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In [15℄, the authors initiated the study of dynami
al per
olation. Inthis model, with p �xed, the edges of G swit
h ba
k and forth a

ording toindependent 2 state Markov 
hains where 0 swit
hes to 1 at rate p and 1swit
hes to 0 at rate 1� p. In this way, if we start with distribution �p; thedistribution of the system is at all times �p. The general question studied in[15℄ was whether there 
ould exist atypi
al times at whi
h the per
olationstru
ture looks di�erent than at a �xed time.We re
ord here some of the results from [15℄; (i) for any graph G and forany p < p
(G), there are no times at whi
h per
olation o

urs, (ii) for anygraph G and for any p > p
(G), there are no times at whi
h per
olation doesnot o

ur, (iii) there exist graphs whi
h do not per
olate for p = p
(G), butnonetheless, for p = p
(G), there are ex
eptional times at whi
h per
olationo

urs, (iv) there exist graphs whi
h per
olate for p = p
(G), but nonethe-less, for p = p
(G), there are ex
eptional times at whi
h per
olation doesnot o

ur, and (v) for Zd with d � 19 with p = p
(Zd), there are no timesat whi
h per
olation o

urs. In addition, it has re
ently be shown in [23℄that for site per
olation on the triangular latti
e, for p = p
 = 1=2, there areex
eptional times at whi
h per
olation o

urs. Given this, a similar resultwould be expe
ted for Z2.The point of the present paper is to initiate a study of dynami
al per-
olation for intera
ting systems where the edges or sites 
ip at rates whi
hdepend on the neighbors. We point out that in a di�erent dire
tion su
hquestions in 
ontinuous spa
e, but without intera
tions, related to 
ontin-uum per
olation have been studied in [2℄.Ising model results. Pre
ise de�nitions of the following Ising modelmeasures and the sto
hasti
 Ising model will be given in Se
tion 2. Fix anin�nite graph G = (S;E). Let �+;�;h be the plus state for the Ising modelwith inverse temperature � and external �eld h on G (this is a probabilitymeasure on f�1; 1gS). Let 	+;�;h denote the 
orresponding sto
hasti
 Isingmodel; (this is a stationary 
ontinuous time Markov 
hain on f�1; 1gS withmarginal distribution �+;�;h). Let C+ (C�) denote the event that there existsan in�nite 
luster of sites with spin 1 (�1) and let C+t (C�t ) denote the eventthat there exists an in�nite 
luster of sites with spin 1 (�1) at time t. It isknown that the family �+;�;h, is, for �xed �, sto
hasti
ally in
reasing (to bede�ned later) in h.Theorem 1.1 Consider a graph G = (S;E) of bounded degree. Fix � � 0and let h
 = h
(�) be de�ned byh
 := inffh : �+;�;h(C+) = 1g:Then for all h > h
, 	+;�;h(C+t o

urs for every t) = 12



and for all h < h
 	+;�;h(9t � 0 : C+t o

urs ) = 0:If we modify h
 to be insteadh0
 := supfh : �+;�;h(C�) = 1g;the same two 
laims hold with C+t repla
ed by C�t and with h < h0
 and h > h0
reversed.This result tells us what happens in the sub
riti
al and super
riti
al
ases (with respe
t to h with � held �xed). It is the analogue of the easierProposition 1.1 in [15℄ where it is proved that if p < p
 (p > p
), then, withprobability 1, there is per
olation at no time (at all times).The following easy lemma gives us information about when h
 is non-trivial.Lemma 1.2 Assume the graph G has bounded degree and let � be arbitrary.Then h
 > �1. If p
(site) < 1, then h
 < 1. Similar results hold if h
 isrepla
ed by h0
.The following theorems, where we restri
t to Zd, will only dis
uss the
ase h = 0. However, this will in many 
ases give us information about the\
riti
al" 
ase (�; h
(�)) sin
e in a number of situations, h
(�) = 0. Forexample, this is true on all Zd with d � 2 and � suÆ
iently large. Wealso mention that while the relationship between h
 and h0
 in Theorem 1.1might in general be 
ompli
ated, for Zd, one easily has that h
 = �h0
; thisfollows from the known fa
t that the plus and minus states are the samewhen h 6= 0. When h = 0, we will abbreviate �+;�;0 by �+;� and 	+;�;0 by	+;�. We point out that while �+;�;h is sto
hasti
ally in
reasing in h for�xed �; there is no su
h monotoni
ity in � for �xed h; not even for h = 0:Therefore we must use a di�erent approa
h in the latter 
ase.We �rst study per
olation of �1's and then per
olation of 1's. Let�p(2) := inff� : 1Xl=1 l3l�1e�2�l <1g = log 32 :We will refer to �p(2) as the 
riti
al inverse temperature of the Peierls regimefor Z2. The 
hoi
e of �p(2) might at �rst look quite arbitrary, but it isexa
tly what is needed to 
arry out a 
ontour argument (known as Peierlsargument) for Z2. For d � 3, there is a �p(d), su
h that for � larger than�p(d), a similar (although topologi
ally more 
ompli
ated) argument worksfor Zd: As a result of this \
ontour argument", it is well known and easy toshow that for � > �p(d); we have that�+;�(C�) = 0: (1)3



Our next result is a dynami
al version of (1) and we emphasize thatthis 
orresponds to the 
riti
al 
ase as it is easy to 
he
k that for these �'s,h
(�) = 0.Theorem 1.3 For Zd with d � 2 and � > �p(d)	+;�(9t � 0 : C�t o

urs) = 0:It is well known that �p(d) � �
(d), the latter being the 
riti
al inversetemperature for the Ising model on Zd. For d = 2, Theorem 1.3 
an beextended down to the 
riti
al inverse temperature �
(2). First, it is known(see [5℄) that on Z2, for all � �+;�(C�) = 0: (2)Our dynami
al analogue for � > �
 is the following where we again pointout that this is also a 
riti
al 
ase as it is easy to 
he
k that for these �'s,we also have h
(�) = 0.Theorem 1.4 For the sto
hasti
 Ising model 	+;� on Z2 with parameter� > �
; 	+;�(9t � 0 : C�t o

urs) = 0:Interestingly, (1) is not always true for � > �
(d) although, as stated, itis true for Z2 or � suÆ
iently large. In [1℄, it is shown that for Zd with larged; there exists �+ > �
(d) su
h that the probability in (1) is in fa
t 1 for all� < �+: Moreover, they show that for these �; there exists h > 0 with�+;�;h(C�) = 1:For su
h �'s, this means that h0
 > 0 and hen
e it immediately follows fromTheorem 1.1 that 	+;�(C�t o

urs for every t) = 1:Note that for these values of �, the 
ase h = 0 is a non-
riti
al 
ase.We next look at per
olation of 1's under �+;�. In the above results, wehave not dis
ussed the 
ase of per
olation of �1's when � � �
. However,by symmetry, this is the same as studying per
olation of 1's in this 
ase andso we 
an now move over to the study of C+.First, it is well known that for any graph of bounded degree, �+;�;h 6=��;�;h) �+;�;h(C+) = 1: (This is proved in [3℄ for Zd; this argument extendsto any graph of bounded degree.) In parti
ular, for any graph G of boundeddegree and for � > �
(G), �+;�(C+) = 1: (3)4



Our next result is a dynami
al version of (3) for Zd. We mention thatthis result sometimes 
orresponds to a 
riti
al 
ase and sometimes not. For� > �p(d) in Zd or � > �
(2) in Z2, we have seen that h
 = 0 and so, inthese 
ases, this next result 
overs the 
riti
al 
ase. However, as pointedout, for d large and � just a little higher than �
, the result in [1℄ gives usthat h
 < 0 and hen
e in this 
ase, this next theorem already follows fromTheorem 1.1.Theorem 1.5 For the sto
hasti
 Ising model 	+;� on Zd with parameter� > �
(d); 	+;�(C+t o

urs for every t) = 1:(The proof we give a
tually works for any graph of bounded degree).We mention that while � > �
 is a suÆ
ient 
ondition for (3) to hold, it is
ertainly not ne
essary. For example, on Z3 we have that �+;0(C+) = 1 sin
e�+;0 = �1=2 and the 
riti
al value for site per
olation on Z3 is less than 1=2.The reason �
 appears is the 
onne
tion between the Ising model and therandom 
luster model; �
 
orresponds to the 
riti
al value for per
olation inthe 
orresponding random 
luster model (see [13℄).We are now left with the 
ase � � �
. We will not be able to say toomu
h sin
e it is not known in all 
ases whether one has per
olation at a�xed time. We �rst however have the following easy result for d � 3. Wedo not prove this result sin
e it follows easily from the fa
t that the 
riti
alvalue for site per
olation on Zd is less than 1=2 for d � 3 as this gives easilythat h
(�) < 0 for � suÆ
iently small and hen
e Theorem 1.1 is appli
able.Note that the 
ase � = 0 follows from the result in [15℄ mentioned above.Proposition 1.6 For d � 3, there exists �1(d) > 0 su
h that for all � <�1(d), we have that 	+;�(C+t o

urs for every t) = 1:Finally, due to work of Higu
hi, we 
an determine what happens with� < �
 for Z2. It is shown in [16℄ that for Z2, for all � < �
, we have thath
(�) > 0. The following result follows from this fa
t and Theorem 1.1.Theorem 1.7 For d = 2, for all � < �
, we have that	+;�(9t � 0 : C+t o

urs ) = 0:We note that even though it is known that for Z2, �+;�
(C+) = 0, we
annot 
on
lude that 	+;�
(9t � 0 : C+t o

urs ) = 0sin
e it is known (see [17℄) that h
(�
) = 0. In 
ontrast, based on the resultsin [23℄, it is interesting to ask 5



Question 1.8 For the graph Z2, is it the 
ase that	+;�
(9t � 0 : C+t o

urs ) = 1?We �nally mention that interestingly it is also known (see again [17℄)that for � < �
, �+;�;h
(�)(C+) = 0.Conta
t pro
ess results. Pre
ise de�nitions of the following itemswill be given in Se
tion 2. Fix an in�nite graph G = (S;E). Consider the
onta
t pro
ess on a graph G = (S;E) with parameter �. Denote by ��the sto
hasti
ally largest invariant measure, the so-
alled \upper invariantmeasure" (this is a probability measure on f0; 1gS). Let 	� denote the
orresponding stationary 
onta
t pro
ess (this is a stationary 
ontinuoustime Markov 
hain on f0; 1gS with marginal distribution ��). If 0 < �1 < �2;it is well known that ��1 is sto
hasti
ally smaller than ��2 , denoted by��1 � ��2(see Se
tion 2 for this pre
ise de�nition).Theorem 1.9 Consider the 
onta
t pro
ess 	� on a graph G = (S;E); withinitial and stationary distribution ��. Let �p be de�ned by�p := inff� : ��(C+) = 1g:We have that for all � > �p;	�(C+t o

urs for every t) = 1:In order for this theorem to be nonva
uous, we need to know that �p <1 for at least some graph. First, the fa
t that there exists � su
h that��(C+) > 0 for Td with d � 2 follows from [12℄. Here Td is the uniquein�nite 
onne
ted graph without 
ir
uits and in whi
h ea
h site has exa
tlyd + 1 neighbours; Td is 
ommonly known as the homogenous tree of orderd: Combined with a 0-1 law whi
h we develop, Proposition 4.2, we obtainthat �p <1 in this 
ase. For Zd with d � 2 (as well as for Td), it is provedin [22℄ that for large �, �� sto
hasti
ally dominates high density produ
tmeasures whi
h immediately implies that �p <1 in these 
ases.When we prove Theorem 1.1, we will in fa
t, prove a more general the-orem whi
h holds for a large 
lass of systems. However, this proof will onlywork for models satisfying the so-
alled FKG latti
e 
ondition (whi
h we
all \monotone" in this paper.) We now point out the important fa
t thatfor � < 2, in 1 dimension, the upper invariant measure for the 
onta
t pro-
ess, while having positive 
orrelations, is not monotone (see [20℄). Theseterms are de�ned in Se
tion 2. (One would also believe it is never monotonewhenever the measure is not Æ0.) Hen
e Theorem 1.9 does not follow fromthe generalization of Theorem 1.1 whi
h will 
ome later.6



�-movability. We now introdu
e the 
on
epts of upwards and down-wards �-movability. While we mainly introdu
e these as a te
hni
al tool tobe used in our main results, it turns out that they are of interest in theirown right. In [4℄, the 
on
ept of upwards movability is studied for its ownsake and related to other well studied 
on
epts su
h as uniform insertiontoleran
e.Let S be a 
ountable set. Take any probability measure � on f�1; 1gSand let X be a f�1; 1gS valued random variable with distribution �. LetZ be a f�1; 1gS valued random variable with distribution �1�� and be in-dependent of X: De�ne X(�;�) by letting X(�;�)(s) = min(X(s); Z(s)) forevery s 2 S; and let �(�;�) denote the distribution of X(�;�): In a similar way,de�ne X(+;�) by letting X(+;�)(s) = max(X(s); Z(s)) for every s 2 S; whereZ has distribution �� and is independent of X. Denote the distribution ofX(+;�) by �(+;�):De�nition 1.10 Let (�1; �2) be a pair of probability measures on f�1; 1gS ;where S is a 
ountable set. Assume that�1 � �2:If �1 � �(�;�)2 ;then we say that this pair of probability measures is downwards �-movable.If the pair is downwards �-movable for some � > 0, we say that the pair isdownwards movable. Analogously, if�(+;�)1 � �2;then we say that the pair (�1; �2) is upwards �-movable and that it is upwardsmovable if the pair is upwards �-movable for some � > 0.For probability measures on f0; 1gS ; we have identi
al de�nitions.The relevan
e of downward (or upward) �-movability to our dynami
alper
olation analysis will be explained in Se
tion 5. In Se
tion 3, we willprove �-movability for general monotone systems whi
h will eventually leadto a proof of Theorem 1.1 (and its generalization). We now state a similarand key result for the 
onta
t pro
ess.Theorem 1.11 Let G be a graph of bounded degree, 0 < �1 < �2 and��1 ; ��2 be the upper invariant measures for the 
onta
t pro
ess on f0; 1gSwith parameters �1 and �2 respe
tively. Then (��1 ; ��2) is downwards mov-able.
7



We �nally mention how the above questions that we study fall into the
ontext of 
lassi
al Markov pro
ess theory. Let (
;F ;P) be the probabilityspa
e where a stationary Markov pro
ess fXtgt�0 taking values in somestate spa
e S is de�ned. Letting � denote the distribution of Xt (for any t),
onsider an event A � S with �(A) = 1. Let At be the event that A o

ursat time t: We say that A is a dynami
aly stable event if P(At 8t � 0) = 1:In Markov pro
ess terminology, this is equivalent to saying that A
 has
apa
ity zero. All the questions in this paper deal with showing, for variousmodels and parameters, that the event that there exists/there does not existan in�nite 
onne
ted 
omponent of sites whi
h are all open is dynami
allystable.The rest of this paper is divided into 9 se
tions. In Se
tion 2, wewill give all ne
essary preliminaries and pre
ise de�nitions of our models.Se
tions 3 and 4 will deal with the 
on
ept of �-movability. In Se
tion 3, wedevelop what will be needed to prove Theorem 1.1 and its generalization.In Se
tion 4, we will prove Theorem 1.11 (whi
h is the key to Theorem1.9) as well as give a proof that �p < 1 for trees. In Se
tion 5, we prove2 elementary lemmas whi
h relate the notion of �-movability to dynami
alquestions. In the remaining se
tions, proofs of the remaining results aregiven. We note that the proof of Theorem 1.4 will use the proof of Theorem1.5 and hen
e will 
ome afterwards.We end with one bit of notation. If � is a probability measure on someset U , we write X � � to mean that X is a random variable taking valuesin U with distribution �.2 Models and de�nitionsBefore presenting the intera
ting parti
le systems dis
ussed in this paper wewill present some de�nitions and results related to sto
hasti
 domination.Let S be any 
ountable set. For �; �0 2 f�1; 1gS we write � � �0 if �(s) ��0(s) for every s 2 S: An in
reasing fun
tion f is a fun
tion f : f�1; 1gS ! Rsu
h that f(�) � f(�0) for all � � �0: For two probability measures �; �0 onf�1; 1gS we write � � �0 if for every 
ontinuous in
reasing fun
tion f wehave that �(f) � �0(f): (�(f) is shorthand for R f(x)d�(x).) When f�1; 1gSis repla
ed by f0; 1gS ; we have identi
al de�nitions. Strassens Theorem (see[19℄, page 72) states that if � � �0, then there exist random variables X;X 0with distribution �; �0 respe
tively su
h that X � X 0 a.s.A very useful result is the so 
alled Holley's inequality, whi
h appeared�rst in [18℄. We will present a variant of the theorem by Holley; it is notthe most general but is suÆ
ient for our purposes.Theorem 2.1 Take S to be a �nite set. Let �, �0 be probability measures onf�1; 1gS whi
h assign positive probability to all 
on�gurations � 2 f�1; 1gS :8



Assume that�(�(s) = 1j�(S n s) = �) � �0(�(s) = 1j�(S n s) = �0)for every s 2 S and � � �0 where �; �0 2 f�1; 1gSns: Then � � �0:Proof. See [9℄ or [13℄ for a proof. QEDTwo properties of probability measures whi
h are often en
ounteredwithin the �eld of intera
ting parti
le systems are the monotoni
ity propertyand the property of positive 
orrelations presented below.De�nition 2.2 Take S to be a �nite set. A probability measure � onf�1; 1gS whi
h assigns positive probability to every � 2 f�1; 1gS is 
alledmonotone if for every s 2 S and � � �0 where �; �0 2 f�1; 1gSns;�(�(s) = 1j�(S n s) = �) � �(�(s) = 1j�(S n s) = �0):We point out immediately, that it is known that this is equivalent to theso-
alled FKG latti
e 
ondition.De�nition 2.3 A probability measure � on f�1; 1gS is said to have positive
orrelations if for all bounded in
reasing fun
tions f; g : f�1; 1gS ! R, wehave �(fg) � �(f)�(g):The following important result is sometimes known as the FKG inequal-ity (see [7℄).Theorem 2.4 Take S to be a �nite set. Let � be a monotone probabilitymeasure on f�1; 1gS whi
h assigns positive probability to every 
on�gura-tion. Then � has positive 
orrelations.Proof. This was originally proved in [7℄, see also [9℄ for a proof. QEDIn this se
tion and also later in this paper we will talk about 
onvergen
eof probability measures. Convergen
e will always mean weak 
onvergen
e,where f0; 1gS is given the produ
t topology.
9



2.1 The Ising modelTake G = (S;E); where jSj <1: The Ising measure ��;h on f�1; 1gS at in-verse temperature � � 0; external �eld h and with free boundary 
onditionsis de�ned as follows. For any 
on�guration � 2 f�1; 1gS ; letH�;h(�) = �� Xft;t0g2Et;t02S �(t)�(t0)� hXt2S �(t): (4)H�;h is 
alled the Hamiltonian. De�ne ��;h by assigning the probability��;h(�) = e�H�;h(�)Z (5)to any 
on�guration � 2 f�1; 1gS where Z is a normalization 
onstant. Of
ourse Z depends on the graph and the values � and h, but this will not beimportant for us and therefore not re
e
ted in the notation.Take Sn := �n+1 = f�n � 1; : : : ; n + 1gd and En to be the set of allnearest neighbor pairs of Sn: Given a 
on�guration � on f�1; 1gZdn�n ; let,for � 2 f�1; 1g�n ;H�;�;hn (�) = �� Xft;t0g2Ent;t02�n �(t)�(t0)� h Xt2�n �(t)� � Xft;t0g2Ent2�nt02�n+1n�n �(t)�(t0) (6)be our Hamiltonian. Here � is 
alled a boundary 
ondition. Again we de�nea probability measure using (5) but using the Hamiltonian of (6) instead.This Ising measure will be denoted by ��;�;hn : The 
ases � � 1 and � � �1are espe
ially important and the 
orresponding Ising measures are denotedby �+;�;hn and ��;�;hn respe
tively. We view �+;�;hn (��;�;hn ) as a probabilitymeasure on f�1; 1gZd by letting, with probability 1, the 
on�guration beidenti
ally 1 (�1) outside �n. It is known (see [19℄, page 189) that thesequen
es f�+;�;hn g and f��;�;hn g 
onverge as n tends to in�nity; these limitsare denoted by �+;�;h and ��;�;h.The same kind of 
onstru
tion 
an be 
arried out on any in�nite 
on-ne
ted lo
ally �nite graph G = (S;E): One de�nes a Hamiltonian analogousto the one in (6) but with �n repla
ed by any � � S where j�j <1: With� � 1 or � � �1, one then 
onsiders the 
orresponding limits of Ising mea-sures as � " S; the limit turning out to be independent of the parti
ular
hoi
e of sequen
e. See for instan
e [9℄ for how this is 
arried out in detail.Fix h = 0 and abbreviate �+;�;0 and ��;�;0 by �+;� and ��;�. It is wellknown ([8℄, [9℄) that for any graph, there exists �
 2 [0;1℄ su
h that for0 � � < �
, we have that ��;� = �+;� (and there is then a unique so 
alledGibbs state) and for � > �
, ��;� 6= �+;�: For Zd with d � 2; and manyother graphs, �
 2 (0;1): �
 is sometimes referred to as the 
riti
al inverse10



temperature for phase transition in the Ising model. Furthermore in [14℄,the author shows that if G is of bounded degree, the 
ondition �
 < 1 isequivalent to the 
ondition p
 < 1; where p
 is the 
riti
al parameter valuefor site per
olation on G: It is easy to see that for any graph of boundeddegree p
 > 0 (see the proof of Theorem 1.10 of [10℄). This in turn impliesvia the 
onne
tion between the random 
luster model and the Ising model,des
ribed below, that �
 > 0 for any graph of bounded degree.2.2 Spin Systems.A 
on�guration � 2 f�1; 1gS 
an be seen as parti
les on a dis
rete set Shaving one of two di�erent \spins" represented by �1 and 1: To this wewill add a sto
hasti
 dynami
s, and assume that the system is des
ribedby \
ip rate intensities" whi
h we will denote by fC(s; �)gs2S; �2f�1;1gS :C(s; �) represents the rate at whi
h site s 
hanges its state when the present
on�guration is �: Of 
ourse C(s; �) � 0 8s 2 S; � 2 f�1; 1gS ; and weassume that the intera
tion is nearest neighbour in the sense that the 
iprate of a site s 2 S only depends on the 
on�guration � at s and at sites twith fs; tg 2 E: We will limit ourselves to only allow one site 
ip in everytransition and we will only 
onsider 
ip rate intensities su
h thatsups;� C(s; �) <1:In many 
ases we will 
onsider translation invariant systems and then thislast 
ondition will hold trivially. Furthermore we will always assume thetrivial 
ondition that for every s 2 Ssup�:�(s)=0C(s; �(s)) > 0; sup�:�(s)=1C(s; �(s)) > 0:We will 
all su
h an obje
t a spin system (see [19℄ or [6℄ for results 
on
erninggeneral spin systems). Given su
h rates, one 
an obtain a Markov pro
ess	 on f�1; 1gS governed by these 
ip rates; see [19℄. Su
h a Markov pro
esswith a spe
i�ed initial distribution � on f�1; 1gS will be denoted by 	�:Given a Markov pro
ess, � will be 
alled an invariant distribution for thepro
ess if the proje
tions of 	� onto f�1; 1gS at any �xed time t � 0 is�: In this 
ase, 	� will be a stationary Markov pro
ess on f�1; 1gS all ofwhose marginal distributions are �: Of 
ourse the state spa
e f�1; 1gS 
anbe ex
hanged for either f0; 1gS or f0; 1gE .Sometimes we will work with two di�erent sets of 
ip ratesfC1(s; �)gs2S; �2f�1;1gS and fC2(s; �)gs2S; �2f�1;1gS ; governing two Markovpro
esses 	1 and 	2 respe
tively. We will write C1 � C2 if the following
onditions are satis�ed;C2(s; �2) � C1(s; �1) 8s 2 S; 8�1 � �2 s.t. �1(s) = �2(s) = 0; (7)11



and C1(s; �1) � C2(s; �2) 8s 2 S; 8�1 � �2 s.t. �1(s) = �2(s) = 1: (8)The point of C1 � C2 is that a 
oupling of 	1 and 	2 will then exist forwhi
h f(�; Æ) : �(s) � Æ(s)8s 2 Sg is invariant for the pro
ess; see [19℄.2.3 Sto
hasti
 Ising modelsWe will now brie
y dis
uss sto
hasti
 Ising models. We will omit mostdetails; for an extensive dis
ussion and analysis see again [19℄. ConsiderGn = (Sn; En) de�ned in the subse
tion 2.1. Given � and h, it is possibleto 
onstru
t 
ip rates C+n on f�1; 1gSn for whi
h �+;�;hn is reversible andinvariant. We denote by 	+;�;hn the 
orresponding stationary Markov pro
esswith initial distribution �+;�;hn : One possible 
hoi
e of 
ip rate intensities arethat for every s 2 �n and � 2 f�1; 1gS ;C+n (s; �) = exp[��( Xt2�n:ft;sg2En �(t)�(s) + Xt2�n+1n�n:ft;sg2En �(s))� h�(s)℄:Sites in �n+1 n �n are kept �xed at 1. Observe that if s 2 �n�1; the se
ondsum is over an empty set. A straightforward 
al
ulation givesC+n (s; �)�+;�;hn (�) = C+n (s; �s)�+;�;hn (�s); (9)where �s(t) = � �(t) if t 6= s��(t) if t = s:This shows that indeed �+;�;hn is reversible and invariant for C+n . Any familyof spin rates satisfying (9) is 
alled a sto
hasti
 Ising model (on our �niteset). One 
an show that there exists a limiting distribution 	+;�;h of 	+;�;hnwhen n tends to in�nity; see [19℄, Theorem 2.2, page 17 and Theorem 2.7,page 139. Furthermore 	+;�;h is a stationary Markov pro
ess on f�1; 1gZdwith marginal distribution �+;�;h governed by 
ip rate intensitiesC(s; �) = exp(�� Xt2Zd:ft;sg2E �(t)�(s) � h�(s)); (10)see [19℄ Theorem 2.7 page 139. It is also possible to 
onstru
t 	+;�;h dire
tlyon f�1; 1gZd without going through the limiting pro
edure. Furthermorethere are several possible 
hoi
es of 
ip rate intensities that 
an be usedto 
onstru
t a stationary and reversible Markov pro
ess on f�1; 1gZd withmarginal distribution �+;�;h: In [19℄, a sto
hasti
 Ising model is de�ned to be12



any spin system with 
ip rate intensities fC(s; �)gs2Zd;�2f�1;1gZd satisfyingthat for ea
h s 2 ZdC(s; �) exp(� Xft;sg2Et2Zd �(t)�(s) + h�(s)) (11)is independent of �(s): Therefore, when we refer to a sto
hasti
 Ising model	+;�;h with marginal distribution �+;�;h, we will have this de�nition in mind.It is parti
ularly easy to see that (11) (or the 
ondition of detailed balan
eas it is often referred to) is satis�ed for the 
ip rate intensities of (10) butthere are many other rates satisfying this. It is known that the set of so
alled Gibbs states are exa
tly the same as the 
lass of reversible measureswith respe
t to the 
ip rates satisfying (11); see [19℄ page 190-196: Note alsothat the 
ondition spe
i�ed in (11) with Zd repla
ed by �n is equivalent tothat of (9) (modi�ed with the boundary 
ondition removed).While we de�ned above sto
hasti
 Ising models on f�1; 1gZd; this 
on-stru
tion 
an be done on more general graphs (see [19℄).2.4 The random 
luster modelUnlike all other models in this paper, the random 
luster model deals with
on�gurations on the edges E of a graph G = (S;E): We will review thede�nition of the regular random 
luster measure on general �nite graphsand the \wired" random 
luster measure on �n � Zd: We will also re
allthe limiting measures and in the next subse
tion the 
onne
tion betweenthe random 
luster model and the Ising model. In doing so we will followthe outlines of [9℄ and [13℄ 
losely.Take a �nite graph G = (S;E): De�ne the random 
luster measure �p;qGon f0; 1gE with parameters p 2 [0; 1℄ and q > 0 as the probability measurewhi
h assigns to the 
on�guration � 2 f0; 1gE the probability�p;qG (�) = qk(�)Z Ye2E p�(e)(1� p)1��(e): (12)Here Z is again a normalization 
onstant and k(�) is the number of 
onne
ted
omponents of �: From now on we will always take q = 2 and therefore wewill suppress q in the notation.Take Gn = (Sn; En); where Sn = �n+1 � Zd and En is the set of allnearest neighbour pairs of �n+1: Write �pn for �pGn ; and de�ne~�pn(�) = �pn(�j all edges of En with both end sites in �n+1 n �n are present):(13)This is the so 
alled \wired" random 
luster measure. It is 
alled \wired"sin
e all edges of the boundary are present. It is immediate from the de�ning13



equations (12) and (13) that for e 2 En and any � 2 f0; 1gEnne~�pn(�(e) = 1j�(En n e) = �) = 8<: p; if the endpoints of e are
onne
ted in �;p2�p otherwise. (14)One 
an show (see [9℄ or [13℄) that when n tends to in�nity, the probabil-ity measures f~�pngn2N+ 
onverge to a probability measure ~�p: Furthermore,the 
onstru
tion of ~�pn on f0; 1gEn 
an be done on any �nite subgraph by
onne
ting all sites of the boundary of the graph with ea
h other. As a
onsequen
e, we 
an also de�ne random 
luster measures on more generalgraphs than Zd; see for example [11℄.2.5 The random 
luster model and the Ising modelTake Gn = (Sn; En) as in Se
tion 2.4. As in [13℄, let Ppn be the probabilitymeasure on f�1; 1; gSn � f0; 1gEn de�ned in the following way.1. Assign ea
h site of �n+1 n �n and every edge with both endpoints in�n+1 n �n the value 1.2. Assign ea
h site of �n the value 1 or �1 with equal probability, assignea
h edge with not more than one endpoint in �n+1 n �n the value 0or 1 with probabilities 1� p and p respe
tively. Do this independentlyfor all sites and edges.3. Condition on the event that no two sites with di�erent spins have anopen edge 
onne
ting them.One 
an then 
he
k that Ppn(�; f0; 1gEn ) = �+;�n (�) with � = � log(1 �p)=2; and that Ppn(f�1; 1gSn ; �) = ~�pn(�): Here, Ppn(�; f0; 1gEn ) is just themarginal in the �rst 
oordinate of Ppn: The same kind of 
onstru
tion 
anbe 
arried out on any �nite graph G = (S;E):2.6 The 
onta
t pro
essConsider a graph G = (S;E) of bounded degree. In the 
onta
t pro
ess thestate spa
e is f0; 1gS . Let � > 0; and de�ne the 
ip rate intensities to beC(s; �) = 8<: 1 if �(s) = 1� X(s0;s)2E �(s0) if �(s) = 0:If we let the initial distribution be � � 1; the distribution of this pro
essat time t whi
h we will denote by Æ1T�(t) is known to 
onverge as t tendsto in�nity. This is simply be
ause it is a so 
alled \attra
tive" pro
ess and� � 1 is the maximal state and fÆ1T�(t)g is sto
hasti
ally de
reasing; see14



[19℄ page 265. This limiting distribution will be referred to as the upperinvariant measure for the 
onta
t pro
ess with parameter � and will bedenoted by ��: We then let 	� denote the stationary Markov pro
ess onf0; 1gS with initial (and invariant) distribution ��:3 �-movability for monotone measuresIn this se
tion, we prove movability results for 
lasses of monotone measures.The �nite 
ase is 
overed by Lemma 3.3, while the 
ountable 
ase is dis
ussedin Proposition 3.4. In this se
tion, we will always assume that our measureshave full support.For any jSj < 1; s 2 S, � 2 f0; 1gSns and probability measure � onf0; 1gS write �(�;�)(ij�) for �(�;�)(�(s) = ij�(S n s) = �); �(�;�)(i \ �) for�(�;�)(f�(s) = ig\f�(S ns) = �g) and �(�;�)(�) for �(�;�)(�(S ns) = �): Here,� 
an represent either + or � and i 2 f0; 1g: Note that s is suppressed inthe notation and so should be understood from 
ontext.We begin with an easy lemma whose proof is left to the reader. Theidea is that if the 
on�guration outside of s is � under �(�;�), it must havebeen at least as large under � \before 
ipping some 1's to 0's"; then usemonotoni
ity.Lemma 3.1 Assume that � is a monotone probability measure on f0; 1gSwhere jSj < 1: Take s 2 S and let � 2 f0; 1gSns: Then, for any � > 0; wehave that �(�;�)(1j�) � (1� �)�(1j�)and that �(+;�)(0j�) � (1� �)�(0j�):The next lemma will be used to prove lemma 3.3.Lemma 3.2 Assume that � is a monotone probability measure on f0; 1gSwhere jSj <1: For any � > 0; �(�;�) is also monotone.Proof. Let s 2 S be arbitrary, X � � and X(�;�) � �(�;�): For any Æ; � 2f0; 1gSns de�ne the probability measures �Æ and �� on f0; 1gSns by letting�Æ(A) = P(X 2 AjX(�;�)(S n s) � Æ) and ��(A) = P(X 2 AjX(�;�)(S n s) ��) for every event A in f0; 1gSns; respe
tively. We will prove that�Æ � �� 8Æ � �: (15)This will give us (sin
e P(X(s) = 1jX(S n s) � �) is an in
reasing fun
tionof �) thatP(X(�;�)(s) = 1jX(�;�)(S n s) � �)15



= (1� �)Z~�2f0;1gSns P(X(s) = 1jX(S n s) � ~�)d��(~�)� (1� �)Z~�2f0;1gSns P(X(s) = 1jX(S n s) � ~�)d�Æ(~�)= P(X(�;�)(s) = 1jX(�;�)(S n s) � Æ):Sin
e s was 
hoosen arbitrarily this would prove the statement.We now prove (15). De�ne for � � ~� d(~�; �) := jft 2 S n s : ~�(t) =1gj � jft 2 S n s : �(t) = 1gj and d(~�; 0) = jft 2 S n s : ~�(t) = 1gj: Herej � j denotes 
ardinality. Let �Sns(�) = P(X(S n s) � �) and de�ne �(�;�)Snssimilarly. We have that for � � ~� :��(~�) (16)= P(X(�;�)(S n s) � �jX(S n s) � ~�) �Sns(~�)�(�;�)Sns (�)= �d(~�;�)(1� �)d(�;0) �Sns(~�)�(�;�)Sns (�) : (17)It is well known that � being monotone implies that for every ~Æ; ~��Sns(~� _ ~Æ)�Sns(~� ^ ~Æ) � �Sns(~�)�Sns(~Æ): (18)By a simple modi�
ation of Theorem 2.9 pg 75 of [19℄, it is enough for usto show that ��(~� _ ~Æ)�Æ(~� ^ ~Æ) � ��(~�)�Æ(~Æ) (19)for all ~� � � and ~Æ � Æ to show (15). An elementary 
al
ulation shows thatd(~� _ ~Æ; �) + d(~� ^ ~Æ; Æ) = d(~�; �) + d(~Æ; Æ): (20)We therefore get��(~� _ ~Æ)�Æ(~� ^ ~Æ)= �d(~�_~Æ;�)+d(~�^~Æ;Æ)(1� �)d(�;0)+d(Æ;0) �Sns(~� _ ~Æ)�(�;�)Sns (�) �Sns(~� ^ ~Æ)�(�;�)Sns (Æ)� �d(~�;�)+d(~Æ;Æ)(1� �)d(�;0)+d(Æ;0) �Sns(~�)�(�;�)Sns (�) �Sns(~Æ)�(�;�)Sns (Æ) = ��(~�)�Æ(~Æ);where (16) is used in the �rst and last equality and equations (18) and (20)are used in the inequality. QED16



Lemma 3.3 Let �1; �2 be probability measures on f0; 1gS where jSj < 1:Assume that �2 is monotone and thatA := infs2S�2f0;1gSns [�2(�(s) = 1j�(S n s) � �)� �1(�(s) = 1j�(S n s) � �)℄ > 0:Then for any 
hoi
e of � > 0; su
h thatA > 11� � � 1;we have �1 � �(�;�)2 :Hen
e (�1; �2) is downwards movable.Proof. Monotoni
ity of �2, Lemma 3.1, the de�nition of A and our 
hoi
eof � give us that for any s 2 S and � 2 f0; 1gSns�(�;�)2 (1j�)� (1� �)�2(1j�) � (1� �)(A+ �1(1j�))� (1� �)�1(1j�)1� � = �1(1j�):By Lemma 3.2, �(�;�)2 is monotone and so 8~� � �,�1(1j~�) � �(�;�)2 (1j~�) � �(�;�)2 (1j�):The proof is 
ompleted by the use of Holley's inequality, Theorem 2.1.QEDProposition 3.4 Let S be any �nite or 
ountable set and 
onsider(Sn)n2N+ ; a 
olle
tion of sets su
h that jSnj < 1 8n 2 N+ and Sn " S:Let (�1;n)n2N+ ; (�2;n)n2N+ ; be two 
olle
tions of probability measures, where�1;n; �2;n are probability measures on f0; 1gSn for every n 2 N+ . Further-more, assume that all of the probability measures (�1;n)n2N+ ((�2;n)n2N+ )are monotone, that �1;n ! �1 and that �2;n ! �2: SetAn := infs2Sn�2f0;1gSnns [�2;n(�(s) = 1j�(S n s) � �)� �1;n(�(s) = 1j�(S n s) � �)℄:If infn2N+ An > 0;then (�1; �2) is upwards (downwards) movable.17



Proof. Take � > 0 su
h thatinfn2N+ An > 11� � � 1:With this 
hoi
e of �; Lemma 3.3 says that (�1;n; �2;n) is upwards (down-wards) �-movable. Sin
e �1;n ! �1 and �2;n ! �2 we easily get that�(�;�)2;n ! �(�;�)2 and �(+;�)1;n ! �(+;�)1 : Furthermore sin
e the relations�1;n � �(�;�)2;nand �(+;�)1;n � �2;nare easily seen to be preserved under weak limits, we get that�1 � �(�;�)2 and �(+;�)1 � �2: QED4 �-movability for the 
onta
t pro
ess and a 0-1LawThe 
onditions in our next proposition might seem overly te
hni
al; however,these represent the essential features of the 
onta
t pro
ess (after a smallsuitable time res
aling) and therefore we feel it is instru
tive to highlightthese features. In Proposition 4.1 and Lemmas 5.1, 5.2 and 8.1 we willuse the so-
alled graphi
al representation to de�ne our pro
esses; see forinstan
e [19℄ page 172.Proposition 4.1 Let �1 and �2 be two probability measures de�ned onf0; 1gS ; where S is a 
ountable set. Assume that �1 � �2 and that thereexists two stationary Markov pro
esses 	1 and 	2; governed by 
ip rateintensities fC1(s; �1)gs2S;�12f0;1gS and fC2(s; �2)gs2S;�22f0;1gS respe
tively,and with marginal distributions �1 and �2: Assume that C1 � C2 (
onditions(7) and (8) of the introdu
tion). Consider the following 
onditions;1. There exists an �1 > 0 su
h thatC2(s; �2)� C1(s; �1) � �1 (21)8s 2 S; 8�2 � �1 s.t. �2(s) = 0 and C1(s; �1) 6= 0:2. There exists an �2 > 0 su
h thatC1(s; �1)� C2(s; �2) � �2 (22)8s 2 S; 8�2 � �1 s.t. �1(s) = 1 and C2(s; �2) 6= 0:18



3. There exists an �3 > 0 su
h thatC1(s; �1) � �3 8s 2 S; 8�1 s.t. �1(s) = 1; (23)4. There exists an �4 > 0 su
h thatC2(s; �2) � �4 8s 2 S; 8�2 s.t. �2(s) = 0: (24)If 
onditions 1 2 and 3 are satis�ed, then (�1; �2) is downwards movable.If 
onditions 1 2 and 4 are satis�ed, then (�1; �2) is upwards movable.Proof. We will prove the �rst statement, the se
ond follows by symmetry.De�ne � := sups;�2:�2(s)=0C2(s; �2) + sups;�1:�1(s)=1C1(s; �1):Our aim is to 
onstru
t a 
oupling of the pro
esses fX1;tgt�0 � 	1 andfX2;tgt�0 � 	2 su
h that X1;t � X2;t 8t � 0 in su
h a way that we provethe proposition. Before presenting the a
tual 
oupling we will dis
uss theidea behind it. For every site s 2 S asso
iate an independent Poisson pro
esswith parameter �: Next, let fUs;kgs2S;k�1 and fU 0s;kgs2S;k�1 be independentuniform [0; 1℄ random variables also independent of the Poisson pro
esses.If � is an arrival time for the Poisson pro
ess at site s, we write Us;� for Us;kwhere k is su
h that � is the kth arrival of the Poisson pro
ess at site s.Now, let � be an arrival time for the Poisson pro
ess asso
iated to a site s:For i 2 f1; 2g, let Xi;�� and Xi;�+ denote the 
on�gurations before and afterthe arrival. We will let the out
ome of Us;� de
ide what happens with thefX2;tgt�0 pro
ess at time t = �; and then we will let U 0s;� together with Us;�de
ide what happens with the fX1;tgt�0 pro
ess at time t = �: As we willsee, we will do this so that X1;t � X2;t for all t � 0. Furthermore, we will dothis in su
h a way that there exists an � 2 (0; 1) su
h that if U 0s;� � 1��; thenX1;�+(s) = 0 regardless of the out
ome of Us;� : Consider now the pro
essfX�t gt�0 we get by taking X�0(s) = 1 for every s 2 S and letting fX�t (s)gt�0be updated at every arrival time � for the Poisson pro
ess asso
iated to s;and updated in su
h a way that X��+(s) = 0 if U 0s;� � 1� �; and X��+(s) = 1if U 0s;� < 1 � �: Of 
ourse the distribution of X�t will 
onverge to �1��:Observe that whenever X�t (s) = 0 we have that X1;t(s) = 0: Therefore we
an 
on
lude that X1;t � min(X2;t;X�t ) 8t � 0: (25)Furthermore sin
e the pro
ess fX�t gt�0 does not depend on any Us;� wehave that X�t (s) is 
onditionally independent of X2;t if there has been anarrival for the Poisson pro
ess asso
iated to s before time t: Let si; i 2f1; : : : ; ng be distin
t sites in S and let At be the event that all Poisson19



pro
esses asso
iated to s1 through sn have had an arrival by time t: Of
ourse P(At) = (1� e��t)n and so we get thatP(X2;tX�t (s1) = � � � = X2;tX�t (sn) = 1)= P(X2;tX�t (s1) = � � � = X2;tX�t (sn) = 1jAt)P(At)+P(X2;tX�t (s1) = � � � = X2;tX�t (sn) = 1jA
t)P(A
t)= P(X2;t(s1) = � � � = X2;t(sn) = 1jAt)�P(X�t (s1) = � � � = X�t (sn) = 1jAt)P(At)+P(X2;tX�t (s1) = � � � = X2;tX�t (sn) = 1jA
t)P(A
t)= P(X2;t(s1) = � � � = X2;t(sn) = 1jAt)P(At)(1� �)n+P(X2;tX�t (s1) = � � � = X2;tX�t (sn) = 1jA
t)P(A
t)= P(fX2;t(s1) = � � � = X2;t(sn) = 1g \ At)(1� �)n+P(X2;tX�t (s1) = � � � = X2;tX�t (sn) = 1jA
t)P(A
t)� (P(X2;t(s1) = � � � = X2;t(sn) = 1)� P(A
t ))(1� �)n+P(X2;tX�t (s1) = � � � = X2;tX�t (sn) = 1jA
t)P(A
t)= P(X2;t(s1) = � � � = X2;t(sn) = 1)(1 � �)n+P(A
t)(P(X2;tX�t (s1) = � � � = X2;tX�t (sn) = 1jA
t)� (1� �)n)= �(�;�)2 (�(s1) = � � � = �(sn) = 1)+P(A
t)(P(X2;tX�t (s1) = � � � = X2;tX�t (sn) = 1jA
t)� (1� �)n)t!1�! �(�;�)2 (�(s1) = � � � = �(sn) = 1):In additionP(X2;t(s1) = � � � = X2;t(sn) = 1 \At)(1� �)n� P(X2;t(s1) = � � � = X2;t(sn) = 1)(1 � �)n= �(�;�)2 (�(s1) = � � � = �(sn) = 1):Hen
e, by in
lusion ex
lusion, we have that the distribution ofmin(X2;t;X�t ) approa
hes �(�;�)2 as t tends to in�nity. So by �rst taking thelimit in (25), we get that �1 � �(�;�)2 , as desired.Now to the 
onstru
tion. Take X1;0 � �1; X2;0 � �2; su
h that X1;0 �X2;0: Let � be an arrival time for the Poisson pro
ess asso
iated to s: TakeUs;� and U 0s;� : The following transition rules apply:X2;�� X2;�+ if0 1 Us;� � C2(s;X2;�� )�1 0 Us;� � ��C2(s;X2;�� )� :It is easy to 
he
k that the pro
ess fX2;tgt�0 thus 
onstru
ted will havethe right 
ip-rate intensities. The 
onstru
tion of fX1;tgt�0 is slightly more20




ompli
ated. If C2(s;X2;��) = 0 and X2;��(s) = 0 then it follows from(7) that C1(s;X1;��) = 0; and in that 
ase we interpret C1(s;X1;��)C2(s;X2;��) as 0:Observe that C2(s;X2;��) 
an be 0 when X2;��(s) = 1 but it will not 
auseany problems. With these observations in mind, these are the transitionrules we apply:(X1;�� ;X2;��) (X1;�+ ;X2;�+) if(0; 0) (1; 1) Us;� � C2(s;X2;��)� and U 0s;� � C1(s;X1;��)C2(s;X2;��)(0; 0) (0; 1) Us;� � C2(s;X2;��)� and U 0s;� > C1(s;X1;��)C2(s;X2;��)(0; 0) (0; 0) otherwise(0; 1) (0; 0) Us;� � ��C2(s;X2;��)�(0; 1) (1; 1) Us;� < sups;�2:�2(s)=0C2(s; �2)� andU 0s;� � C1(s;X1;��)sups;�2:�2(s)=0C2(s; �2)(0; 1) (0; 1) otherwise(1; 1) (0; 0) Us;� � ��C2(s;X2;��)�(1; 1) (0; 1) Us;� < ��C2(s;X2;�� )� andU 0s;� � ��C1(s;X1;��)��C2(s;X2;��)(1; 1) (1; 1) otherwiseIt is not diÆ
ult to 
he
k that all 
ip rate intensities are 
orre
t andthat X1;t � X2;t for all t � 0. Observe that by the de�nition of �, theevents nUs;� � ��C2(s;X2;��)� o and 8><>:Us;� < sups;�2:�2(s)=0C2(s; �2)� 9>=>; are dis-joint when (X1;�� ;X2;��) = (0; 1):We now want to show that there exists an � > 0 so that U 0s;� � 1 ��; implies that X1;�+(s) = 0. Note that if (X1;�� ;X2;��) = (0; 0) andC1(s;X1;��) > 0 () C2(s;X2;��) > 0) thenC1(s;X1;��)C2(s;X2;��) � C2(s;X2;��)� �1C2(s;X2;��) � 1� �1sups;�2:�2(s)=0C2(s; �2) < 1and if (X1;�� ;X2;��) = (0; 0) and C1(s;X1;��) = 0 thenC1(s;X1;��)C2(s;X2;��) = 0:21



Furthermore if (X1;�� ;X2;��) = (0; 1) and C1(s;X1;��) > 0, thenC1(s;X1;��)sups;�2:�2(s)=0C2(s; �2) � 1� �1sups;�2:�2(s)=0C2(s; �2) < 1while again if (X1;�� ;X2;��) = (0; 1) and C1(s;X1;��) = 0, then the 0 never
hanges to a 1. Finally if (X1;�� ;X2;��) = (1; 1) and C2(s;X2;��) > 0() C1(s;X1;��) > 0), then�� C1(s;X1;��)�� C2(s;X2;��) � �� C2(s;X2;��)� �2�� C2(s;X2;��) � 1� �2�� C2(s;X2;��) � 1� �2� ;and if (X1;�� ;X2;��) = (1; 1) and C2(s;X2;��) = 0;�� C1(s;X1;��)�� C2(s;X2;��) � �� �3� = 1� �3� < 1:Therefore, wheneverU 0s;� � max0B�1� �1sups;�2:�2(s)=0C2(s; �2) ; 1� �2� ; 1� �3�1CA ;we have that X1;�+(s) = 0 regardless of the out
ome of Us;� : Therefore(�1; �2) is downwards �-movable where� := 1�max0B�1� �1sups;�2:�2(s)=0C2(s; �2) ; 1� �2� ; 1 � �3�1CA= min0B� �1sups;�2:�2(s)=0C2(s; �2) ; �2� ; �3�1CA : QEDProof of Theorem 1.11. Take Æ > 0 su
h that �1(1+Æ) < �2 and 
onsiderthe pro
ess fXtgt�0 
onstru
ted in the following way. Take X0 � 1 and letthe pro
ess evolve with 
ip rate intensitiesC1(s; �) = 8<: 1 + Æ if �(s) = 1�1(1 + Æ)Xs0�s�(s0) if �(s) = 0: (26)Denote the limiting distribution of Xt as t tends to in�nity by �1+Æ;�1(1+Æ):It is easy to see that this pro
ess is just a time-s
aling of the 
onta
t pro
ess22




onstru
ted in Se
tion 2.6 with parameter �1: Re
all that that pro
ess hadlimiting distribution ��1 ; the upper invariant measure for the 
onta
t pro-
ess. Thus we have ��1 = �1+Æ;�1(1+Æ): By Proposition 4.1 with C1 as aboveand C2 as in Se
tion 2.6 with parameter �2; there exists an � > 0 su
h that�1+Æ;�1(1+Æ) � �(�;�)�2 :Hen
e (��1 ; ��2) is downwards movable. QEDFor the rest of this se
tion we will only 
onsider the graph Td for d � 2:The following is a 0-1 law for the upper invariant measure for the 
onta
tpro
ess.Proposition 4.2 Let A � f0; 1gTd where d � 2 be a set whi
h is invariantunder all graph automorphisms on Td. Then, for � > 0; we have that��(A) 2 f0; 1g:Proof. Let � > 0: By elementary measure theory, there exists a 
ylinderevent B depending on �nitely many 
oordinates su
h that��(A�B) � �: (27)Let suppB denote the �nite number of 
oordinates with respe
t to whi
hB is measurable. Letting fT�(t)gt�0 denote the Markov semigroup for the
onta
t pro
ess with parameter �, we have that Æ1T�(t)! �� and also that�� � Æ1T�(t) for every t � 0: Choose t so that for all (equivalently some)sites s Æ1T�(t)(�(s) = 1) � ��(�(s) = 1) + �2jsuppBj :It follows easily that if m is any 
oupling of Æ1T�(t) and �� whi
h is 
on
en-trated on f(�; Æ) : � � Æg, then for any �nite set S of sitesm(f(�; Æ) : �(s) 6= Æ(s) o

urs for some s 2 S) � jSj�2jsuppBj :In parti
ular, if E is any event depending on at most 2jsuppBj sites, thenjÆ1T�(t)(E) � ��(E)j � �: (28)For this �xed t, Theorem 4.6 page 35 of [19℄ shows that there exists anautomorphism 
 2 AUT (Td) su
h thatjÆ1T�(t)(B \ 
B)� Æ1T�(t)(B)Æ1T�(t)(
B)j � �: (29)23



Furthermore, sin
e �� is invariant under automorphisms (27) implies that��(
A�
B) � �;and sin
e A = 
A; we have ��(A�
B) � �:It follows that ��(B�
B) � ��(A�
B) + ��(A�B) � 2�:Next, (28) implies thatjÆ1T�(t)(B�
B)� ��(B�
B)j � �;and so Æ1T�(t)(B�
B) � 3�: (30)We get that j��(A)� ��(A)2j = j��(A)� ��(A)��(
A)j� j��(B)� ��(B)��(
B)j+ 3�� jÆ1T�(t)(B)� Æ1T�(t)(B)Æ1T�(t)(
B)j+ 6�� jÆ1T�(t)(B)� Æ1T�(t)(B \ 
B)j+ 7�� Æ1T�(t)(B�
B) + 7� � 10�:Where we used (27), (28) and (29) for the three �rst inequalities and (30)in the last. Sin
e � > 0; was 
hoosen arbitrarily we get that��(A) = ��(A)2and so ��(A) 2 f0; 1g: QEDRemarks: The above proof works for any transitive and even quasi-transitive graph. For the 
ase of Zd, this was proved in Proposition 2.16page 143 of [19℄. It is mentioned there that while Æ1T�(t) is ergodi
 forea
h t, one 
annot 
on
lude immediately the ergodi
ity of �� be
ause the
lass of ergodi
 pro
esses is not weakly 
losed. We point out however thatthere is another important notion of 
onvergen
e given by the �d-metri
 (see[24℄ page 89 for de�nition) on stationary pro
esses. Convergen
e in thismetri
 is stronger than weak 
onvergen
e and weaker than 
onvergen
e inthe total variation norm. It is also known that the ergodi
 pro
esses are �d-
losed and that weak 
onvergen
e together with sto
hasti
 ordering implies24



�d-
onvergen
e. In this way, one 
an 
on
lude ergodi
ity of �� using the �d-metri
 giving an alternative proof of Proposition 2.16 of [19℄. In fa
t, theproof of Proposition 4.2 is essentially based on this idea. However, be
auseof the open question listed below, it is not so easy to formulate the �d-metri
for tree indexed pro
esses and so we 
hoose a more hands on approa
h.Observe that the 
ru
ial property of �d-
onvergen
e whi
h is essentially usedin the above proof is that for ea
h �xed k, one has uniform 
onvergen
eof the probability measures (in say the total variation norm) over all setswhi
h depend on at most k points. (The point is that the k points 
an lieanywhere and hen
e this is mu
h stronger than weak 
onvergen
e).Open Question related to de�ning the �d-metri
 for tree indexedpro
esses: Assume that � and � are two automorphism invariant proba-bility measures on f0; 1gTd su
h that � � �: Does there exist a Td-invariant
oupling (X;Y ) with X � �; Y � � and X � Y ?Proposition 4.3 On Td; d � 2 there exists a �p su
h that for all � > �p��(C+) = 1:Proof. By Theorem 1.33(
), page 275 in [19℄, for suÆ
iently large �,��(�(s) = 1) � 2=3. By [12℄ we have that if ��(�(s) = 1) � 2=3, then��(C+) > 0:Finally, Proposition 4.2 then implies that��(C+) = 1: QED5 Relationship between �-movability and dynam-i
sIn the general setup we have a family of stationary Markov pro
esses para-metrised by one or two parameters, e.g. the 
onta
t pro
esses 	� (� is herethe only parameter) or a sto
hasti
 Ising model 	+;�;h (� and h being theparameters). Many of the proofs in this paper will involve 
omparing themarginal distributions of these Markov pro
esses for two di�erent values ofone of the involved parameters. Let p be the parameter and let p1 < p2:Assume that the marginal distributions are �p1 and �p2 respe
tively andthat �p1 � �p2 : Lemmas 5.1 and 5.2 shows that there is a 
lose 
onne
tionbetween showing that (�p1 ; �p2) is downwards �-movable and that the in�-mum of the se
ond pro
ess over a short time interval is sto
hasti
ally largerthan the �rst pro
ess. 25



Let 	� be a stationary Markov pro
ess on f0; 1gS with marginal distri-bution � and let fXtgt�0 � 	�: For Æ > 0 and s 2 S de�neXinf;Æ(s) := inft2[0;Æ℄Xt(s);and denote the distribution of Xinf;Æ by �inf;Æ: Similarly de�neXsup;Æ(s) := supt2[0;Æ℄Xt(s);and denote the distribution of Xsup;Æ by �sup;Æ:Lemma 5.1 Take S to be the sites of a bounded degree graph. LetfC(s; �)gs2S; �2f�1;1gS be the 
ip rate intensities for a stationary Markovpro
ess 	� on f�1; 1gS with marginal distribution �: Let� := sup(s;�)C(s; �):For any � > 0; if we set � := 1� e��� ; we have that�(�;�) � �inf;� :Similarly, we get that �sup;� � �(+;�):Proof. We will prove the �rst statement, the se
ond statement follows bysymmetry. Take � > 0: For every s 2 S asso
iate an independent Poissonpro
ess with parameter �: De�ne f(X1t ;X2t )gt�0 in the following way. LetX10 � X20 � �; and take t0 to be an arrival time for the Poisson pro
essof a site s: For i 2 f1; 2g, let Xit0;� and Xit0;+ denote the 
on�gurationsbefore and after the arrival. We let X1t0;+(s) 6= X1t0;�(s) with probabilityC(s;X1t0;�)=� and we let X2t0;+(s) = 0 and �nally we let X1t0;+(S n s) �X1t0;�(S n s); X2t0;+(S n s) � X2t0;�(S n s): Do this independently for all arrivaltimes for all Poisson pro
esses of all sites. Observe that on
e X2t (s) is 0, itremains so. Note also that X1� � �; X2� � �(�;�): Furthermore if X1t (s) = 0for some t 2 [0; � ℄ the 
onstru
tion guarantees that X2� (s) = 0 and thereforeX2� � X1inf;� � �inf;� : QEDLemma 5.2 Take S to be the sites of any bounded degree graph. LetfC(s; �)gs2S; �2f�1;1gS be the 
ip rate intensities of a stationary Markovpro
ess 	� on f�1; 1gS with marginal distribution �: De�ne�1 := infs;�:�(s)=1C(s; �):26



If �1 > 0 then for any 0 < � < 1; if we set � := � log(1��)�1 ; we have that�inf;� � �(�;�):Similarly, de�ning �2 := infs;�:�(s)=0C(s; �); if �2 > 0; then for any 0 < � < 1;if we set � := � log(1��)�2 ; we have that�(+;�) � �sup;� :Proof. We will prove the �rst statement, the se
ond statement followsby symmetry. For every s 2 S asso
iate an independent Poisson pro
esswith parameter � := sup(s;�)C(s; �): Next, let fUs;kgs2S;k�1 be independentuniform [0; 1℄ random variables also independent of the Poisson pro
esses.If t0 is an arrival time for the Poisson pro
ess at site s, we write Us;t0 forUs;k where k is su
h that t0 is the kth arrival of the Poisson pro
ess at sites. De�ne f(X1t ;X2t )gt�0 in the following way. Let X10 � X20 � �; andtake t0 to be an arrival time for the Poisson pro
ess of a site s: We letX1t0;+(s) 6= X1t0;�(s) if Us;t0 � C(s;X1t0;�)=�: Furthermore we let X2t0;+(s) = 0if Us;t0 � �1=� or X2t0;�(s) = 0; and �nally we let X1t0;+(S n s) � X1t0;�(S n s);X2t0;+(S n s) � X2t0;�(S n s): Do this independently for all arrival times for allPoisson pro
esses of all sites. ClearlyX1� � � and X2� � �(�;�): Furthermore,if X2� (s) = 0; then either X10 (s) = X20 (s) = 0 or there exists a t 2 [0; � ℄su
h that t is an arrival time for the Poisson pro
ess asso
iated to s andUs;t � �1=�: Sin
e �1 � C(s;X1t�) if X1t�(s) = 1, we get that either X1t+(s)or X1t�(s) is 0 and therefore X1inf;� � X2� : QEDTo illustrate why the 
ondition �1 > 0 of Lemma 5.2 is needed, 
onsiderthe 
ase � = �p for some p > 0:With � > 0; if we assume the trivial dynami
sC(s; �) = 0 for all s; �; we will of 
ourse not have that �inf;� � �(�;�) for any� > 0:6 Proof of Theorem 1.9Proof of Theorem 1.9. Take � > �p and let �0 = (� + �p)=2: By Theo-rem 1.11 there exists an � > 0 su
h that (��0 ; ��) is downwards �-movable.Lemma 5.1 gives us that there exists a � > 0 su
h that �(�;�)� � ��;inf;� andhen
e that ��0 � ��;inf;� . Therefore, sin
e C+ is an in
reasing event and�0 > �p, we have that 1 = ��0(C+) � ��;inf;� (C+)and so 	�(C+t 8t 2 [0; � ℄) = 1:The theorem now follows from 
ountable additivity.27



QED7 Proof of Theorem 1.1In this se
tion we will deal with stationary distributions for intera
ting par-ti
le systems whi
h are monotone in the sense of De�nition 2.2.Let G = (S;E) be a 
ountable 
onne
ted lo
ally �nite graph and let� � S be 
onne
ted and j�j <1: Let f�p�gp2I ; where I � R be a family ofprobability measures on f�1; 1g� su
h that�p1� � �p2� 8p1 � p2:Assume that there exist stationary Markov pro
esses 	p� governed by 
iprate intensities fCp;�(s; �)gs2�;�2f�1;1g� and with marginal distributions �p�:Furthermore assume that there exists limiting distributions 	p of 	p� and�p of �p� as � " S: Assume that �p� are monotone for every p and �: Forp1 < p2; letA�;p1;p2 := infs2��2f�1;1g�ns [�p2� (�(s) = 1j�(�ns) � �)��p1� (�(s) = 1j�(�ns) � �)℄and assume that for all p1 < p2inf��SA�;p1;p2 > 0:For �xed p1 < p2 there exists by Proposition 3.4 an � > 0 su
h that (�p1 ; �p2)is both upwards and downwards �-movable. Next, by Lemma 5.1 there existsa � > 0 su
h that �p2;(�;�) � �p2inf;� ;and therefore �p1 � �p2inf;� : (31)Theorem 7.1 Consider the setup just des
ribed. Let A be an in
reasingevent on f�1; 1gS and let At be the event that A o

urs at time t:(1) Let a 2 R: If �p(A) = 1for all p 2 I with p > a, then	p(At o

urs for every t) = 1for all p 2 I with p > a.(2) Let a 2 R: If �p(A) = 0for all p 2 I with p < a, then	p(At o

urs for some t) = 0for all p 2 I with p < a. 28



Proof. We prove only (1) as (2) is proved in an identi
al way. Take p > aand let p2 = (p+ a)=2: By the argument leading towards (31), there exists� > 0 su
h that �p2(A) � �pinf;� (A):By using �p2(A) = 1 and�pinf;� (A) � 	p(At o

urs for every t 2 [0; � ℄);we get by 
ountable additivity that	p(At o

urs for every t) = 1: QEDWe will now be able to prove Theorem 1.1 easily.Proof of Theorem 1.1. We prove only the very �rst statement; all theother statements are proved in a similar manner. We �x � � 0 and then hwill 
orrespond to our parameter p in the above set up. For any � � S; anys 2 � and any � 2 f�1; 1g�ns; we have that�+;�;h� (�(s) = 1j�(� n s) = �) = 11 + e�2�(Pt:t�s �(t))�2h ; (32)where we let �(t) = 1 if t 2 �
 in order to take the boundary 
onditioninto a

ount. It is obvious from (32) and the de�nition of monotoni
ity that�+;�;h� is monotone for any h and �: Letting h1 < h2; it is immediate thatA�;h1;h2 = infs2��2f�1;1g�ns [ 11 + e�2�(Pt:t�s �(t))�2h2 � 11 + e�2�(Pt:t�s �(t))�2h1 ℄ > 0;where again �(t) = 1 for all t 2 �
: It is not hard to see that this stri
tinequality must hold uniformly in �; i.e.,inf��SA�;h1;h2 > 0:It follows that all of the assumptions of Theorem 7.1 hold and part (1) ofthat result gives us what we want. QEDProof of Lemma 1.2. Fix � � 0. Given any p 2 (0; 1); it is easy to seethat there exists a real number h2 su
h that for all h � h2, for s 2 S andfor all � 2 f�1; 1gSns�+;�;h(�(s) = 1j�(S n s) = �) � p29



and hen
e �p � �+;�;h: It is also easy to see that there exists a real numberh1 su
h that for all h < h1, for s 2 S and for all � 2 f�1; 1gSns�+;�;h(�(s) = 1j�(S n s) = �) � pand hen
e �+;�;h � �p. The statements of the lemma easily follow fromthese fa
ts. QED8 Proof of Theorem 1.3In this se
tion we will use a variant of the so 
alled Peierls argument to proveTheorem 1.3. We prove this only for Z2; the proof (with more 
ompli
atedtopologi
al details) 
an be 
arried out for Zd with d � 3.We will write 0 �;t ! ��L for the event that there exists a path of sitesin state �1 
onne
ting the origin to ��L := �L+1 n �L at time t and wewill write 0 �;t ! 1 for the event that there exists an in�nite path of sitesin state �1 
ontaining the origin at time t. We will also write 0 +;t ! ��Land 0 +;t ! 1 for the obvious analogous events. We will �rst need Lemma8.1 and the 
on
ept of a dual graph. The dual graph Gdualn = (Sdualn ; Edualn )of Gn = (Sn; En) 
onsists of the set of sites Sdualn := f�n � 12 ; : : : ; n + 12g2and Edualn whi
h is the set of nearest neighbor pairs of Sdualn : In this paperwe will only work with the edges of the dual graph. An edge e 2 Edualn
rosses one (and only one) edge f 2 En and the end sites of this edge f willbe 
alled the sites (of Gn) asso
iated to e: For a random spin 
on�gurationX on f�1; 1gSn de�ne a random edge 
on�guration Y on f0; 1gEdualn in thefollowing way: Y (e) = � 0 if X(t) = X(s)1 if X(t) 6= X(s); (33)where s; t are the sites asso
iated to edge e 2 Edualn : In �gure (1) we havedrawn a 
on�guration � 2 f�1; 1gS1 and the indu
ed edge 
on�guration onf0; 1gEdual1 :Assume that the sites evolve a

ording to the 
ip rate intensitiesfCn(s; �)gs2Sn ; �2f�1;1gSn : Consider 
; a (�nite) path of edges in the dualgraph. Take 
0 to be a subset of 
: Assume that all edges of 
0 are absent andall edges of 
n
0 are present at t = 0:We want to estimate the probability ofthe event that all edges of 
0 are present at some point (not ne
essarily all atthe same time) during some time interval [0; � ℄: In other words we want to es-timate the probability of the event fYsup;� (
0) � 1jY0(
0) � 0; Y0(
n
0) � 1g:30



Figure 1: S1 and the edges of it's dual graph. A solid 
ir
le marks a sitewith spin 1, while an empty 
ir
le has spin �1. A solid line is a present edgeof the dual graph, and a dashed line is an absent edge of the dual graph.Lemma 8.1 Let fCn(s; �)gs2Sn; �2f�1;1gSn be the 
ip rate intensities for astationary Markov pro
ess on f�1; 1gSn and let Yt be de�ned as above. Let� := sup(s;�)Cn(s; �) (<1):For any � > 0 and any 
0 � Edualn ;P(Ysup;� (
0) � 1jY0(
0) � 0; Y0(Edualn n 
0)) � (4(1 � e��� )1=4)j
0j:Proof.Take � > 0: For every s 2 Sn asso
iate an independent Poisson pro
esswith parameter �: De�ne fXtgt�0 in the following way. Let X0 � � andtake t0 to be an arrival time for the Poisson pro
ess of a site s: We letXt0;+(s) 6= Xt0;�(s) with probability C(s;Xt0;�)=�: Do this independentlyfor all arrival times for all Poisson pro
esses asso
iated to the di�erent sites.It is immediate that X� � �: Let si; i 2 f1; : : : ; lg be distin
t sites of Sn:The event fXinf;� (si) 6= Xsup;� (si) 8i 2 f1; : : : ; lgg is 
ontained in the eventthat every Poisson pro
ess asso
iated to the sites si; i 2 f1; : : : ; lg have hadat least one arrival by time �: The probability that a parti
ular site has hadan arrival by time � is 1 � e��� : Furthermore this event is independent ofthe Poisson pro
esses for all other sites. ThereforeP(Xinf;� (si) 6= Xsup;� (si) 8i 2 f1; : : : ; lg) � (1� e��� )l: (34)31



Given 
0; 
onsider the set of all sites asso
iated to some edge of 
0 and letn
0 be the 
ardinality of that set. Observe that n
0 � 2j
0j and that in orderfor the event fYsup;� (
0) � 1jY0(
0) � 0; Y0(Edualn n 
0)g to o

ur, at leastj
0j=4 of the sites asso
iated to 
0 must 
ip during [0; � ℄: This is be
ause onesite is asso
iated to at most 4 edges. Denote the event that at least j
0j=4 ofthe sites asso
iated to 
0 
ips during [0; � ℄ by A�;
0 : Take ~S to be a subset ofthe sites asso
iated to 
0 su
h that j ~Sj � j
0j=4: By (34), the probability thatall of these sites 
ips during [0; � ℄ is less than (1�e��� )j ~Sj � (1�e��� )j
0j=4:To 
on
lude, observe that the number of subsets of the sites asso
iated to 
0is bounded by 22j
0j: Hen
e, the probability of the event A�;
0 must be lessthan (1� e��� )j
0j=422j
0j; and soP(Ysup;� (
0) � 1jY0(
0) � 0; Y0(Edualn n 
0))� P(A�;
0) � ((1� e��� )1=44)j
0j: QEDProof of Theorem 1.3. We will prove the theorem for d = 2: For � > �p;
hoose Æ1 > 0 so that �0 := � 2�Æ12 > �p and hen
e1Xl=1 l3l�1e�2�0l <1:Next, 
hoose N and � < 1=2 su
h that 4N � Æ1; and � 1N � e��(2�Æ1) and let� be su
h that � = 4(1 � e��� )1=4: Let Æ > 0 be arbitrary and 
hoose L sothat 3 1Xl=L l3l�1e�2�0l < Æ:Let EL;� be the event that 0 �;t ! ��L; for some t 2 [0; � ℄: Let 	+;�n bede�ned as in Se
tion 2.3. We will show that	+;�n (EL;� ) < Æ 8n > L:Sin
e 	+;�n (EL;� )! 	+;�(EL;� ); (see Se
tion 2.3) we get that 	+;�(EL;� ) � Æ:Letting L!1 and Æ ! 0, we get that	+;�(9t 2 [0; � ℄ : 0 �;t !1) = 0;and then by 
ountable additivity	+;�(9t � 0 : 0 �;t !1) = 0:It is well known (see [8℄) that if all sites in �n+1 n �n takes the value +1,EL;� (35)� f9
 � Edualn ; t 2 [0; � ℄ : j
j � L; 
 surrounds the origin, Yt(
) � 1g� f9
 � Edualn : j
j � L; 
 surrounds the origin, Ysup;� (
) � 1g:32



To prove 	+;�n (EL;� ) < Æ; 
onsider 
 with j
j = l a 
ontour in Edualnsurrounding the origin. By Lemma 8.1, P(Ysup;� (
0) � 1jY0(
0) � 0; Y0(
 n
0) � 1) � �j
0j whenever 
0 � 
: We getP(Ysup;� (
) � 1) (36)= lXk=0 X
0�
j
0j=k P(Y0(
0) � 0; Y0(
 n 
0) � 1)�P(Ysup;� (
0) � 1jY0(
0) � 0; Y0(
 n 
0) � 1)� lXk=0 X
0�
j
0j=k P(Y0(
0) � 0; Y0(
 n 
0) � 1)�k= lXk=0P(fall edges ex
ept k of 
 are present at t = 0g)�k= l=NXk=0P(fall edges ex
ept k of 
 are present at t = 0g)�k+ lXk=l=N+1P(fall edges ex
ept k of 
 are present at t = 0g)�k:Obviously, l=N need not be an integer, but 
orre
ting for this is trivial andis left for the reader.We need to estimate P(fall edges ex
ept k of 
 are present at t = 0g):For this purpose, de�ne T: f�1; 1gSn ! f�1; 1gSn ; by(T�)(s) = � �(s) if s is not in the domain bounded by 
��(s) if s is in the domain bounded by 
for all � 2 f�1; 1gSn : Let Ek = f� : all edges ex
ept k of 
 are presentg:Sin
e H+;�n of (6) gives a 
ontribution of �� for adja
ent pairs of equalspin and +� for adja
ent pairs of unequal spin, we have that for � 2 Ek;H+;�n (T�) = H+;�n (�)� 2�(j
j � k) + 2�k = H+;�n (�)� 2�j
j + 4�k:Hen
e, for � 2 Ek�+;�n (�) = e�H+;�n (�)Z = e�H+;�n (T�)�2�j
j+4�kZ ;and so �+;�n (Ek)= X�2Ek �+;�n (�) = e�2�l+4�k X�2Ek e�H+;�n (T�)Z33



� e�2�l+4�k X�2f�1;1gSn e�H+;�n (T�)Z = e�2�l+4�k;where the last equality follows from T being bije
tive. We then get thatl=NXk=0P(fall edges ex
ept k of 
 are present at t = 0g)�k (37)� l=NXk=0 e�2�l+4�k�k � e�2�l+ 4�lN l=NXk=0 �k � 2e�2�l+ 4�lN� 2e��(2�Æ1)l = 2e�2�0l:FurthermorelXk=l=N+1P(fall edges ex
ept k of 
 are present at t = 0g)�k (38)� �l=N lXk=l=N+1P(fall edges ex
ept k of 
 are present at t = 0g)� �l=N � e��(2�Æ1)l = e�2�0l;where we use that fall edges ex
ept k of 
 are present at t = 0g are disjointevents for di�erent k. Hen
e (36), (37) and (38) 
ombined gives usP(Ysup;� (
) � 1) � 3e�2�0land so by (35), for all n > L;	+;�n (EL;� )� 	+;�n (9
 � Edualn : j
j � L; 
 surrounds the origin, Ysup;� (
) � 1)� 1Xl=L l3l�13e�2�0l < Æ;where the se
ond to last inequality follows from the fa
t that the number of
ontours around the origin of length l is at most l3l�1; (see [8℄). QEDRemark: For Zd, the proof is generalized by noting that the number of
onne
ted surfa
es of size l surrounding the origin is at most C(d)l; for some
onstant C(d): The arguments are the same but the \topologi
al details" aremessier. 34



9 Proof of Theorem 1.5We will start this subse
tion by presenting a theorem by T.M. Liggett, R.H.S
honmann and A.M. Sta
ey ([21℄).Theorem 9.1 Let G=(S,E) be a graph with a 
ountable set of sites in whi
hevery site has degree at most � � 1; and in whi
h every �nite 
onne
ted
omponent of G 
ontains a site of degree stri
tly less than �: Let p; �; r 2[0; 1℄; q = 1� p; and suppose that(1� �)(1 � r)��1 � q;(1� �)���1 � q:If � 2 G(p); then ��r � �: In parti
ular, if q � (� � 1)��1=��; then�� � �; where� =  1� q1=�(�� 1)(��1)=�! (1� (q(�� 1))1=�):Here G(p) denotes the set of probability measures on f�1; 1gS su
h that if� 2 G(p); X � � then for any site s 2 SP [X(s) = 1j�(fX(t) : fs; tg 62 Eg)℄ � p a:s:Observe that when p ! 1 ) q ! 0 and so � ! 1: The above theoremis stated as the original in [21℄. However, by 
onsidering the line-graph ofG = (S;E), it 
an be restated in the following way.Corollary 9.2 Let ~G = ( ~S; ~E) be any 
ountable graph of degree at most �:For ea
h 0 < � < 1 there exists a 0 < p < 1 where p = p(�; �) su
h thatif Y � � where � is a probability measure on the edges of ~G su
h that forevery edge e 2 ~E P [Y (e) = 1j�(fY (f) : e 6� fg)℄ � p a:s:we have that � ~E� � �:By e 6� f we of 
ourse mean that the edges e and f does not have anyendpoints in 
ommon. Here, � ~E� is the produ
t measure with density � onthe edges of ~G:Consider a graph G = (S;E) and a subgraph G0 = (S0; E0) where S0 = Sand E0 � E: Let X � �p on S: We de
lare an edge e 2 E0 to be 
losed if anyof the endpoints takes the value 0 under X: Corollary 9.2 gives us that forany � < 1 there is a p < 1 su
h that this method of 
losing edges dominatesindependent bond per
olation with density � on E0: Observe that we 
an
hoose p independent of E0 sin
e the maximal degree of E0 is bounded aboveby the maximal degree of E: 35



Let (X;Y ) � Ppn; de�ned in Se
tion 2.5. Close every e 2 En su
hthat Y (e) = 1 independently with probability � thus 
reating (X;Y (�;�)):Compare this to 
losing every site in Sn independently with parameter �0(
reating X(�;�0)) and de�ningY �0(e) = � 1 if Y (e) = 1 and neither one of the endpoints of e 
ips0 otherwise.By the arguments of the last paragraph we see that for a �xed � there existsan �0 (that we 
an 
hoose independent of (X;Y ) and n) su
h that the �rstway (i.e. independent bond per
olation) of removing edges is sto
hasti
allydominated by the latter. Hen
ePpn((X;Y (�;�)) 2 (f�1; 1gSn ; �)j(X;Y ))� Ppn((X(�;�0); Y �0) 2 (f�1; 1gSn ; �)j(X;Y )):By averaging over all possible (X;Y ); the next lemma follows.Lemma 9.3 With notation as above, for any � > 0 there exists �0 > 0independent of n su
h thatPpn((X;Y (�;�)) 2 (f�1; 1gSn ; �)) � Ppn((X(�;�0); Y �0) 2 (f�1; 1gSn ; �)):Observe that Ppn((X;Y (�;�)) 2 (f�1; 1gSn ; �)) =D ~�p;(�;�)n (�) (39)and that Ppn((X(�;�0); Y �0) 2 (�; f�1; 1gEn )) =D �+;�;(�;�0)n (�): (40)We are now ready to prove Theorem 1.5.Proof of Theorem 1.5. For any 
hoi
e of � > �
 take p = 1� e�2�and let Æ 2 (0; p� p
): Now, (14) and Holley's inequality implies that~�p�Æn � ~�pn 8n 2 N+ :Sin
e by (14) both ~�p�Æn and ~�pn are monotone, there exists by Lemma 3.3(it is easy to 
he
k that all other 
onditions of that lemma are satis�ed) an� > 0 su
h that ~�p�Æn � ~�p;(�;�)n 8n 2 N+ : (41)In [13℄ they show that the limit limn ~�p�Æn (0 ! ��n) exists and thatlimn ~�p�Æn (0 ! ��n) > 0: (42)36



Here f0  ! ��ng denotes the event that there exists a path of presentedges 
onne
ting the origin to ��n := �n+1 n �n: Sin
e f0  ! ��ng is anin
reasing event on the edges, Lemma 9.3 guarantees the existen
e of an�0 > 0 su
h that~�p;(�;�)n (0 ! ��n)= Ppn((X;Y (�;�)) 2 (f�1; 1gSn ; 0; ! ��n))� Ppn((X(�;�0); Y �0) 2 (f�1; 1gSn ; 0 ! ��n)) 8n 2 N+ :If there exists a path of present edges 
onne
ting the origin to the boundary��n under Y; all the sites of this path must have the value 1 under X:Similarly for (X(�;�0); Y �0); if there exists a path of present edges 
onne
tingthe origin to the boundary ��n under Y �0 ; all the sites of this path musthave the value 1 under X(�;�0): Hen
ePpn((X(�;�0); Y �0) 2 (f�1; 1gSn ; 0 ! ��n))= Ppn((X(�;�0); Y �0) 2 (0 + ! ��n; 0 ! ��n))� Ppn((X(�;�0); Y �0) 2 (0 + ! ��n; f0; 1gEn ))= �+;�;(�;�0)n (0 + ! ��n):Of 
ourse�+;�;(�;�0)n (0 + ! ��n) � �+;�;(�;�0)n (0 + ! ��L) 8L < n:Therefore, for any L we have that0 < limn ~�p�Æn (0 ! ��n)� limn �+;�;(�;�0)n (0 + ! ��L) = �+;�;(�;�0)(0 + ! ��L);and so 0 < limL �+;�;(�;�0)(0 + ! ��L) = �+;�;(�;�0)(0 + !1):The limit in L exists sin
e f0 + ! ��L2g � f0 + ! ��L1g for L1 � L2: Sin
e�+;� is ergodi
 (see [19℄ page 143 and 195) it follows that �+;�;(�;�0) mustalso be ergodi
. This is be
ause �+;�;(�;�0) 
an be expressed as a fun
tion oftwo independent pro
esses, one being �+;� and the other a produ
t measure.We 
on
lude that �+;�;(�;�0)(C+) = 1: (43)By Lemma 5.1, there exists a � > 0 su
h that�+;�;(�;�0) � �+;�inf;�37



and therefore �+;�inf;� (C+) = 1:Therefore 	+;�(C+t o

urs for every t 2 [0; � ℄) = 1:Finally using 
ountable additivity	+;�(C+t o

urs for every t) = 1: QED10 Proof of Theorem 1.4The aim of this se
tion is to prove Theorem 1.4. For that we will useTheorem 1.5 and Lemma 10.1. We will not prove Lemma 10.1 sin
e itfollows immediately from the proof of Lemma 11.12 in [10℄ due to Y. Zhang.A probability measure � on f�1; 1gS is said to have the �nite energyproperty if all 
onditional probabilities on �nite sets are stri
tly positive.Lemma 10.1 Take � to be any probability measure on f�1; 1gZ2 whi
h haspositive 
orrelations and the �nite energy property. Assume further that �is invariant under translations, rotations and re
e
tions in the 
oordinateaxes. If �(C+) = 1; then �(C�) = 0:Proof of Theorem 1.4. Fix � > �
. By (43), there exists � > 0 su
h that�+;�;(�;�)(C+) = 1:Sin
e �+;� and �1�� both have positive 
orrelations, it follows that �+;�;(�;�)has positive 
orrelations. This is be
ause (see [19℄, page 78) the produ
t oftwo probability measures whi
h have positive 
orrelations also has positive
orrelations. Furthermore, a 
olle
tion of in
reasing fun
tions of randomvariables whi
h have positive 
orrelations also has positive 
orrelations. Inaddition, the �nite energy property is easily seen to hold for �+;�;(�;�). Usingthis we 
an by Lemma 10.1 
on
lude that�+;�;(�;�)(C�) = 0:By Lemma 5.1 there exists a � > 0 su
h that �+;�;(�;�) � �+;�inf;� and hen
e�+;�inf;� (C�) = 0:It follows that 	+;�(9t 2 [0; � ℄ : C�t o

urs) = 0;and by 
ountable additivity, we 
on
lude	+;�(9t � 0 : C�t o

urs) = 0:38
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