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Abstract

In this paper we will investigate dynamic stability of percolation for
the stochastic Ising model and the contact process. We also introduce
the notion of downwards and upwards e-movability which will be a key
tool for our analysis.
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1 Introduction

Consider bond percolation on an infinite connected locally finite graph G,
where for some p € [0,1], each edge (bond) of G is, independently of all
others, open with probability p and closed with probability 1 — p. Write m,
for this product measure. The main questions in percolation theory (see [10])
deal with the possible existence of infinite connected components (clusters)
in the random subgraph of G consisting of all sites and all open edges. Write
C for the event that there exists such an infinite cluster. By Kolmogorov’s
0-1 law, the probability of C is, for fixed G and p, either 0 or 1. Since 7,(C)
is nondecreasing in p, there exists a critical probability p. = p.(G) € [0,1]

such that
0 for p < p,

(C) _{ 1 for p > p,.

At p = p. we can have either m,(C) = 0 or m,(C) = 1, depending on G.
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In [15], the authors initiated the study of dynamical percolation. In
this model, with p fixed, the edges of G switch back and forth according to
independent 2 state Markov chains where 0 switches to 1 at rate p and 1
switches to 0 at rate 1 — p. In this way, if we start with distribution 7, the
distribution of the system is at all times 7,. The general question studied in
[15] was whether there could exist atypical times at which the percolation
structure looks different than at a fixed time.

We record here some of the results from [15]; (i) for any graph G and for
any p < p.(G), there are no times at which percolation occurs, (ii) for any
graph G and for any p > p.(G), there are no times at which percolation does
not occur, (iii) there exist graphs which do not percolate for p = p.(G), but
nonetheless, for p = p.(G), there are exceptional times at which percolation
occurs, (iv) there exist graphs which percolate for p = p.(G), but nonethe-
less, for p = p.(G), there are exceptional times at which percolation does
not occur, and (v) for Z? with d > 19 with p = p.(Z?%), there are no times
at which percolation occurs. In addition, it has recently be shown in [23]
that for site percolation on the triangular lattice, for p = p. = 1/2, there are
exceptional times at which percolation occurs. Given this, a similar result
would be expected for Z2.

The point of the present paper is to initiate a study of dynamical per-
colation for interacting systems where the edges or sites flip at rates which
depend on the neighbors. We point out that in a different direction such
questions in continuous space, but without interactions, related to contin-
uum percolation have been studied in [2].

Ising model results. Precise definitions of the following Ising model
measures and the stochastic Ising model will be given in Section 2. Fix an
infinite graph G = (S, E). Let ut#" be the plus state for the Ising model
with inverse temperature 8 and external field h on G (this is a probability
measure on {—1,1}%). Let ¥+#" denote the corresponding stochastic Tsing
model; (this is a stationary continuous time Markov chain on {—1,1}° with
marginal distribution "), Let C* (C~) denote the event that there exists
an infinite cluster of sites with spin 1 (—1) and let C;" (C,”) denote the event
that there exists an infinite cluster of sites with spin 1 (—1) at time ¢. It is
known that the family p+#" is, for fixed /3, stochastically increasing (to be
defined later) in h.

Theorem 1.1 Consider a graph G = (S, E) of bounded degree. Fix 3 >0
and let he = h.(B) be defined by

he := inf{h : ptPR(CT) =1},
Then for all h > h,,

WHBh(CE occurs for every t) =1



and for all h < h,

A3t > 0:CF occurs ) = 0.
If we modify h. to be instead

B = suplh s ptAh(CT) = 1),

the same two claims hold with C;" replaced by C;” and with h < h!, and h > hl,
reversed.

This result tells us what happens in the subcritical and supercritical
cases (with respect to h with 8 held fixed). It is the analogue of the easier
Proposition 1.1 in [15] where it is proved that if p < p. (p > p.), then, with
probability 1, there is percolation at no time (at all times).

The following easy lemma gives us information about when h, is non-
trivial.

Lemma 1.2 Assume the graph G has bounded degree and let § be arbitrary.
Then he > —oc. If p.(site) < 1, then h, < oc. Similar results hold if h. is
replaced by h..

The following theorems, where we restrict to Z¢, will only discuss the
case h = 0. However, this will in many cases give us information about the
“critical” case (f3,h.(f)) since in a number of situations, h.(8) = 0. For
example, this is true on all Z¢ with d > 2 and B sufficiently large. We
also mention that while the relationship between h. and A/, in Theorem 1.1
might in general be complicated, for Z¢, one easily has that h, = —hl; this
follows from the known fact that the plus and minus states are the same
when h # 0. When h = 0, we will abbreviate ut20 by p™# and ¥+80 by
U+#. We point out that while p+2" is stochastically increasing in h for
fixed B, there is no such monotonicity in g for fixed h, not even for h = 0.
Therefore we must use a different approach in the latter case.

We first study percolation of —1’s and then percolation of 1’s. Let

log 3

Bp(2) :=inf{B: Y 13" e " < oo} = R
=1

We will refer to 3,(2) as the critical inverse temperature of the Peierls regime
for Z2. The choice of 8,(2) might at first look quite arbitrary, but it is
exactly what is needed to carry out a contour argument (known as Peierls
argument) for Z2. For d > 3, there is a 3,(d), such that for 8 larger than
Bp(d), a similar (although topologically more complicated) argument works
for Z¢. As a result of this “contour argument”, it is well known and easy to
show that for 8 > f,(d), we have that

wHie) =o. (1)



Our next result is a dynamical version of (1) and we emphasize that
this corresponds to the critical case as it is easy to check that for these 3’s,

he(8) = 0.
Theorem 1.3 For Z¢ with d > 2 and 8 > B,(d)
U3t > 0: C; occurs) = 0.

It is well known that ,(d) > f.(d), the latter being the critical inverse
temperature for the Ising model on Z¢ For d = 2, Theorem 1.3 can be

extended down to the critical inverse temperature 3.(2). First, it is known
(see [5]) that on Z2 for all 8

wthe) =o. (2)

Our dynamical analogue for 8 > . is the following where we again point
out that this is also a critical case as it is easy to check that for these f3’s,
we also have h.(f8) = 0.

Theorem 1.4 For the stochastic Ising model VP on 72 with parameter

B> Be,
THP(3t > 0: C; occurs) = 0.

Interestingly, (1) is not always true for § > (.(d) although, as stated, it
is true for Z?2 or B sufficiently large. In [1], it is shown that for Z¢ with large
d, there exists T > .(d) such that the probability in (1) is in fact 1 for all
B < Bt. Moreover, they show that for these /3, there exists h > 0 with

ptoh ey =1.

For such f’s, this means that k! > 0 and hence it immediately follows from
Theorem 1.1 that

UHA(C, occurs for every t) = 1.

Note that for these values of 3, the case h = 0 is a non-critical case.

We next look at percolation of 1’s under x#. In the above results, we
have not discussed the case of percolation of —1’s when 3 < .. However,
by symmetry, this is the same as studying percolation of 1’s in this case and
so we can now move over to the study of C*.

First, it is well known that for any graph of bounded degree, pt#" #
p= Pt = B (CF) = 1. (This is proved in [3] for Z9; this argument extends
to any graph of bounded degree.) In particular, for any graph G of bounded
degree and for 8 > 5.(G),

pthet) =1, (3)



Our next result is a dynamical version of (3) for Z% We mention that
this result sometimes corresponds to a critical case and sometimes not. For
B > Bp(d) in Z4 or B > B.(2) in Z2, we have seen that h. = 0 and so, in
these cases, this next result covers the critical case. However, as pointed
out, for d large and f just a little higher than f., the result in [1] gives us
that h. < 0 and hence in this case, this next theorem already follows from
Theorem 1.1.

Theorem 1.5 For the stochastic Ising model UVF on 7% with parameter

B> Be(d),

\1!+’5(Ct+ occurs for every t) = 1.

(The proof we give actually works for any graph of bounded degree).
We mention that while 5 > [, is a sufficient condition for (3) to hold, it is
certainly not necessary. For example, on Z3 we have that u™%(C*) = 1 since
pt0 = 1/ and the critical value for site percolation on 7.3 is less than 1/2.
The reason (. appears is the connection between the Ising model and the
random cluster model; 5. corresponds to the critical value for percolation in
the corresponding random cluster model (see [13]).

We are now left with the case 8 < B.. We will not be able to say too
much since it is not known in all cases whether one has percolation at a
fixed time. We first however have the following easy result for d > 3. We
do not prove this result since it follows easily from the fact that the critical
value for site percolation on Z¢ is less than 1/2 for d > 3 as this gives easily
that h.(8) < 0 for § sufficiently small and hence Theorem 1.1 is applicable.

Note that the case 5 = 0 follows from the result in [15] mentioned above.

Proposition 1.6 For d > 3, there exists $1(d) > 0 such that for all f <
B1(d), we have that

UHB(C occurs for every t) = 1.

Finally, due to work of Higuchi, we can determine what happens with
B < B, for Z2. 1t is shown in [16] that for Z2, for all 8 < f3., we have that
he(8) > 0. The following result follows from this fact and Theorem 1.1.

Theorem 1.7 For d =2, for all 8 < 8., we have that
A3t > 0:C occurs ) = 0.

We note that even though it is known that for Z2, p*#(C*) = 0, we
cannot conclude that

UHPe(3t > 0: C;" occurs ) =0

since it is known (see [17]) that h.(8.) = 0. In contrast, based on the results
in [23], it is interesting to ask



Question 1.8 For the graph 72, is it the case that
Ut (3t > 0:CF occurs ) =17

We finally mention that interestingly it is also known (see again [17])
that for 8 < B,, utPrB)(Cct) = 0.

Contact process results. Precise definitions of the following items
will be given in Section 2. Fix an infinite graph G = (S, E/). Consider the
contact process on a graph G = (S, E) with parameter A\. Denote by pu)
the stochastically largest invariant measure, the so-called “upper invariant
measure” (this is a probability measure on {0,1}°). Let ¥* denote the
corresponding stationary contact process (this is a stationary continuous
time Markov chain on {0, 1}¥ with marginal distribution ). If0 < A\; < Ag,
it is well known that uy, is stochastically smaller than p),, denoted by

Par 2 [,

(see Section 2 for this precise definition).

Theorem 1.9 Consider the contact process ¥ on a graph G = (S, E), with
initial and stationary distribution py. Let A\, be defined by

Ap = inf{X\: uy(CT) =1}
We have that for all X > X,
TANCF occurs for every t) = 1.

In order for this theorem to be nonvacuous, we need to know that A, <
oo for at least some graph. First, the fact that there exists A such that
pA(Ct) > 0 for T¢ with d > 2 follows from [12]. Here T? is the unique
infinite connected graph without circuits and in which each site has exactly
d + 1 neighbours; T¢ is commonly known as the homogenous tree of order
d. Combined with a 0-1 law which we develop, Proposition 4.2, we obtain
that A, < oo in this case. For Z? with d > 2 (as well as for T?), it is proved
in [22] that for large A, pu) stochastically dominates high density product
measures which immediately implies that A\, < oo in these cases.

When we prove Theorem 1.1, we will in fact, prove a more general the-
orem which holds for a large class of systems. However, this proof will only
work for models satisfying the so-called FKG lattice condition (which we
call “monotone” in this paper.) We now point out the important fact that
for A < 2, in 1 dimension, the upper invariant measure for the contact pro-
cess, while having positive correlations, is not monotone (see [20]). These
terms are defined in Section 2. (One would also believe it is never monotone
whenever the measure is not dy.) Hence Theorem 1.9 does not follow from
the generalization of Theorem 1.1 which will come later.



e-movability. We now introduce the concepts of upwards and down-
wards e-movability. While we mainly introduce these as a technical tool to
be used in our main results, it turns out that they are of interest in their
own right. In [4], the concept of upwards movability is studied for its own
sake and related to other well studied concepts such as uniform insertion
tolerance.

Let S be a countable set. Take any probability measure y on {—1,1}5
and let X be a {—1,1}" valued random variable with distribution p. Let
Z be a {—1,1}° valued random variable with distribution m; . and be in-
dependent of X. Define X(— by letting X (¢ (s) = min(X(s), Z(s)) for
every s € S, and let u(—9) denote the distribution of X(— . In a similar way,
define X(+:¢) by letting X+ (s) = max(X(s), Z(s)) for every s € S, where
7 has distribution 7, and is independent of X. Denote the distribution of
x (+:€) by N(+’6)-

Definition 1.10 Let (i1, p2) be a pair of probability measures on {—1,1}7,
where S is a countable set. Assume that

M1 = .

If

=y,
then we say that this pair of probability measures is downwards e-movable.
If the pair is downwards e-movable for some € > 0, we say that the pair is
downwards movable. Analogously, if

+7

i < o,
then we say that the pair (u1, pa) is upwards e-movable and that it is upwards
mowvable if the pair is upwards e-movable for some € > 0.

For probability measures on {0, 1}°, we have identical definitions.

The relevance of downward (or upward) e-movability to our dynamical
percolation analysis will be explained in Section 5. In Section 3, we will
prove e-movability for general monotone systems which will eventually lead
to a proof of Theorem 1.1 (and its generalization). We now state a similar
and key result for the contact process.

Theorem 1.11 Let G be a graph of bounded degree, 0 < A1 < Ay and
W, s M, e the upper invariant measures for the contact process on {0, 1}S
with parameters A1 and Ao respectively. Then (uy,, pix,) is downwards mov-

able.



We finally mention how the above questions that we study fall into the
context of classical Markov process theory. Let (2, F,P) be the probability
space where a stationary Markov process {X;};>¢ taking values in some
state space S is defined. Letting i denote the distribution of X; (for any ¢),
consider an event A C S with pu(A) = 1. Let A; be the event that A occurs
at time t. We say that A is a dynamicaly stable event if P(A; Vi > 0) = 1.
In Markov process terminology, this is equivalent to saying that A° has
capacity zero. All the questions in this paper deal with showing, for various
models and parameters, that the event that there exists/there does not exist
an infinite connected component of sites which are all open is dynamically
stable.

The rest of this paper is divided into 9 sections. In Section 2, we
will give all necessary preliminaries and precise definitions of our models.
Sections 3 and 4 will deal with the concept of e-movability. In Section 3, we
develop what will be needed to prove Theorem 1.1 and its generalization.
In Section 4, we will prove Theorem 1.11 (which is the key to Theorem
1.9) as well as give a proof that A, < oo for trees. In Section 5, we prove
2 elementary lemmas which relate the notion of e-movability to dynamical
questions. In the remaining sections, proofs of the remaining results are
given. We note that the proof of Theorem 1.4 will use the proof of Theorem
1.5 and hence will come afterwards.

We end with one bit of notation. If p is a probability measure on some
set U, we write X ~ p to mean that X is a random variable taking values
in U with distribution pu.

2 Models and definitions

Before presenting the interacting particle systems discussed in this paper we
will present some definitions and results related to stochastic domination.
Let S be any countable set. For 0,0’ € {—1,1}% we write 0 < o’ if 0(s) <
o'(s) for every s € S. An increasing function f is a function f : {-1,1}° = R
such that f(o) < f(o’) for all ¢ < ¢’. For two probability measures u, i’ on
{—1,1}° we write p < p' if for every continuous increasing function f we
have that u(f) < p'(f). (u(f) is shorthand for [ f(x)du(x).) When {—1,1}
is replaced by {0,1}°, we have identical definitions. Strassens Theorem (see
[19], page 72) states that if u <y, then there exist random variables X, X’
with distribution p, 4’ respectively such that X < X’ a.s.

A very useful result is the so called Holley’s inequality, which appeared
first in [18]. We will present a variant of the theorem by Holley; it is not
the most general but is sufficient for our purposes.

Theorem 2.1 Take S to be a finite set. Let u, ' be probability measures on
{—1,1}5 which assign positive probability to all configurations o € {—1,1}5.



Assume that

p(o(s) =1a(S\s) = &) < p(o(s) = lo(S\s) =¢)
for every s € S and &€ < & where £,&' € {—1,1}°\5. Then pu < 1.
Proof. See [9] or [13] for a proof.
QED

Two properties of probability measures which are often encountered
within the field of interacting particle systems are the monotonicity property
and the property of positive correlations presented below.

Definition 2.2 Take S to be a finite set. A probability measure p on
{—1,1}° which assigns positive probability to every o € {—1,1}° is called
monotone if for every s € S and £ < & where £,&' € {—1,1}9\5,

u(o(s) = 1o (S\ 5) = &) < plo(s) = o (S \ s) = &).

We point out immediately, that it is known that this is equivalent to the
so-called FKG lattice condition.

Definition 2.3 A probability measure pn on {—1,1}° is said to have positive
correlations if for all bounded increasing functions f,g : {—1,1}* — R, we
have

w(fg) > pn(f)n(g).

The following important result is sometimes known as the FKG inequal-
ity (see [7]).

Theorem 2.4 Take S to be a finite set. Let p be a monotone probability
measure on {—1,1}5 which assigns positive probability to every configura-

Proof. This was originally proved in [7], see also [9] for a proof.
QED

In this section and also later in this paper we will talk about convergence
of probability measures. Convergence will always mean weak convergence,
where {0,1}9 is given the product topology.



2.1 The Ising model

Take G = (S, E), where |S| < oo. The Ising measure p®" on {—1,1}° at in-
verse temperature 8 > 0, external field h and with free boundary conditions
is defined as follows. For any configuration o € {—1,1}", let

HPM o) =-p Y o(t)o(t') = h)_alt). (4)
{t,t'}EE tes

HP" is called the Hamiltonian. Define p%" by assigning the probability

—HPM (o)
Bhiy €
o) = — (5)

to any configuration o € {—1,1}* where Z is a normalization constant. Of
course Z depends on the graph and the values 8 and h, but this will not be
important for us and therefore not reflected in the notation.

Take S, :== Api1 = {-n —1,...,n +1}¢ and E, to be the set of all
nearest neighbor pairs of S,,. Given a configuration £ on {1, I}Zd\’\", let,
for o € {—1,1}7n,

HEPMo) =8 S oo(t) - h> ot) -8 Y. o)) (6)

{t,t'}€En teA, {t,t'}€En
tt' €Ny teEAp
t'€Ay 41\ An

be our Hamiltonian. Here £ is called a boundary condition. Again we define
a probability measure using (5) but using the Hamiltonian of (6) instead.
This Ising measure will be denoted by ,u,%’ﬁ’h‘. The cases £ =1 and £ = —1
are especially important and the corresponding Ising measures are denoted
by uj{’ﬁ’h‘ and ,uﬁ’ﬂ’h’ respectively. We view uj{’ﬁ’h‘ (,u,;’ﬂ’h’) as a probability
measure on {—1, I}Zd by letting, with probability 1, the configuration be
identically 1 (—1) outside A,. It is known (see [19], page 189) that the
sequences {u "} and {pn®"} converge as n tends to infinity; these limits
are denoted by p#" and 4",

The same kind of construction can be carried out on any infinite con-
nected locally finite graph G = (S, E). One defines a Hamiltonian analogous
to the one in (6) but with A, replaced by any A C S where |A| < co. With
£ =1or & =—1, one then considers the corresponding limits of Ising mea-
sures as A 1 S, the limit turning out to be independent of the particular
choice of sequence. See for instance [9] for how this is carried out in detail.
Fix h = 0 and abbreviate p*#% and p=#0 by pt# and p=#. Tt is well
known ([8], [9]) that for any graph, there exists 8. € [0,00] such that for
0 < B < Be, we have that =% = P (and there is then a unique so called
Gibbs state) and for 8 > B, p % # ptP. For Z% with d > 2, and many

other graphs, . € (0,00). B, is sometimes referred to as the critical inverse

10



temperature for phase transition in the Ising model. Furthermore in [14],
the author shows that if G is of bounded degree, the condition 8. < oc is
equivalent to the condition p. < 1, where p. is the critical parameter value
for site percolation on G. It is easy to see that for any graph of bounded
degree p. > 0 (see the proof of Theorem 1.10 of [10]). This in turn implies
via the connection between the random cluster model and the Ising model,
described below, that 5. > 0 for any graph of bounded degree.

2.2 Spin Systems.

A configuration o € {—1,1}° can be seen as particles on a discrete set S
having one of two different “spins” represented by —1 and 1. To this we
will add a stochastic dynamics, and assume that the system is described
by “flip rate intensities” which we will denote by {C(s,0)}cs seq-11}s-
C'(s, o) represents the rate at which site s changes its state when the present
configuration is . Of course C(s,0) > 0 Vs € S,0 € {—1,1}", and we
assume that the interaction is nearest neighbour in the sense that the flip
rate of a site s € S only depends on the configuration ¢ at s and at sites ¢
with {s,t} € E. We will limit ourselves to only allow one site flip in every
transition and we will only consider flip rate intensities such that

supC(s,0) < oo.

§,0

In many cases we will consider translation invariant systems and then this
last condition will hold trivially. Furthermore we will always assume the
trivial condition that for every s € S

sup C(s,o(s)) >0, sup C(s,o(s)) > 0.
o:0(s)=0 o:0(s)=1

We will call such an object a spin system (see [19] or [6] for results concerning
general spin systems). Given such rates, one can obtain a Markov process
¥ on {—1,1}° governed by these flip rates; see [19]. Such a Markov process
with a specified initial distribution g on {—1,1}% will be denoted by WH.
Given a Markov process, p will be called an invariant distribution for the
process if the projections of U* onto {—1,1} at any fixed time ¢t > 0 is
. In this case, ¥# will be a stationary Markov process on {—1,1}* all of
whose marginal distributions are u. Of course the state space {—1,1}° can
be exchanged for either {0,1} or {0,1}7.
Sometimes we will work with two different sets of flip rates

{C1(s,0) }ses, oeq1,1ys and {Ca(s,0) beg, seq1,1}5, governing two Markov
processes W1 and ¥, respectively. We will write C; < Cy if the following
conditions are satisfied;

Cy(s,09) > Ci(s,01) Vs € S, Yo R 09 s.t. 01(s) = 02(s) =0,  (7)

11



and
01(8,0'1) > CQ(S,(IQ) Vs € S, Vo1 =R o9 s.t. ()’1(8) = ()’2(8) =1. (8)

The point of Cy =2 Cs is that a coupling of ¥y and ¥y will then exist for
which {(n, ) : n(s) < (s)Vs € S} is invariant for the process; see [19].

2.3 Stochastic Ising models

We will now briefly discuss stochastic Ising models. We will omit most
details; for an extensive discussion and analysis see again [19]. Consider
Gn = (S, Ey,) defined in the subsection 2.1. Given § and h, it is possible

to construct flip rates C; on {—1,1}" for which ,u,f’ﬁ’h is reversible and

invariant. We denote by \I/,J{’ﬂ’h the corresponding stationary Markov process
with initial distribution ,uj{’ﬂ’h’. One possible choice of flip rate intensities are

that for every s € A, and o € {—1,1}°,

Cf(s,0) =exp[-B( Y o(t)o(s)+ Y. o(s)) = ho(s)]
tEAR: tE/\n+1\/\n:
{t,;s}€En {t,s}€Ep

Sites in Ap4q \ A, are kept fixed at 1. Observe that if s € A,,_1, the second
sum is over an empty set. A straightforward calculation gives

Cyf (s,0)y P (0) = Cyf (s, 05) ™" (), (9)

where

[ o) if t#s
os(t) = { —o(t) if t=s.

This shows that indeed y,*?" is reversible and invariant for C;F. Any family
of spin rates satisfying (9) is called a stochastic Ising model (on our finite
set). One can show that there exists a limiting distribution ¥+%" of o, Ph
when n tends to infinity; see [19], Theorem 2.2, page 17 and Theorem 2.7,
page 139. Furthermore UA:" is a stationary Markov process on {-1, I}Zd

with marginal distribution p+#" governed by flip rate intensities

C(s,0) =exp(—B 3 o(t)als) — ho(s)); (10)

tezd:

{t,s}€E
see [19] Theorem 2.7 page 139. It is also possible to construct THAh directly
on {1, I}Zd without going through the limiting procedure. Furthermore
there are several possible choices of flip rate intensities that can be used
to construct a stationary and reversible Markov process on {—1, I}Zd with
marginal distribution g *+%". In [19], a stochastic Ising model is defined to be

12



any spin system with flip rate intensities {C(s,0)}

that for each s € Z¢

C(s,o)exp(B Y o(t)o(s) + ho(s)) (11)
{t,s}€E

s€Zd pe—1,1}2¢ satisfying

is independent of o(s). Therefore, when we refer to a stochastic Ising model
U +AP with marginal distribution ut-2", we will have this definition in mind.
It is particularly easy to see that (11) (or the condition of detailed balance
as it is often referred to) is satisfied for the flip rate intensities of (10) but
there are many other rates satisfying this. It is known that the set of so
called Gibbs states are exactly the same as the class of reversible measures
with respect to the flip rates satisfying (11); see [19] page 190-196. Note also
that the condition specified in (11) with Z? replaced by A,, is equivalent to
that of (9) (modified with the boundary condition removed).

While we defined above stochastic Ising models on {—1, I}Zd, this con-
struction can be done on more general graphs (see [19]).

2.4 The random cluster model

Unlike all other models in this paper, the random cluster model deals with
configurations on the edges F of a graph G = (S, E). We will review the
definition of the regular random cluster measure on general finite graphs
and the “wired” random cluster measure on A, C Z? We will also recall
the limiting measures and in the next subsection the connection between
the random cluster model and the Ising model. In doing so we will follow
the outlines of [9] and [13] closely.

Take a finite graph G = (S, E). Define the random cluster measure v
on {0,1}¥ with parameters p € [0,1] and ¢ > 0 as the probability measure
which assigns to the configuration n € {0,1}* the probability

DA\ g n(e) (1 _ p)1-n(e) 12
ve'(n) = —— [ p" (1 =p)' =" (12)
eck

Here Z is again a normalization constant and k(7)) is the number of connected
components of 1. From now on we will always take ¢ = 2 and therefore we
will suppress q in the notation.

Take G, = (S,, E,), where S,, = A,.1 C Z? and E, is the set of all
nearest neighbour pairs of A, ;1. Write v}, for I/gn, and define

vP(-) = vE(+] all edges of F,, with both end sites in A, 11 \ A, are present).

(13)
This is the so called “wired” random cluster measure. It is called “wired”
since all edges of the boundary are present. It is immediate from the defining
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equations (12) and (13) that for e € E,, and any ¢ € {0,1}F\¢

P, if the endpoints of e are
vh(n(e) = 1n(E, \ e) = §) = connected in &, (14)
2%} otherwise.

One can show (see [9] or [13]) that when n tends to infinity, the probabil-
ity measures {7} },cn+ converge to a probability measure . Furthermore,
the construction of 7, on {0,1}¥» can be done on any finite subgraph by
connecting all sites of the boundary of the graph with each other. As a
consequence, we can also define random cluster measures on more general
graphs than Z%, see for example [11].

2.5 The random cluster model and the Ising model

Take G, = (Sp, Ep,) as in Section 2.4. As in [13], let P, be the probability
measure on {—1,1,}% x {0,1}F» defined in the following way.

1. Assign each site of A, 41\ A, and every edge with both endpoints in
Apni1 \ Ay the value 1.

2. Assign each site of A, the value 1 or —1 with equal probability, assign
each edge with not more than one endpoint in A, ;1 \ A, the value 0
or 1 with probabilities 1 —p and p respectively. Do this independently
for all sites and edges.

3. Condition on the event that no two sites with different spins have an
open edge connecting them.

One can then check that P} (o, {0,1}7") = ,u,t’ﬂ(a) with = —log(1 —
p)/2, and that Ph({—1,1}°,n) = &5 (n). Here, Ph(0,{0,1}7) is just the
marginal in the first coordinate of P,. The same kind of construction can
be carried out on any finite graph G = (S, F).

2.6 The contact process

Consider a graph G = (S, E) of bounded degree. In the contact process the
state space is {0,1}%. Let A > 0, and define the flip rate intensities to be

1 if o(s)
C(S,U): A Z ()’(S’) if (f(s):

(s',s)EE

1

If we let the initial distribution be ¢ = 1, the distribution of this process
at time ¢t which we will denote by ¢;7(¢) is known to converge as t tends
to infinity. This is simply because it is a so called “attractive” process and
o = 1 is the maximal state and {§;T)\(¢)} is stochastically decreasing; see
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[19] page 265. This limiting distribution will be referred to as the upper
invariant measure for the contact process with parameter A and will be
denoted by py. We then let U* denote the stationary Markov process on
{0,1}* with initial (and invariant) distribution sy.

3 e-movability for monotone measures

In this section, we prove movability results for classes of monotone measures.
The finite case is covered by Lemma 3.3, while the countable case is discussed
in Proposition 3.4. In this section, we will always assume that our measures
have full support.

For any |S| < oo, s € S, & € {0,1}°\* and probability measure x on
{0,113 write pu*9)(il¢) for 9 (a(s) = i|o(S\ s) = €), u=)(iN¢E) for
u9 ({o(s) = i} N {o(S\5) = €}) and a9 (€) for = (o (S \5) = ¢). Here,
* can represent either + or — and i € {0,1}. Note that s is suppressed in
the notation and so should be understood from context.

We begin with an easy lemma whose proof is left to the reader. The
idea is that if the configuration outside of s is ¢ under p(—9, it must have
been at least as large under p “before flipping some 1’s to 0’s”; then use
monotonicity.

Lemma 3.1 Assume that i is a monotone probability measure on {0,1}°
where |S| < co. Take s € S and let & € {0,1}°\5. Then, for any e > 0, we
have that

pO(LE) > (1 — ) p(1]€)
and that
pHI0[€) > (1 — e)u(0]e).

The next lemma will be used to prove lemma, 3.3.

Lemma 3.2 Assume that i is a monotone probability measure on {0,1}5
where |S| < co. For any € > 0, u(—9 is also monotone.

Proof. Let s € S be arbitrary, X ~ g and X(—9 ~ p(—9. For any 6,7 €
{0,115\% define the probability measures ps5 and py on {0, 1}5\% by letting
ps(A) = P(X € AIXC9(S\ 5) =6) and p,(A) = P(X € AIXI(S\ 5) =
n) for every event A in {0, 1}3\5, respectively. We will prove that

e = py Y6 2. (15)

This will give us (since P(X(s) = 1| X (S \ s) = n) is an increasing function
of n) that

P(X9(s) = XS\ 5) =)
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— (10 / P(X(s) = X (S \ ) = 7)djun ()
Jie{0,1}5\s

>0 [ P(X(s) = 1|X(S\ 5) = 7)dus(7)
Jie{0,1}5\s

=P(XT)(s) = 1|XTI)(S\ 5) = 4).

Since s was choosen arbitrarily this would prove the statement.

We now prove (15). Define for n < 7 d(,n) := [{t € S\ s : 7(t) =
1} —|{t € S\'s:n(t) =1} and d(n,0) = [{t € S\ s: 7(t) = 1}|. Here
| - | denotes cardinality. Let pug\4(n) = P(X(S \ s) = n) and define u‘(qf\r’:)
similarly. We have that for n < 7 :

i (1) (16)
_ e -\ Ms s(ﬁ)
= P(XCI(S\ ) =0 X(S\ ) = i) 5 —
Frs\ s (n)
= (dlim) (1 e)d(n,ﬂ)'u(s\%:)(ﬁ)_
,US\; (n)
(17)
It is well known that p being monotone implies that for every s, N
ps\s (71 V 0 psys (71 A 6) > gy s (7) s (6). (18)

By a simple modification of Theorem 2.9 pg 75 of [19], it is enough for us
to show that

s (71 8) (71 A 8) >y (77) s (9) (19)
for all 7 = 1 and 6 = & to show (15). An elementary calculation shows that
d(i v 0,) +d(i) A9, 6) = d(ij,n) + d(5, ). (20)

We therefore get

Nn(ﬁ \% 5)#(5(~ A S)
_ 6d(ﬁv5,n)+d(ﬁ/\5,6) 1- 6)az(n,o)+d(5,o) ”5’\8(’7 vV 4) ”5’\8(77 A 6)
o) nG )

3

> 6d(ﬁ,n)+d(5,5)(1 - 6)(1(77’0)4_(1(5’0) N(S\s)(ﬁ) N(S\s)(é)
povs (1) pgys” (9)

= 11y (7)) 15 (3),

where (16) is used in the first and last equality and equations (18) and (20)
are used in the inequality.

QED
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Lemma 3.3 Let juy, g be probability measures on {0,1}° where |S| < oo.
Assume that po is monotone and that

A= i [ua(o(s) = 1o(S\ 8) = &) — i (0(s) = (S \ 5) = )] > 0.

SES
ce{0,1}5\s

Then for any choice of € > 0, such that

1
A> — —1,
1—¢€

we have
e
Hence (u1, p2) is downwards movable.

Proof. Monotonicity of us, Lemma 3.1, the definition of A and our choice
of € give us that for any s € S and & € {0, 1}5\S

s (116)
> (1 pa116) = (1 - A+ (1))
>0 gt ),

By Lemma 3.2, ugf’e) is monotone and so \75 <&,

m (1) < s (11€) < w7 (118).
The proof is completed by the use of Holley’s inequality, Theorem 2.1.
QED

Proposition 3.4 Let S be any finite or countable set and consider
(Sn)nent, a collection of sets such that |S,| < oo Vn € NT and S, T S.
Let (p1.n)nent (B2.n)nent, be two collections of probability measures, where
Win, fon are probability measures on {0, 1} for every n € N*. Further-
more, assume that all of the probability measures (p11n)nen+ ((H2,n)nen+)
are monotone, that (11, — p1 and that po, — po. Set

Aui= if [aoalo(s) = Uo(S\ 5) =€) - pia(o(s) = (S \ 5) = ©)].
£€{0,1}5n\s
If
inf A, >0,
neN+

then (u1, pe) is upwards (downwards) movable.
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Proof. Take € > 0 such that

inf A, > —1.

neN+ 1—c¢

With this choice of €, Lemma 3.3 says that (u1p,p2,,) is upwards (down-
wards) e-movable. Since p1, — p1 and ps, — p we easily get that

pé;f) — ,uéf’ﬁ) and ,u(lﬁf) — ,ug+’€). Furthermore since the relations
Hin 2 05
and
+1
ug,nE) j MQ,TZ

are easily seen to be preserved under weak limits, we get that

pr <y and it < .

QED

4 e-movability for the contact process and a 0-1
Law

The conditions in our next proposition might seem overly technical; however,
these represent the essential features of the contact process (after a small
suitable time rescaling) and therefore we feel it is instructive to highlight
these features. In Proposition 4.1 and Lemmas 5.1, 5.2 and 8.1 we will
use the so-called graphical representation to define our processes; see for
instance [19] page 172.

Proposition 4.1 Let py and py be two probability measures defined on
{0,1}‘9, where S is a countable set. Assume that pu1 =< po and that there
exists two stationary Markov processes Wi and Vo, governed by flip rate

intensities {C1(8,01)}scs.0,eq0,1)s and {Ca(8,02) }seg gpeqo1ys respectively,
and with marginal distributions gy and pg. Assume that C; < Co (conditions
(7) and (8) of the introduction). Consider the following conditions;

1. There exists an €1 > 0 such that

CQ(S,(IQ) — 01(8,01) 2 €1 (21)
Vs € S, Yoy > 01 s.t. ()’2(8) =0 and 01(8,0'1) # 0.

2. There exists an eo > 0 such that

Ci(s,01) — Ca(s,02) > € (22)
Vs € S, Yoy > 01 s.t. ()’1(8) =1 and CQ(S,()’Q) # 0.
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3. There exists an eg > 0 such that

01(8,01) > €3 Vs €S, Yoq s.t. 01(8) =1, (23)

4. There exists an €4 > 0 such that

CQ(S,(IQ) > €4 Vs €S, Yog s.t. (IQ(S) = 0. (24)

If conditions 1 2 and 3 are satisfied, then (u1, u2) is downwards movable.
If conditions 1 2 and 4 are satisfied, then (u1,p2) is upwards movable.

Proof. We will prove the first statement, the second follows by symmetry.
Define
A= sup Cy(s,o2)+ sup Ci(s,01).
s,02:02(s)=0 s,01:01(8)=1

Our aim is to construct a coupling of the processes {Xj;};>0 ~ ¥y and
{X2,}i>0 ~ ¥y such that X;; < Xy, V£ > 0 in such a way that we prove
the proposition. Before presenting the actual coupling we will discuss the
idea behind it. For every site s € S associate an independent Poisson process
with parameter A. Next, let {Us }scsk>1 and {U! ,}sesx>1 be independent
uniform [0, 1] random variables also independent of the Poisson processes.
If 7 is an arrival time for the Poisson process at site s, we write Uy ; for U,
where k is such that 7 is the kth arrival of the Poisson process at site s.
Now, let 7 be an arrival time for the Poisson process associated to a site s.
For i € {1,2}, let X, ;- and X; .+ denote the configurations before and after
the arrival. We will let the outcome of U, decide what happens with the
{X2,:}1>0 process at time ¢t = 7, and then we will let US’,T together with U, ,
decide what happens with the {X7;};>0 process at time ¢ = 7. As we will
see, we will do this so that X ; < Xy ; for all £ > (. Furthermore, we will do
this in such a way that there exists an e € (0, 1) such that if U, > 1—¢, then
X1,.+(s) = 0 regardless of the outcome of Us ;. Consider now the process
{X{ }i>0 we get by taking X((s) = 1 for every s € S and letting { X[ (s) }s>0
be updated at every arrival time 7 for the Poisson process associated to s,
and updated in such a way that X, (s) =0ifU;, > 1—¢ and X, (s) =1
if U, < 1 — e Of course the distribution of X{ will converge to w1 ..
Observe that whenever X{(s) = 0 we have that X; ;(s) = 0. Therefore we
can conclude that

X],t j min(Xg,t,XtE) Vit 2 0. (25)

Furthermore since the process {Xf};>0 does not depend on any U, we
have that X{(s) is conditionally independent of X5 ; if there has been an
arrival for the Poisson process associated to s before time t. Let s;, 1 €
{1,...,n} be distinct sites in S and let A; be the event that all Poisson
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processes associated to s; through s, have had an arrival by time ¢. Of
course P(A;) = (1 — e )™ and so we get that

P(X9: Xf(s1) = = X9 X[ (sp) = 1)
=P(X9 Xf{(s1) =+ = X9 X[ (sn) = 1|A)P(A)
FP(Xo4 X7 (s1) = -+ = X231 X (s0) = 1 AF)P(A)
=P(Xo(s1) =+ = Xo(sn) = 1| As)
XP(X{(s1) =+ = X{(sn) = 1| A)P(A)
+P( X9, Xi(s1) = -+ = X9 X[ (sn) = 1] A7) P(Af)
=P(Xo(s1) = - = Xo4(sn) = 1| A)P(A) (1 — €)"
+P (X, fX,(sl) o= X941 X[ (sp) = 1]A7)P(Af)
=P({X2.4(s1) = —ng(sn) =1}nA)1 —¢e)"
+P( Xy Xy (51) = Xo 1 X{ (sn) = 1|A7)P(A])
> (P(Xa4(s1) == Xay(sn) = 1) = P(A})) (1 —€)”
+P( X, tXtE(S]) = Xop X (sn) = 1A))P(Af)
=P(Xgy(s1) == X2,t(5n) =1)(1—¢)"
‘HP(AC)( (X2 Xi(s1) = = X9 X{(sn) = 1JA7) — (1 = €)")
No(s1) =+ ZU(%) =1)
( 1) (P(X2, X7 (91) = X, Xi(sp) = 1[A}) — (1 —€)")
ZF s No(s1) = = osn) = 1).

In addition

P(Xg’t(sl) == Xg’t(Sn) =1nN Af)(l - 6)”
<P(Xagu(s1) == Xoy(sp) =1)(1 —¢)"
= n\ N o(s1) =+ = a(sn) = 1)

Hence, by inclusion exclusion, we have that the distribution of

min(Xs, Xf) approaches ,uéf’ﬁ) as t tends to infinity. So by first taking the

limit in (25), we get that p; < ,uéf’ﬁ), as desired.
Now to the construction. Take X g ~ p1, X2 ~ pg, such that Xy <
X2,0. Let 7 be an arrival time for the Poisson process associated to s. Take

Usr and Ug .. The following transition rules apply:

XQ,T* X2,T+ if

0 1 U, < )
R A S )

It is easy to check that the process {XQ’t}tZO thus constructed will have
the right flip-rate intensities. The construction of { X ;};>¢ is slightly more

20



complicated. If Ca(s,X5,-) = 0 and Xy ,-(s) = 0 then it follows from

Ci(s,X,
(7) that Ci(s,X;,-) = 0, and in that case we interpret (N;E%;:ii as 0.

Observe that Ca(s, X5 .- ) can be 0 when X, - (s) = 1 but it will not cause
any problems. With these observations in mind, these are the transition
rules we apply:

(Xl,T*aXZT*) (X],T+aXZT+) ( ) if ( )
Co(s, . C1(s,X =
(an) (17 1) U?,T = ( ,\2 | and U; T < CQES’X;’Tg
Ca(s,X, - Ci(s, X, -
(0,0) (0,1) Uy < 20250 pnq g C;(s,x;r,)
(0,0) (0,0) otherwise
A—Ca(s,X, -
(0,1) (0,0) U, > )
sup  Ca(s,09)
$,02:02(8)=0
(0,1) (1,1) Usr < /\ and
(&3} S,XLT,)

/
<
Usr sup  Ca(s,02)
s,02:02(8)=0

0,1 0,1 otherwise

(0,1) (0,1)

(1,1) (0,0) U,, > 22 t)
(1,1) (0,1) U, < 200Xar) g

A-=C1(s, X, __)
! LT
Usﬂ' 2 A*CQ(S,XQ T,)

(1,1) (1,1) otherwise

It is not difficult to check that all flip rate intensities are correct and
that X;; < Xy, for all ¢ > 0. Observe that by the definition of A, the

sup  Cy(s,09)

A—Ca(5,X, ) 5,02:02(8)=0 .
events {US’T > %} and ¢ U, < 72:2(5) X are dis-

joint when (X, .-, X, ,-) = (0,1).

We now want to show that there exists an e > 0 so that U, > 1 —
€, implies that X; ,+(s) = 0. Note that if (X;,-,X5,-) = (0,0) and
Ci(s,X1,-) >0 (= Cy(s, X5,-) > 0) then

& (SaXl,T*) < CQ(SaXQ,T*) — € <1- €1 <1
CQ(SaXQ,T*) CQ(SaXQ,T*) sSup 02(5502)

$,02:02(8)=0

and if (X, ;—, Xy .-) = (0,0) and C; (s, X; .-) = 0 then

Cl (S, Xl ,T*)

=0.
CQ(sa XQ,T*)
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Furthermore if (X; -, Xy .-) = (0,1) and Cy(s, X; ,-) > 0, then

C(s, Xy :
1(s 1,7 ) <1- €1 <1
sup  Cs(s,09) sup  Cy(s,09)

$,02:02(8)=0 $,02:02(8)=0

while again if (X, ,-, Xy ,-) = (0,1) and Cy(s, X; ,-) = 0, then the 0 never
changes to a 1. Finally if (X;,-,Xy,-) = (1,1) and Cy(s, Xy ,-) > 0
(= C1(s, Xy ,-) > 0), then

)‘701(‘an],7*) < AiCQ(SaXZ,T*)7€2 1 €2 <17€_2
A— OQ(SaXQ,T*) B A— CQ(Sa XQ,T*) B A— OQ(SaXQ,T*) B A
and if (X, ;—, Xy .-) = (1,1) and Ca(s, Xy .- ) = 0,

A—Ci(s, Xy -

1(s, 1,T)§>\ € _1_ %81

A—Cy(s, Xo ) A A

Therefore, whenever
Ul > max | 1 - ° 1-21-8

sup  Cs(s,09)’ A7 A

$,02:02(8)=0

we have that X, +(s) = 0 regardless of the outcome of U . Therefore
(1, p2) is downwards e-movable where

€1 €9 €3
= 1 1 12,8
¢ max sup  Cy(s,09)’ A’ A

s,02:02(s)=0

“ ©2 &
sup  Cy(s,09)" A7 A

s,02:02(s)=0

QED

Proof of Theorem 1.11. Take § > 0 such that A;(14+6) < Ay and consider
the process {Xt}tz(] constructed in the following way. Take Xg = 1 and let
the process evolve with flip rate intensities

1+4 if o(s)
Ci(s,0) =0 M(140)D o(s) if o(s) =

sl~s

1
: (26)

Denote the limiting distribution of X; as ¢ tends to infinity by 1145, (144)-
It is easy to see that this process is just a time-scaling of the contact process
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constructed in Section 2.6 with parameter A;. Recall that that process had
limiting distribution puy,, the upper invariant measure for the contact pro-
cess. Thus we have py, = py45x,(1445). By Proposition 4.1 with Cy as above
and C5 as in Section 2.6 with parameter Ao, there exists an € > 0 such that

P1+6.7: (140) = ME\;’E)-

Hence (g, i»,) is downwards movable.
QED

For the rest of this section we will only consider the graph T? for d > 2.
The following is a 0-1 law for the upper invariant measure for the contact
process.

Proposition 4.2 Let A C {0, I}Td where d > 2 be a set which is invariant
under all graph automorphisms on T¢. Then, for X > 0, we have that

UA(A) € {07 1}'

Proof. Let ¢ > (. By elementary measure theory, there exists a cylinder
event B depending on finitely many coordinates such that

A (AAB) < e. (27)

Let suppB denote the finite number of coordinates with respect to which
B is measurable. Letting {T\(¢)};>0 denote the Markov semigroup for the
contact process with parameter A\, we have that §;7(¢f) — ) and also that
wx = 01 T)\(t) for every t > 0. Choose t so that for all (equivalently some)

sites s
€

WTAE) (n(s) = 1) < palnls) = 1) + 5

It follows easily that if m is any coupling of §;T(¢) and u) which is concen-
trated on {(n,0) : 7 = 0}, then for any finite set S of sites

m({(n,0) : n(s) # d(s) occurs for some s € §) < %

In particular, if £ is any event depending on at most 2|suppB| sites, then
ITA(E) — ua(B)| < e (28)

For this fixed ¢, Theorem 4.6 page 35 of [19] shows that there exists an
automorphism v € AUT(T?) such that

TN (BOAB) — 5T\ (H)(B)S Ty (1) (4B)] < e. (29)
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Furthermore, since p) is invariant under automorphisms (27) implies that

pr(YAAYB) <
and since A = y.A, we have

pr(AAYB) <€
It follows that

A (BAYB) < px(AAYB) + pr(AAB) < 2e.
Next, (28) implies that
01T\ (1) (BAYB) — pr(BAYB)| < ¢,

and so

11 T\(t)(BAYB) < 3e. (30)
We get that

AP = |pa(A) — pa(A)pa(rA)]

< lua(B) = pa(B)pa(yB)| + 3e

< \51Tx(t)(3) — 61T\ (t)(B)61Tx(t)(vB)| + be
< 5Ty (8)(B) — 61Ty (£) (B A yB)| + Te

< 01T (t)(BAYB) + 7e < 10e.

[a(A) — pa(
) —

Where we used (27), (28) and (29) for the three first inequalities and (30)
in the last. Since € > 0, was choosen arbitrarily we get that

pa(A) = pa(A)?
and so py(A) € {0,1}.
QED

Remarks: The above proof works for any transitive and even quasi-
transitive graph. For the case of Z¢ this was proved in Proposition 2.16
page 143 of [19]. It is mentioned there that while ;T\ (#) is ergodic for
each t, one cannot conclude immediately the ergodicity of u) because the
class of ergodic processes is not weakly closed. We point out however that
there is another important notion of convergence given by the d-metric (see
[24] page 89 for definition) on stationary processes. Convergence in this
metric is stronger than weak convergence and weaker than convergence in

the total variation norm. It is also known that the ergodic processes are d-
closed and that weak convergence together with stochastic ordering implies
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d-convergence. In this way, one can conclude ergodicity of py using the d-
metric giving an alternative proof of Proposition 2.16 of [19]. In fact, the
proof of Proposition 4.2 is essentially based on this idea. However, because
of the open question listed below, it is not so easy to formulate the d-metric
for tree indexed processes and so we choose a more hands on approach.
Observe that the crucial property of d-convergence which is essentially used
in the above proof is that for each fixed k, one has uniform convergence
of the probability measures (in say the total variation norm) over all sets
which depend on at most &k points. (The point is that the k points can lie
anywhere and hence this is much stronger than weak convergence).

Open Question related to defining the d-metric for tree indexed
processes: Assume that y and v are two automorphism invariant proba-
bility measures on {0,1}T" such that ; < v. Does there exist a T%invariant
coupling (X,Y) with X ~ 4, Y ~vand X Y7

Proposition 4.3 On T¢, d > 2 there ezists a Ap such that for all X > )\,
p(Ch) = 1.

Proof. By Theorem 1.33(c), page 275 in [19], for sufficiently large A,
pux(n(s) =1) > 2/3. By [12] we have that if uy(n(s) = 1) > 2/3, then

pA(CT) > 0.
Finally, Proposition 4.2 then implies that

pa(Ch) = 1.
QED

5 Relationship between e-movability and dynam-
ics

In the general setup we have a family of stationary Markov processes para-
metrised by one or two parameters, e.g. the contact processes ¥* () is here
the only parameter) or a stochastic Ising model g B (8 and h being the
parameters). Many of the proofs in this paper will involve comparing the
marginal distributions of these Markov processes for two different values of
one of the involved parameters. Let p be the parameter and let p; < ps.
Assume that the marginal distributions are p,, and p,, respectively and
that pp, = pp,. Lemmas 5.1 and 5.2 shows that there is a close connection
between showing that (i, . p,) is downwards e-movable and that the infi-
mum of the second process over a short time interval is stochastically larger
than the first process.
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Let U* be a stationary Markov process on {0,1}° with marginal distri-
bution p and let {X;};>¢ ~ W¥. For § > 0 and s € S define

Xings(s) := teif[l]fd] Xi(s),

and denote the distribution of Xi,¢ s by pinf,s. Similarly define

Xup,s(s) := sup Xy(s),
te(0,d]

and denote the distribution of Xg,, 5 by fsup,s-

Lemma 5.1 Take S to be the sites of a bounded degree graph. Let
{C(s,0)}ses, oef_1,1ys be the flip rate intensities for a stationary Markov
process WH on {—1,1}% with marginal distribution p. Let

A= sup C(s,0).

(5,0)

For any 7 > 0, if we set e := 1 — e~ ", we have that
1) < g
Similarly, we get that
Hsup,t = ,U/(+’€)-

Proof. We will prove the first statement, the second statement follows by
symmetry. Take 7 > 0. For every s € S associate an independent Poisson
process with parameter A. Define {(X/, X7)};>0 in the following way. Let
X(l) = Xg ~ u, and take #' to be an arrival time for the Poisson process
of a site s. For i € {1,2}, let XZ,,, and XZ,,+ denote the configurations
before and after the arrival. We let X/, (s) # X/, _(s) with probability
C(s,X}_)/X and we let X7 (s) = 0 and finally we let X} (S \ s) =
X, _(S\s), X7 (S\s) =X _(S\s). Do this independently for all arrival
times for all Poisson processes of all sites. Observe that once X?(s) is 0, it
remains so. Note also that X! ~ p, X2 ~ u(—9. Furthermore if X} (s) = 0
for some t € [0, 7] the construction guarantees that X?2(s) = 0 and therefore
X2 < Xilmcﬁ ~ linf,r-

QED

Lemma 5.2 Take S to be the sites of any bounded degree graph. Let
{C(8,0) }ses, oef—1,1)s be the flip rate intensities of a stationary Markov
process WH on {—1,1}5 with marginal distribution u. Define

A= inf  C(s,0).

s,0:0(s)=1
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If Ay > 0 then for any 0 < e < 1, if we set 7 := —M, we have that

A1
fing,r < 9.
Similarly, defining Ao := 9 U'ir(lf)_ﬂ C(s,0), if Ao > 0, then for any 0 < e < 1,
if we set T:= —w, w’e.have that
NH’E) = Hsup,r-

Proof. We will prove the first statement, the second statement follows
by symmetry. For every s € S associate an independent Poisson process

with parameter A := sup C(s,0). Next, let {Us}scsr>1 be independent
(5,0) a

uniform [0, 1] random variables also independent of the Poisson processes.
If t' is an arrival time for the Poisson process at site s, we write U,y for
Us,r where k is such that t' is the kth arrival of the Poisson process at site
s. Define {(X/,X}?)}i>0 in the following way. Let X = X¢ ~ pu, and
take ¢’ to be an arrival time for the Poisson process of a site s. We let
X} (s) # X} _(s) if Uy < C(s,X},_)/A Furthermore we let X7, (s) =0
if Ugy < Ai/Aor X2_(s) =0, and finally we let X, (S\s) = X, _(S\s),
X7 . (S\s)=X7_(S\s). Do this independently for all arrival times for all
Poisson processes of all sites. Clearly X! ~ p and X2 ~ 1), Furthermore,
if X2(s) = 0, then either X (s) = X2(s) = 0 or there exists a t € [0,7]
such that ¢ is an arrival time for the Poisson process associated to s and
Ust < Ai/A. Since Ay < C(s, X/) if X (s) =1, we get that either X/, (s)
or X! (s) is 0 and therefore X |, < X2

inf,7

QED

To illustrate why the condition A; > 0 of Lemma 5.2 is needed, consider
the case p = 7, for some p > 0. With € > 0, if we assume the trivial dynamics
C(s,0) =0 for all 5,0, we will of course not have that piine , < 19 for any
T>0.

6 Proof of Theorem 1.9

Proof of Theorem 1.9. Take A > X, and let X' = (A + X,)/2. By Theo-

rem 1.11 there exists an € > 0 such that (uy,puy) is downwards e-movable.

Lemma 5.1 gives us that there exists a 7 > 0 such that ,ugf’ﬁ) = o inf,r and

hence that py = pyinf,r- Therefore, since CT is an increasing event and
X' > X,, we have that

1=ypy (C+) < M)\,inf,T(C+)

and so
WA Ve [0,7])) = 1.

The theorem now follows from countable additivity.
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QED

7 Proof of Theorem 1.1

In this section we will deal with stationary distributions for interacting par-
ticle systems which are monotone in the sense of Definition 2.2.

Let G = (S,E) be a countable connected locally finite graph and let
A C S be connected and |A| < oo. Let {pf },e7, where I C R be a family of
probability measures on {—1,1}* such that

=l Vo1 < po.
Assume that there exist stationary Markov processes \I'f\ governed by flip
rate intensities {Cp A (s, 0) }sen pef—1,134 and with marginal distributions e
Furthermore assume that there exists limiting distributions U? of U and
pP of pfi as A 1 S. Assume that pf are monotone for every p and A. For
p1 < p2, let

Anpips = inf [ (0(s) = Uo(A\s) = &)=} (o(s) = 1|o(A\s) = €)]
ee{—1,13M\s

and assume that for all p; < ps

inf A > 0.
ACS A,p1,p2

For fixed p; < po there exists by Proposition 3.4 an € > 0 such that (uP', uP?)
is both upwards and downwards e-movable. Next, by Lemma 5.1 there exists
a 7 > (0 such that
O <
and therefore
T i (31)

inf,7"
Theorem 7.1 Consider the setup just described. Let A be an increasing
event on {—1,1}% and let A; be the event that A occurs at time t.
(1) Let a € R. If
pP(A) =1
for all p € I with p > a, then
UP(A; occurs for every t) =1

for all p € I with p > a.
(2) Let a € R. If

pP(A) =0
for all p € I with p < a, then

WP(A; occurs for some t) =0

for all p € I with p < a.
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Proof. We prove only (1) as (2) is proved in an identical way. Take p > a
and let py = (p + a)/2. By the argument leading towards (31), there exists
7 > 0 such that

W7 (A) < b (A).

By using pP2(A) =1 and
fing - (A) < WP (A occurs for every t € [0, 7]),
we get by countable additivity that
UP(A; occurs for every ¢) = 1.
QED

We will now be able to prove Theorem 1.1 easily.
Proof of Theorem 1.1. We prove only the very first statement; all the
other statements are proved in a similar manner. We fix 8 > 0 and then A
will correspond to our parameter p in the above set up. For any A C S, any
s € A and any & € {—1,1}*\*, we have that

1
+.8,h — — ) —
HA (0'(3) = 1|0'(A \ S) - 5) - 1+ o—2B(% 10y E(1))—2h (32)

where we let £(¢) = 1 if £ € A° in order to take the boundary condition

into account. It is obvious from (32) and the definition of monotonicity that
+7ﬂ7h
A

1 is monotone for any h and A. Letting h; < hg, it is immediate that
A = inf ! 1 >0
Ahishy = seA [1 + e 2B hns €02k ] 4 o260 E(1) -2 ] ’
cef{—1,1}M\s

where again &(t) = 1 for all ¢ € A°. It is not hard to see that this strict
inequality must hold uniformly in A; i.e.,

inf A > 0.
AQS A7h11h2

It follows that all of the assumptions of Theorem 7.1 hold and part (1) of
that result gives us what we want.

QED

Proof of Lemma 1.2. Fix § > 0. Given any p € (0,1), it is easy to see
that there exists a real number ho such that for all h > ho, for s € S and
for all ¢ € {—1,1}5\s

ptih(o(s) = 1o (S\ s) =€) > p
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and hence m, < ptBh Tt is also easy to see that there exists a real number
hi such that for all h < hy, for s € S and for all £ € {—1,1}5\s

ptih(o(s) = 1o(S\s) =€) <p

and hence pt8h < mp. The statements of the lemma easily follow from
these facts.

QED

8 Proof of Theorem 1.3

In this section we will use a variant of the so called Peierls argument to prove
Theorem 1.3. We prove this only for Z?; the proof (with more complicated
topological details) can be carried out for Z¢ with d > 3.

We will write 0 < OAp for the event that there exists a path of sites
in state —1 connecting the origin to dA;, := Ar41 \ Az, at time ¢ and we

. . —,t . . . .
will write 0 < oo for the event that there exists an infinite path of sites
in state —1 containing the origin at time t. We will also write 0 JAELN OA7,

and 0 <% oo for the obvious analogous events. We will first need Lemma
8.1 and the concept of a dual graph. The dual graph Gdual = (§dual  pdual)
of G, = (Sn, Ey) consists of the set of sites S2 1= {—n — 1,... . n+ 3}°
and E% which is the set of nearest neighbor pairs of S In this paper
we will only work with the edges of the dual graph. An edge e € Edual
crosses one (and only one) edge f € E, and the end sites of this edge f will
be called the sites (of G,) associated to e. For a random spin configuration
X on {—1,1}" define a random edge configuration Y on {0, I}Eg"al in the

following way:
o v {0 X() = X(s) -
@={1 i X9 7x00 (33)

where s,t are the sites associated to edge e € E Tn figure (1) we have

drawn a configuration o € {—1,1}! and the induced edge configuration on
dual

{0,1}F",

Assume that the sites evolve according to the flip rate intensities
{Cn(8,0)}ses,, oef—1,135-- Consider v, a (finite) path of edges in the dual
graph. Take 7' to be a subset of 7y. Assume that all edges of 7’ are absent and
all edges of v\’ are present at ¢ = 0. We want to estimate the probability of
the event that all edges of 7/ are present at some point (not necessarily all at
the same time) during some time interval [0, 7]. In other words we want to es-
timate the probability of the event {Ys,p - (7') = 11Yo(7') =0, Yo (v\Y') = 1}.
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Figure 1: S; and the edges of it’s dual graph. A solid circle marks a site
with spin 1, while an empty circle has spin —1. A solid line is a present edge
of the dual graph, and a dashed line is an absent edge of the dual graph.

Lemma 8.1 Let {Cy(s,0)}scs,, gef—1,135. be the flip rate intensities for a
stationary Markov process on {—1,1}%" and let Y; be defined as above. Let

A= sup Cp(s,0) (< 00).
(5,0)

For any 7 > 0 and any ~' C E®al,
P(Y;UD,T(’Y’) = I‘YO(’Y’) = O,Yg(Egual \fy’)) < (4(1 _ e*)ﬂ')l/ﬁl)h’\‘

Proof.

Take 7 > (. For every s € S,, associate an independent Poisson process
with parameter A. Define {X;};>0 in the following way. Let Xy ~ p and
take ¢’ to be an arrival time for the Poisson process of a site s. We let
Xp.+(s) # Xp.—(s) with probability C(s, Xy.—)/A. Do this independently
for all arrival times for all Poisson processes associated to the different sites.
It is immediate that X, ~ pu. Let s;, ¢« € {1,...,1} be distinct sites of S,,.
The event { Xinf - (5;) # Xsup,r(si) Vi € {1,...,1}} is contained in the event
that every Poisson process associated to the sites s;,4 € {1,...,1} have had
at least one arrival by time 7. The probability that a particular site has had
an arrival by time 7 is 1 — e~ *7. Furthermore this event is independent of
the Poisson processes for all other sites. Therefore

P (Xingr(5i) # Xsupr(si) Vi € {1,...,1}) < (1 —e 7). (34)
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Given 7/, consider the set of all sites associated to some edge of 4 and let
n be the cardinality of that set. Observe that n, < 2|7'| and that in order
for the event {Yaup (7)) = 1[Yo(y') = 0, Yo(Eal\ o)} to occur, at least
|7'|/4 of the sites associated to 4" must flip during [0, 7]. This is because one
site is associated to at most 4 edges. Denote the event that at least |y'|/4 of
the sites associated to ' flips during [0, 7] by A, /. Take S to be a subset of
the sites associated to 7' such that |S| > |7'|/4. By (34), the probability that
all of these sites flips during [0, 7] is less than (1 — e *7)I91 < (1 — e 27)I/4,
To conclude, observe that the number of subsets of the sites associated to v/
is bounded by 2217’ Hence, the probability of the event A, ., must be less
than (1 — e *7)17'1/4221'land so

P (Yaup,r () = 1Yo(7') = 0, V(B \ )
< P(Ary) < ((1—e )il
QED

Proof of Theorem 1.3. We will prove the theorem for d = 2. For 8 > f3,,

choose 41 > 0 so that ' := 52;51 > [, and hence

o0
lel”e*%l < 00.
=1

Next, choose N and e < 1/2 such that % < 61, and eV < e P2=0) and let

7 be such that € = 4(1 — e *")1/4. Let § > 0 be arbitrary and choose L so
that

[ee]
3y 1301200 < 5.
=L

Let £, be the event that 0 PN OAp, for some t € [0,7]. Let TP be
defined as in Section 2.3. We will show that

TP (ELy) <6 VYn> L.

Since \Ilf{’ﬂ(SL,T) — UHB(EL ), (see Section 2.3) we get that UH5(&, 1) < 6.
Letting L — oo and § — 0, we get that

B3t e[0,7]:0 PN o0) =0,
and then by countable additivity
GBIt > 0:0 <% 00) = 0.
It is well known (see [8]) that if all sites in Ap41 \ A, takes the value +1,

Err (35)
C {3y C E™a € [0,7] : |y| > L, 7 surrounds the origin, Y;(y) = 1}
C{3y C Eg""’l :|y| > L, v surrounds the origin, Yg,, -(v) = 1}.
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To prove \Ilj{’ﬂ(EL,T) < 8, consider vy with |y| = I a contour in Edua!
surrounding the origin. By Lemma 8.1, P(Ygup - (7') = 1[Y5(7') = 0, Yo(y \
v") = 1) < 'l whenever v C ~. We get

P(Ysup,r(v) =1) (36)

P(Yo(v)=0,Yo(v\7) =1)

!
M-
]

i
o
N
2

32

XP (Youp,r (7)) = 1Y0(v) =0, Yo (v \ ') = 1)

P(Yo(y) =0,Y5(y\ ) = 1)é*

M-
]

End
Il
=}

"Cy
=k

32

l
Z P({all edges except k of 7 are present at ¢ = 0})e*
k=
/

2 o

P ({all edges except k of 7 are present at £ = 0})e*

o
o

l
+ Z P ({all edges except k of y are present at t = 0})e.
k=l/N+1

Obviously, [/N need not be an integer, but correcting for this is trivial and
is left for the reader.

We need to estimate P({all edges except k of v are present at ¢ = 0}).
For this purpose, define T: {—1,1}°» — {~1,1}°", by

(To)(s) = o(s) if sis not in the domain bounded by ~
TN = —o(s) if sisin the domain bounded by v

for all 0 € {~1,1}%". Let E, = {0 : all edges except k of y are present}.

Since H;? of (6) gives a contribution of —( for adjacent pairs of equal

spin and +/ for adjacent pairs of unequal spin, we have that for o € Ey,

H,’(To) = (o) = 28(17| — k) + 28k = Hy"(0) — 26ln| + 4Pk
Hence, for o € Ej,

~HP(0) - P (To)~28]n|+48k

e
(o) = ——— = ~ :
and so
P (By)
2681+48k e Hi (1)
_ Z,uj{’ﬂ(a):e*6+ﬂ Z Z
o€l oEE,
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o Hi P (To)
< ¢ 2BI+4Bk Z _ 672ﬁl+4ﬂk’
oe{-1,1}5n

where the last equality follows from T being bijective. We then get that

IN
Z P ({all edges except k of 7y are present at ¢ = 0})e* (37)
k=0
I/N I/N
< Ze*2ﬂl+46k6k < o 281+%% Zﬁk < 9p—281+%¢
k=0 k=0

< 26 BB _ 90281

Furthermore

!
Z P ({all edges except k of 7 are present at ¢ = 0})e* (38)
k=1/N+1
I
< N Z P({all edges except k of y are present at t = 0})
k=l/N+1
< N < B0 _ 261

where we use that {all edges except k of 7y are present at ¢ = 0} are disjoint
events for different k. Hence (36), (37) and (38) combined gives us

P(Ysupr(7v) =1) < 3¢ 20!

and so by (35), for all n > L,

U2 (EL,r)
< U P(3y € B |y > L, 5 surrounds the origin, Yaup, () = 1)

oC
<) st 3e M < g,
I=L
where the second to last inequality follows from the fact that the number of
contours around the origin of length / is at most 13'=1, (see [8]).
QED

Remark: For Z% the proof is generalized by noting that the number of
connected surfaces of size | surrounding the origin is at most C(d)', for some
constant C'(d). The arguments are the same but the “topological details” are
messier.

34



9 Proof of Theorem 1.5

We will start this subsection by presenting a theorem by T.M. Liggett, R.H.
Schonmann and A.M. Stacey ([21]).

Theorem 9.1 Let G=(S,E) be a graph with a countable set of sites in which
every site has degree at most A > 1, and in which every finite connected
component of G contains a site of degree strictly less than A. Let p,a,r €
[0,1],g = 1 — p, and suppose that

(1—a)(1—r)>!
(1—a)a®!

q,
q.

VARV

If u € G(p), then mor = p. In particular, if ¢ < (A — 1)271/AD, then
7, = u, where

1/A

. (1 (A —(i)(Al)/A> (1= (qg(A = 1))/5).

Here G(p) denotes the set of probability measures on {—1,1}° such that if
w € G(p), X ~ p then for any site s € S

P[X(s) = Uo({X (1) : {s,#} € E})] > p a.s.

Observe that when p - 1 = ¢ — 0 and so p — 1. The above theorem
is stated as the original in [21]. However, by considering the line-graph of
G = (S, E), it can be restated in the following way.

Corollary 9.2 Let G= (5’, E) be any countable graph of degree at most A.
For each 0 < p < 1 there exists a 0 < p < 1 where p = p(A,p) such that
if Y ~ v where v is a probability measure on the edges of G such that for
every edge e € E

PIY(e) = Ho({Y(f) : e # F1] > p aus.

we have that Wf <.

By e # f we of course mean that the edges e and f does not have any
E

endpoints in common. Here, m,

the edges of G.

Consider a graph G = (S, E) and a subgraph G’ = (S', E') where ' = S
and E' C E. Let X ~ 7, on S. We declare an edge e € E’ to be closed if any
of the endpoints takes the value 0 under X. Corollary 9.2 gives us that for
any p < 1 there is a p < 1 such that this method of closing edges dominates
independent bond percolation with density p on E’. Observe that we can
choose p independent of E’ since the maximal degree of E’ is bounded above
by the maximal degree of F.

is the product measure with density p on
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Let (X,Y) ~ P7, defined in Section 2.5. Close every e € E, such
that Y(e) = 1 independently with probability e thus creating (X, Y (—)).
Compare this to closing every site in S,, independently with parameter ¢’
(creating X (—¢)) and defining

Y (e) = 1 if Y(e) =1 and neither one of the endpoints of e flips
“ 7 0 otherwise.

By the arguments of the last paragraph we see that for a fixed e there exists
an € (that we can choose independent of (X,Y) and n) such that the first
way (i.e. independent bond percolation) of removing edges is stochastically
dominated by the latter. Hence

PL((X, Y9 e ({-1, 13, )|(X,Y))
<PL(XT YY) e ({-1,13%,)|(X, ).

By averaging over all possible (X,Y), the next lemma follows.

Lemma 9.3 With notation as above, for any € > 0 there exists € > 0
independent of n such that

P (X, Y9 e ({=1,1}% ) < PR((X) v) € ({—1,1}5)).
Observe that
PP ((X,Y(9) € ({=1,1}5, ) =p i (79() (39)

and that

PL((XT,Y) € ({-1,1}")) =p pp PL(0). (40)
We are now ready to prove Theorem 1.5.

Proof of Theorem 1.5. For any choice of > (3, take p=1—¢ 28
and let § € (0,p — p.). Now, (14) and Holley’s inequality implies that

P70 < P ¥n e N,

Since by (14) both 17,’%76 and 7§, are monotone, there exists by Lemma 3.3
(it is easy to check that all other conditions of that lemma are satisfied) an
€ > 0 such that

pP=0 < pP (=) yn e NT. (41)

In [13] they show that the limit lim 72 °(0 «— dA,,) exists and that
n

lim 72 ~° (0 «+— dA,) > 0. (42)
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Here {0 +— 0JA,} denotes the event that there exists a path of present
edges connecting the origin to A, := Ap41 \ Ay,. Since {0 +— 0A,} is an
increasing event on the edges, Lemma 9.3 guarantees the existence of an
¢’ > 0 such that

290 «— 9A,)
= PP((X,YT9)) € ({=1,1}%,0,+— 0A,,))
<P

p
PUXD vy e ({=1,1}%,0 +— OA,)) Vn € Nt

If there exists a path of present edges connecting the origin to the boundary
OA,, under Y, all the sites of this path must have the value 1 under X.
Similarly for (X(*"'), Y‘/), if there exists a path of present edges connecting
the origin to the boundary 0A, under Y, all the sites of this path must
have the value 1 under X(—¢). Hence
P2((X Y)Y e ({=1,1}%,0 +— dA,))
— E’ E/ +
=PP((XTD YY) € (0 = dA,, 0 +— OA,,))
<PE((XT, YY) € (0 ¢ 9A,, {0,1}5))

= u 0 & ).
Of course
PN 0 S 0A,) < pt PN (0 <5 0AL) VI < n.
Therefore, for any L we have that
0 < lim P00 +— 0A,)
< lim i f 400 5 0AL) = (0 5 0AL),
and so

0< liinp*"ﬂ’(”")(o &5 0AL) = ptP (0 <5 00).

The limit in L exists since {0 & OAL,} C {0 & OAL, } for Ly < Lo. Since
ptP s ergodic (see [19] page 143 and 195) it follows that p+f(—¢) must
also be ergodic. This is because p+’5’(”€') can be expressed as a function of
two independent processes, one being # and the other a product measure.
We conclude that

B ey = 1, (43)

By Lemma 5.1, there exists a 7 > 0 such that

+7ﬂ

+1ﬂ7(7761) j /"Llnf -

W
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and therefore
Therefore

\1!+’5(Ct+ occurs for every t € [0,7]) = 1.

Finally using countable additivity
THP(C;" occurs for every t) = 1.

QED

10 Proof of Theorem 1.4

The aim of this section is to prove Theorem 1.4. For that we will use
Theorem 1.5 and Lemma 10.1. We will not prove Lemma 10.1 since it
follows immediately from the proof of Lemma 11.12 in [10] due to Y. Zhang.
A probability measure p on {—1,1}° is said to have the finite energy
property if all conditional probabilities on finite sets are strictly positive.

Lemma 10.1 Take p to be any probability measure on {—1, 1}Z2 which has
positive correlations and the finite energy property. Assume further that p

is invariant under translations, rotations and reflections in the coordinate
azes. If n(CT) =1, then u(C~) = 0.

Proof of Theorem 1.4. Fix § > .. By (43), there exists € > 0 such that
M+1ﬂ7(77€)(c+) — 1

Since pt? and m_, both have positive correlations, it follows that p*#:(—)
has positive correlations. This is because (see [19], page 78) the product of
two probability measures which have positive correlations also has positive
correlations. Furthermore, a collection of increasing functions of random
variables which have positive correlations also has positive correlations. In
addition, the finite energy property is easily seen to hold for p+’5’(”€). Using
this we can by Lemma 10.1 conclude that

ptP 9y =o.

+76

inf.r and hence

By Lemma 5.1 there exists a 7 > 0 such that p+5(—¢ <

pin(C7) =0,

It follows that
UHA(3t € [0,7] : C; occurs) = 0,

and by countable additivity, we conclude

TPt > 0:C; occurs) = 0.
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QED
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