Xj, concentrate. Here, the x¢ are nonnegative integers
chosen such that |z, — ¢/, m,| < 1 for all i, and 3°2 ¢ = k, + {. Note
that the vector X' is simply a translation of X, by (z — z,,)/y/n. Since
Lemma 3.3 shows that if k,, is sufficiently larger than E(X,,), only values of ¢
up to small order in n are relevant, the statement of Theorem 1.5 should not
come as a surprise. To prove it, we need to refine the arguments we used to

prove Theorem 1.4.

Proof of Theorem 1.5. Assume that (k, — E(X,))/v/n — oo, and let

b= 2M V (ﬁg@)” '

Note that then a, — oo but a,/y/n — 0. Furthermore, Lemma 3.3 and a
short computation show that

P(X, >k, + a,)
P(X, > k,)

It is easy to see that from this last fact it follows that

sup|P(Xn € A | Sy > ky) — P(Xn € A | ky < S < by + a,)| — 0,
A

where the supremum is over all Borel subsets A of R™. It is therefore suf-
ficient to consider the limiting distribution of the vector X', conditioned on
the event {k, < ¥, <k, + a,}, rather than on the event {¥, > k,}.
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1/vn] (2a, +1)/vn

Figure 2: We coarse-grain our densities by combining (2a, + 1) sheared
cubes into larger sheared cubes. Here, we show this coarse-graining for M = 2
and a, = 2. The dots are the points in ((2a,, + 1)Z)*//n. The combined
sheared cubes have been coloured in a chessboard fashion as a visual aid.

As in the proof of Theorem 1.4, for = € RM we let 72 = [2/n], and we
define the functions f,: R™® — R by setting

ful2) = (V)" P(Vn X, =75 | ky < 5 < ko +ay).

As before, this is a probability density function with respect to Lebesgue
measure A on RM, and if Z, is a random vector with this density, then
the vector Z! = [Z,4/n]|//n has the same distribution as the vector X,
conditioned on the event {k, < X, <k, + a,}. Hence, it is enough to show
that the weak limit of Z,, has density f/ [ f duo with respect to pp.

An essential difference compared to the situation in Theorem 1.4, how-
ever, is that the densities f, are no longer supported by the collection of
points z for which r? is in the hyperplane Sy (i.e. the union of those sheared
cubes that intersect Sp). Rather, the support now encompasses all the
points z for which 72 is in any of the hyperplanes

Spi={(21,...,20) ERM: 2y + - 4 2y = £}, (=0,1,...,ay,,

because if 2 € Sy, then the event {\/n X, = r2} is contained in the event
{¥,, = k,+(}. For this reason, the densities f,, are not so convenient to work
with here. Instead, it is more convenient to “coarse-grain” our densities by
spreading the mass over sheared cubes of volume ((2a, + 1)/y/n)™ rather
than volume (1/4/n)™, to the effect that all the mass is again contained in
the collection of sheared (coarse-grained) cubes intersecting S.

To this end, for given n we partition R into the collection of sets

1 -1 MY | M
{%(a—l—a (=t — 1/2,a, + 1/2M): a € ((2a, + 1)Z) } (25)
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See Figure 2. For a given point z € R, we denote by Q7 the sheared cube
in this partition containing z. Now we can define the coarse-grained densities

v \"
gn(2) = <2a +1) P(X,€eQ |k, <X, <k,+ay,)

:<ﬁ

2a, + 1

) fa(y) dA(y).
Q7

By construction, these are again probability density functions with respect
to M-dimensional Lebesgue measure A. Moreover, each of these densities is
supported on the collection of sheared cubes in (25) that intersect Sy, and is
constant on each sheared cube QZ. In particular, for any given point z € RM

we have
[ w030 =22 g dot)

Finally, because a,/+/n — 0 it is clear that if Z! has density g,, then its
weak limit will coincide with that of Z,,, and hence also with that of the
vector X, conditioned on the event {k, < ¥, <k, + a,}.

Suppose now that we could prove that

2a, +1 f(2) My
———gn(2) — for every z € R™. 26
vn ) f Jdpo (26)
Then it would follow from Fatou’s lemma that for every open set A C RM,
. 2a, +1 f 1 f(2) dpo(z
liminf | ———g,(2) du >4 f T C
it [~ o) dnol?) ffduo

By approximating the open set A by unions of sheared cubes contained in A,
as in the proof of Theorem 1.4, it is then clear that this would imply that

.. f d,uo
lim inf / d\(z A—
oo J 4 ( ) f [ dpo

It therefore only remains to establish (26).

Since (26) holds by construction for z ¢ Sy, we only need to consider
the case z € Sy. So let us fix z € Sy, and look at g¢,(z). By definition,
this is just the rescaled conditional probability that the vector X', lies in the
sheared cube )7, given that k, < ¥,, <k, + a,. In other words, if we define
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= /nQzN7ZM and Cf, := CZ N Sy, then we have

gn(2) = ( vn > Y P(WnX, =1k, <, < kn+ay)

2an +1 reCz

M an X,=7r|%,=k,+¢ =k, +{
>ZZ (Vn | +0)P(%, +)_

(QCLn +1 (kn = En S kn + an)

=0 reCj,

Since C, contains exactly (2a,+1)~1 points, from this equality we conclude
that to prove (26), it is sufficient to show that

f(z)
f fduo

sup sup |(VR) M IP(Vn&X, =1 | S, =k, +{) — — 0. (27)

0<t<an 7€Cy,

The proof of (27) proceeds along the same line as the proof of pointwise
convergence in Theorem 1.4, based on Lemma 3.2. However, there is a catch:
because we are now conditioning on ¥, = k, + ¢, the X;, are no longer
centred around x;,, but around zf,. We therefore first write the conditional
probabilities in a form analogous to what we had before, by using that

P(VnX,=r1|Sy =k, +{) =P(VnX, =7+, — 2y | Sp =k, +{).

Writing r¢ := r + x,, — ¢, for convenience, we now want to study the ratios

P(ynXi =1 |8, =k, +0) P(/nXi=r ﬁIP m—xm—I—T)
P(VnX, =0, =k, +() P(/nX,= ol P(X =1l
for ¢ and r satistying 0 < /¢ < a,, and r € C},.
By equation (23) and Lemma 3.4 we have that sup,|zf, — 2| = o(y/n),

from which it follows that also sup,,.|r* — zy/n| = o(y/n), where the suprema
areover all £ € {0,...,a,} and r € C,. Thus, by the first part of Lemma 3.2,

P(ynX: =rt| S, =k, +10)

sup su — f(z)| — 0,
ogzglln rec% P(ynX:=0|%, =k, +Y) /)
where we have used that for all terms concerned, Hf\il A;f = 1 because

r* € Sy. Furthermore, from the second part of Lemma 3.2 it follows that the

functions
P(yA XL = [2y/A) | Su = ku+0)
P(ynX:=0|%, =k, +1)
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are bounded uniformly in n and in all ¢ € {0,...,a,} by a pp-integrable
function. In the same way as in the proof of Theorem 1.4, it follows from
these facts (with the addition that we have uniform bounds) that

sup |(v) I PV AL = 0] 5, = ko + 0) —

1
—F | — 0.
0<t<an J fduo

From this we conclude that (27) does hold, which completes the proof of
Theorem 1.5. O]

3.3 Proof of Theorem 1.6

Proof of Theorem 1.6. Suppose that (k, — E(X,))/v/n — K for some K €
[—00,00). Let X be a random vector having a multivariate normal distribu-
tion with density h/ [ hd\ with respect to X. By standard arguments, X7,
converges weakly to X'. Therefore, for a rectangle A C R™ we have

IP(X{; cAY, > k’n) = ]P(Xfl c AN HknflE(En)) — ]P(X € AN HK),
vn

since AN Hyg,. is a A-continuity set for all ¢ € R. Taking A = R™ gives
P(X, > k,) — P(X € Hg).
Hence, for all rectangles A ¢ RM

P(X € AN Hg)

PA? c A, >k
(X € A X0 2 k) = P(X € Hy)

3.4 Law of large numbers

Finally, we prove a law of large numbers, which we will need in Section 4. Let
X, denote a random variable with the conditional law of Xin, conditioned on
the event {3, > k,}. If (k,—E(3,))/v/n — K for some K € [—00, o], then
an immediate consequence of Theorems 1.5 and 1.6 is that Xm /n converges
in probability to either p;a; or ¢;a;. The following theorem shows that such
a law of large numbers holds for a general sequence k,, such that k,/n — a.

Theorem 3.7. Fori € {1,..., M}, the random variable X;,/n converges in
probability to p;a; if a < Zf\il picy;, or to c;oy if oo > Zi]\ilpiai.

Proof. If o # Zf\il picy, then (k, —TE(X,))/v/n goes to —oo or 0o as n — oo,
and the result immediately follows from Theorem 1.5 and Theorem 1.6.
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Now suppose that o = Zf\il pio;. Then ¢; = p; for all © € {1,..., M}.
Recall that in general the ¢; and A are determined by the equations

Di picy;
¢g=—————— and _— = .
TS T IR e e

The constant A is continuous as a function of «, hence ¢; = ¢;[a] is also
continuous as a function of a. Therefore, if a = Zf\il pi;, then for each
e > 0 we can choose § > 0 such that ¢;[a+d]a; < p;o; + %5. By Corollary 2.3
we have, for large enough n,

> (pii +e)n | 3, > (a+9)n)
> (afa+ 8o+ 1on | S, > (a+ 8)n),

which tends to 0 as n — oo by Theorem 1.5. Similarly, using Corollary 2.3
and Theorem 1.6 instead of Theorem 1.5, we obtain

P(Xin < (piay —e)n | X, > k) — 0.

We conclude that )N(m /n converges in probability to p;a; = ¢;q. O

4 Asymptotic stochastic domination

4.1 Proof of Theorem 1.8

Consider the general framework for vectors X, and Y, of Section 1.2 in
the setting of Section 1.4. We will split the proof of Theorem 1.8 into four
lemmas. In the statements of these lemmas, we will need the constant &,
which is defined as the limit as n — oo of k, /n:

M

DPiin ~ DiC
= ,  hence &= .
Z Di + ﬁmax pz) ; Di + ﬁmax(l - pz)

Let us first look at the definition of & in more detail. In Section 1.4, we
informally introduced the sequence k, as a critical sequence such that if k,, is
around kn, then there exists a block 7 such that the number of successes Xm
of the vector Xn in block ¢ is roughly the same as Yfm We will now make
this precise. Recall that the ¢; and the constant A are determined by

M
Di bicv
¢ =————— and E — =«
pi+ A1 —pi) —~ pi+A(l—p)
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Furthermore, note that
Pi
pi+ Bi(1 —p;
and recall that we defined I = {i € {1,..., M}: B; = Bmax}. The ordering of
a and & gives information about the ordering of the ¢; and ¢;. This is stated
in the following remark, which follows from the equations above.

Remark 4.1. We have the following:

= qi,
)

(i) If & < &, then A > Buax and ¢; < g; for all i € {1,..., M}.

)
(i) If & = &, then A = Bax and ¢; = ¢; for i € I, while ¢; < ¢; for i ¢ 1.
(iii) If @ > @&, then A < Bax and ¢; > ¢; for some i € {1,..., M}.

)

(iv Zij\ilpiozi <a< Zf\il gicv, with & = Zf‘il piay; if and only if G = 1,
and & = Zf\il g;cy; if and only if all 5; (i € {1,..., M}) are equal.

Our law of large numbers, Theorem 3.7, states that X;, /m converges in
probability to p;a; if o < Zf\il iy, and to ¢y if o > Zf\il pic;. This law of
large numbers applies analogously to the vector Y,. If we define dy, ..., dy
as the unique solution of the system

l-d; ¢ 1-d; g
Zi]\ildiai:av

Vi,je{l,..., M},

then ffm /n converges in probability to ¢a; if o < Zf‘il g;;, and to d;q;
if a > Zf\il gi;. These laws of large numbers and the observations in
Remark 4.1 will play a crucial role in the proofs in this section.

Now we define one-dimensional (possibly degenerate) distribution func-
tions Fx: R — [0,1] for K € [—00, 00|, which will come up in the proofs as
the distribution functions of the limit of a certain function of the vectors Xn.
Recall from Section 1.3 the definitions (5), (6), (7) and (8) of the measure vy,
the functions f and h and the half-space Hg. Write u = (ug,...,up). Then

([ ey P(w) dA(u)
HK”{Eiej Zgh}dA it K <oo, = Zf\g Dicvi,
Hy
Fr(z) = f U <z—2z f(u) dl/o(u) 28
K (2) {2 icr ZSI;C}ZVO if K < oo, a> Zij\ilpian 2%)
\ 0 if K = o0,
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where .
ier i\l — ;)Y
e = Sl e

Zi:l ci(l —ci)ay

The following lemmas, together with Proposition 1.3, imply Theorem 1.8.

(29)

Lemma 4.2. If o < &, then supP(X,, <Y,) — 1.

Lemma 4.3. Suppose that a > & and (3; # (3; for some i,j € {1,..., M}.
Then supP(X, <Y,) — 0.

Lemma 4.4. Suppose that o = éz and B; # B; for somei,j € {1,...,M}.
Suppose_furthermore that (k, kn)/\/n — K for some K € [—o0,00]. Then
sup P(X, <Y)—>1nfze]RFK( ) —®(z/a) + 1.

Lemma 4.5. If o = & and (3; # §; for somei,j € {1,..., M}, then

1 if K =—o0,
iggFK(z)—CID(z/a)—i-l = Py if K€eR, where 0 < P < 1,
0 iof K=o0.

The constant a in Lemma 4.4 is the constant defined in (9a). The infimum
in Lemma 4.4 can actually be computed, as Lemma 4.5 states, and attains
the values stated in Theorem 1.8, with Pk as defined in (10).

We will prove Theorem 1.8 by proving each of the Lemmas 4.2-4.5 in
turn. The idea behind the proof of Lemma 4.2 is as follows. If we do not
condition at all, then X,, < Y, for every n > 1. If a < Z _1 Py, then
the effect of condltlomng vanishes in the limit and supP(X, < Y,) — 1
as n — oo. If Zzzlp,a, < a < @&, then ¢; < ¢; for all 7 € {1,..., M}.
Hence, for large n we have that f(m is significantly smaller than ffm for all
i€ {l,..., M}, from which it will again follow that sup P(X, <Y,) — 1.

Proof of Lemma 4.2. First, suppose that a < Zf\il pia;. Let X, and Y,, be
defined on a common probability space (2, F, P) such that X,, <Y, on all
of Q. Pick w; € Q according to the measure P(- | .M X;, > k,) and pick
wy € ) independently according to the measure P( - | Zf‘il Yin > kpn). If wy
is in the event {Zf\il Xin > k:n} e F, set f’n(wl,wg) =Y, (w), otherwise
set Yn(wl,wg) =Y, (wy). Set X'n(wl,wQ) = X, (w) regardless of the value
of wy. It is easy to see that this defines a coupling of X, and Y, on the space
(Q x Q, F x F) with the correct marginals for X, and Y. Moreover, in this
coupling we have X,, <Y, at least if w, € {Z 1 Xin > Ky, } Hence

% ¥ P X >
supP(X, <Y,) > (sz\? in = k:n)’
P32, Yin > k)
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which tends to 1 as n — oo (e.g. by Chebyshev’s inequality).
Secondly, suppose that Zf\il pia; < a < &. By Remark 4.1(i), ¢; < g; for
all i € {1,..., M}. For each coupling of X,, and Y,, we have

P(X, <Y,) >P(X,, < (ci+q)on/2 <Yy, Vie{l,...,M}),
which tends to 1 as n — oo by Theorem 3.7 and Remark 4.1(iv). O

The next lemma, Lemma 4.3, treats the case a > &. In this case, we have
that for large n, X, is significantly larger than Yj, for some i € {1,..., M},
from which it follows that supP(X,, <Y,,) — 0.

Proof of Lemma 4.5. First, suppose that & < a < Zf\il qi;. Then ¢; > g;
for some i € {1,..., M} by Remark 4.1(iii). Hence, by Theorem 3.7 and
Remark 4.1(iv),
P(Xin
P(Yin

(Ci + qz)ozzn/2) — 1,

>
> (¢ + qi)ain/2) — 0.
It follows that P(X,, < Y;,) tends to 0 uniformly over all couplings.
Next, suppose that oo > Zf‘il gio; and §; # (; for some 4,5 € {1,..., M}.
Then there exists i € {1,..., M} such that ¢; # d;, since
]-_dz dj ]-_Q'L pj ]-_Cz' Cj

di 1—djﬁj: q; 1—pJ:ﬁz C; 1—Cj.

In fact, we must have ¢; > d; for some ¢ € {1,..., M}, because Zf\il oy =
S M. d;o;. By Theorem 3.7, it follows that

Again, ]P(Xn < f’n) tends to 0 uniformly over all couplings. H

We now turn to the proof of Lemma 4.4. Under the assumptions of this
lemma, ¢; = ¢; for i € I and ¢; < ¢; for i ¢ I. The proof proceeds in four
steps. In step 1, we show that the blocks i ¢ I do not influence the asymptotic
behaviour of sup ]P(Xn < f’n), because for these blocks, X, is significantly
smaller than Y;, for large n. In step 2, we show that the parts of the vectors
X, and Y, that correspond to the blocks ¢ € I are stochastically ordered,
if and only if the total numbers of successes in these parts of the vectors
are stochastically ordered. At this stage, the original problem of stochastic
ordering of random vectors has been reduced to a problem of stochastic
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ordering of random variables. In step 3, we use our central limit theorems
to deduce the asymptotic behaviour of the total numbers of successes in the
blocks ¢ € I. In step 4, we apply the following lemma, which follows from [0,
Proposition 1], to these total numbers of successes:

Lemma 4.6. Let X and Y be random wvariables with distribution functions
F and G respectively. Then we have

supP(X <Y) = ;gﬂf{F(z) —G(2) + 1,

where the supremum is taken over all possible couplings of X and 'Y .

Proof of Lemma /4.4. Write mp, 1= >, ; Mi,. Let X, and X, denote the

mp,-dimensional subvectors of X,, and X, respectively, consisting of the

components that belong to the blocks ¢ € I. Define Y7, and f’;n analogously.
Step 1. Note that for each coupling of X, and Y,

2 P(Xln S f,In) -

Z{]P(f(i > Ci;%m) +]P(ffm < C;qan)} (30)

il

By Remark 4.1(ii), ¢; < ¢; for i ¢ I. Hence, it follows from Remark 4.1(iv)
and Theorem 3.7 that the sum in (30) tends to 0 as n — oo, uniformly over
all couplings. Since clearly sup P(X,, <Y,,) <supP(X, < Y.),

sup P(X,, <Y,) —supP(X;, < Y5,)| — 0,

where the suprema are taken over all possible couplings of (Xn,f’n) and
(f( In f/}n), respectively.

Step 2. The 3; for i € I are all equal. Hence, by Proposition 1.2 and
Lemma 2.2 we have for m € {0,1,...,my,} and £ € {0,1,...,m, —m}

LK1 Yier Xion = m) L LYl Sy Y =m+ 0. (3D)

Now let B be any collection of vectors of length my, with exactly m compo-
nents equal to 1 and my, — m components equal to 0. Then

P(Xp, € B)=P(X1, € B| XM, Xin > k)
. IP(X[n S B) ]P(Zwél Xin Z kn - m)
P(XCY, Xin > k)
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Taking C' to be the collection of all vectors in {0, 1} with exactly m com-
ponents equal to 1, we obtain
P(X;, € B)

P(X,€B|SY.  Xim=m)=——" """ —P(X,€BI|S._  Xin=m),
( I ‘ Z’LEI ) IP(X[n c O) ( I | Zze] )

and likewise for Y7, and Y7,,. Hence, (31) is equivalent to
LXrn| Tier Xin = m) 2 LVin| Ty Yin =m0 +0).

With a similar argument as in the proof of Proposition 1.3, it follows that
SUP]P)(XM < i}ln) =supP(D_,¢; Xin < Y oier Yin)-

Step 3. First observe that by Remark 4.1(iv), o < Zf\il q:c;. Hence, by
Theorem 1.6 (note that (k, — E(Zf‘il Yin))/+/n — —o0) and the continuous
mapping theorem,

P> e (Yin — ¢imin)/v/n < 2) — ®(2/a)  for every z € R. (32)

Next observe that by Remark 4.1(ii), ¢; = ¢; fori € I and A = fax, from
which it follows that k,, = Zf\il c¢;m;,. Hence, Corollary 3.5 gives

Zie[(cin — Gi)Min/ /N — 2K, (33)

with zx as defined in (29). In the case a > Zf\ilpiai, Theorem 1.5, (33)
and the continuous mapping theorem now immediately imply

P} e/ (Xin — aimin)//n < 2) — Fg(z) forevery z € R, (34)

Note that if K = +o00, Ff is degenerate in this case: we have Fi(z) =1 for
all z€ Rif K = —oo0 and Fk(z) =0 for all z € R if K = o0.

Now consider the case a = Zf\il pic;. By Remark 4.1(iv), in this case
we have Bpa.x = 1, which implies that k, = Zf\il pimi, = E(X,) and p; = ¢;
for all ¢ € {1,...,M}. Hence, if K = oo, then (33) and Theorem 1.5
again imply (34) with Fg(z) = 0 everywhere. If K € [—00,00), then we
obtain (34) directly from Theorem 1.6; Fk is non-degenerate in this case
(also for K = —00).

Step 4. The distribution functions on the left-hand sides of (32) and (34)
are non-decreasing and bounded between 0 and 1, hence they converge uni-
formly on compact sets. It follows by Lemma 4.6 that

sup P(Y,c; Xin < 3ic; Yin) — infoer Fi(2) — ®(2/a) + 1. O
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Finally, we turn to the proof of Lemma 4.5. The key to computing the
infimum of Fi(z) —®(z/a)+1 is to first express the distribution function Fy,
defined in (28), in a simpler form.

Proof of Lemma 4.5. In the case o > Zij\ilpiai and K = —oo, Fi is 1
everywhere, hence inf,cp Fx(z) — ®(z/a) + 1 = 1. In the case K = oo, F
is 0 everywhere, hence inf,cg Fx(z) — ®(z/a) +1 = 0. We will now study
the remaining cases.

Consider the case a = & = Y1 pa; and K € [—o0,00). Let Z =
(Z1,...,Zy) be a random vector which has the multivariate normal distri-
bution with density h/ [ hdA. By Remark 4.1(iv) we have B = 1. Note
that therefore, 2 3., Z;, & Ziy Z; and 2 S M. Zi, with a, b and ¢ as defined
in (9), all have the standard normal distribution. Moreover, > ._; Z; and
Zigé ; Z; are independent.

For K = —oo, it follows that Fx(z) = ®(z/a), hence inf,cr Fx(z) —
®(z/a) +1 = 1. For K € R, observe that Z € Hg is equivalent with
%Zf\il Z; > K/c. Likewise, Z € Hx N{u € RM: Y, ;u; < z} is equivalent
with 137, Z; < z/a and %Zigﬂ Zi > (K — 3,1 Z;)/b. It follows that

icl

[hdh Junis,,, wesy M) dA (W)

F —
x(2) T hdA Thd
—u2/2 —v?/2
T 1-0(K/o) K/c / /K w 21 21 T
z/a —u2/21 K au)
= 7~ du,
o V27 1—‘13(?)

hence
e (T) -0 (f

)
N - (%)b du. (35)

Clearly, the derivative of this expression with respect to z is 0 if and only if
(K —2)/b = K/c, that is, z = zpmin = K — bK/c. Plugging this value for z
into (35) shows that inf,cr Fx(2) — ®(z/a) + 1 = Pk, with Pk as defined
n (10). Moreover, Px > 0 because Fk(zmim) > 0, and Px < 1 because the
integrand in (35) is negative for u < zp,/a.

Finally, consider the case a > Zi]\ilpiai and K € R. This time, let
Z = (Zy,...,Zy) be a random vector which has the singular multivariate
normal distribution with density f/ [ f diy with respect to vo. Then a little
computation shows that (Z1,..., Zy_1) has a multivariate normal distribu-

Fi(z) = ®(z/a) =
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tion with mean 0 and a covariance matrix Y given by

( Uz‘z 1\{ o2
Y, = Z’j\zl’k# F forie{1,...,M — 1},
2
> k1 O
2 2
—0f0%
Zij:M—ZJQ fori,5 € {1,...,M — 1} with i # j,
\ k=1%%

where 0? = ¢;(1 — ¢;)a; for i € {1,..., M}. Similarly, every subvector of Z
of dimension less than M has a multivariate normal distribution.

By the definition (28) of Fg, zx + Y _,c; Z; has distribution function Fy-.
Since f; # B; for some 4,5 € {1,..., M}, we have || < M — 1. It follows
that ) .., Z; has a normal distribution with mean 0 and variance

Z o} Zk:l,k;éi oi +Z Z _01'2032' o (Zie[ U?)(Zi(;é] 01‘2)' (36)

M M = M
Py D/ i€l jel\{i} 2 k-1 O > im1 0%
By Remark 4.1(ii), A = Bnax and hence for i € {1,..., M},

/Bmaxpi(l - pz)az
(pz + ﬁmax(l - p'L))Q '

It follows that the variance (36) is equal to a?b?/c?, with a, b, and ¢ as defined
in (9). Furthermore, zx = a*K/c*. We conclude that Fy is the distribution
function of a normally distributed random variable with mean a*K/c? and
variance a?b?/c?, so that Fi(z) = ®(%5(z—a?K/c?)). Since a?b?/c* < a?, we
see that Fi(z) < ®(z/a) for small enough z. Hence Fi(z) — ®(z/a) attains
a minimum value which is strictly smaller than 0. This minimum is strictly
larger than —1 because Fx(z) > 0 for all z € R.

To find the minimum, we compute the derivative of Fi(z) — ®(z/a) with

respect to z. It is not difficult to verify that the minimum is attained for

01'2 = Cl<1 — Ci)Oéi =

b
Z = Zmin — K — _\/K2 + 2 log<c2/b2)7
c
from which it follows that inf,cg Fi(2) — ®(z/a) + 1 = Pk, with Py as

defined in (10). From the remarks above we know that 0 < Px < 1. O

4.2 Conditioning on exactly k, successes

For the sake of completeness, we finally treat the case of conditioning on
the total number of successes being equal to k,. The situation is not very
interesting here.
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Theorem 4.7. Let X,, be a random vector having the conditional distribution
of X,, conditioned on the event {¥, = k,}. Define Y, similarly. If all (3;
(i € {1,...,M}) are equal, then X,, and Y, have the same distribution for
every n > 1. Otherwise, supP(X, =Y;) — 0 as n — 0.

Proof. 1f all ; (i € {1,...,M}) are equal, then by Proposition 1.2 we have
that Xn and }A’n have the same distribution for every n > 1. If 3; # (3, for
some 7,7 € {1,..., M}, then it can be shown that Sup]P(Xn < Yn) — 0
as n — 00, by a similar argument as in the proof of Lemma 4.3; instead of
Theorem 3.7 use Lemma 3.1. O
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