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Abstract

We consider Galton-Watson trees with Geom(p) offspring distribution. We let T∞(p)
denote such a tree conditioned on being infinite. We prove that for any 1/2 ≤ p1 < p2 ≤ 1,
there exists a coupling between T∞(p1) and T∞(p2) such that P(T∞(p1) ⊆ T∞(p2)) = 1.
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1 Introduction

Consider a Galton-Watson tree T (p) with some offspring distribution µp depending on the
parameter p. If p1 < p2, then for many offspring distributions, it is possible to couple the trees
T (p1) and T (p2) such that P(T (p1) ⊆ T (p2)) = 1. This is for example the case with binomial,
Poisson and negative binomial offspring distributions. One can then ask whether this property
is preserved under certain conditioning. For example, if we let T∞(p) denote a sample of T (p)
conditioned on being infinite, is it the case that there exists a coupling of T∞(p1) and T∞(p2),
where p1 < p2, such that

P(T∞(p1) ⊆ T∞(p2)) = 1? (1)

Of course, if p is such that the tree T (p) is finite almost surely, then one needs to take care in
defining T∞(p).

It is known (see Example 1.1 in [1]) that there exists a parameterized offspring distribution
µp such that T (p1) ⊆ T (p2) can be made to hold almost surely, but for which (1) fails. However,
(1) is known to hold for the Poisson offspring distribution (see Lyons, Peled and Schramm in
[4]) and for the Binomial(d, p) offspring distribution (see [1]) when d = 2, 3. It would of course
be desirable to give a complete characterization of the properties of µp needed to have (1).
Unfortunately, this seems to be out of reach at the moment and the goal of this paper is to give
another piece of the puzzle by studying the case of geometric offspring distribution (i.e. when
for some p ∈ (0, 1), the probability that an individual has k offspring is pk(1 − p)). Similar
questions can be asked about percolation clusters on graphs. One of the most interesting cases
is the corresponding problem for bond-percolation on Zd; see Open problem 4.3 of [1].
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Another similar type of question was studied by Lusczak and Winkler in [5]. The authors
considered trees Tk, which are trees conditioned on being of a fixed size k, and asked the natural
question whether these conditioned trees could be coupled in increasing order, i.e. so that
P(Tk ⊂ Tk+1) = 1 (see Theorem 1.1 below for a precise statement of this result). We will use
their result as a key ingredient in the proof of our main result.

We proceed to give some definitions needed for the statements of the main results. Let o
be the root, and consider the sets V0 = {o}, Vn := {1, 2, . . .}n and V = {o} ∪∞n=1 {1, 2, . . .}n =
∪∞n=0Vn. For any vertex v = (v1, . . . , vn) ∈ Vn, with n ≥ 1, we define v− = (v1, . . . , vn−1) ∈ Vn−1,
with the convention that if n = 1, then v− = {o}. We will think of v− as being the parent of v.
Furthermore if v = (v1, . . . , vn) ∈ Vn, is such that vn ≥ 2, we let v′ = (v1, . . . , vn − 1) ∈ Vn and
otherwise we let v′ be undefined. We think of v′ as being the ’youngest older sibling’ of v. Of
course, such a vertex only exists if v is not the first child of v−.

For any two elements u = (u1, . . . , uk) and v = (v1, . . . , vl) ∈ V \ {o}, we let (u, v) =
(u1, . . . , uk, v1, . . . , vl) denote the concatenation of u and v. For i ≥ 1, we will allow a slight
abuse of notation, by writing (u, i) instead of (u, (i)) for (u1, . . . , uk, i). Furthermore, for any
u ∈ V we let (u, o) = (o, u) = u so that in particular, (o, o) = o.

Consider a set of vertices V ⊂ V. V induces a set of edges if we ”place” an edge between v
and v− whenever v, v− ∈ V. A tree T is a then a connected graph consisting of a set of vertices
V (T ) ⊂ V and the induced set of edges E(T ). Since V (T ) determines the graph completely, we
will leave E(T ) implicit. A subtree of a tree T is defined to be a connected subgraph of T. For
any v ∈ V and a tree T, we let T v denote the subtree (of T ) with vertex set V (T v) := {u ∈
V (T ) : u = (v, w) for some w ∈ V}. Note that if v 6∈ V (T ), we get that V (T v) = ∅. Informally,
T v is simply the tree consisting of v and the descendants of v that belongs to T. We also define
H(T v) := {w ∈ V : (v, w) ∈ V (T v)}, which is simply a shift of T v, mapping v to o. For i ≥ 1,
we sometimes abuse notation and write T i instead of T (i). We will let |T | denote the number of
vertices of a tree T and we call this the size of T .

We will let F denote the set of trees T , with the following two properties. Firstly, o ∈ V (T ),
and secondly, if v ∈ V (T ) then v′ ∈ V (T ) if v′ exists. For 1 ≤ k <∞, let Tk be uniformly chosen
among the trees T ∈ F , such that |T | = k. Let the distribution of Tk be denoted by Tk. We let
ck denote the number of trees T ∈ F such that |T | = k. Thus, c1 = 1, c2 = 1, c3 = 2, c4 = 5, . . .
The trees of F are sometimes called the rooted, ordered trees, and it is well known that (ck)k≥1

are the Catalan numbers (see for instance [6], Exercise 6.19).
The random trees with Geometric offspring distribution that we consider in this paper are

formally defined as follows. For p ∈ (0, 1), let (Xv)v∈V be an i.i.d. collection of random variables,
indexed by V, such that P(Xv = k) = pk(1 − p) for k = 0, 1, . . .. Then, let V0(T (p)) = {o} and
inductively let

Vn+1(T (p)) =
⋃

v∈Vn(T (p))

⋃
1≤i≤Xv

{(v, i)}, (2)

for every n ≥ 0. We then define T (p) to be the tree with vertex set

V (T (p)) =
∞⋃

n=0

Vn(T (p)).
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Observe that Vn(T (p)) ⊂ Vn so that this is the set of vertices of T (p) at distance n from the
root. Of course, if Xv = 0 for some v, the second union of (2) is over an empty set and so no
descendants of v belongs to T (p). For a similar reason, if for some n, Vn(T (p)) = ∅, it follows
that Vn+1(T (p)) = ∅. We also note that T (p) ∈ F .

It is easy to see from the construction, that for any tree T ∈ F of size k, P(T (p) = T ) =
pk−1(1− p)k, and therefore

P(|T (p)| = k) = ckp
k−1(1− p)k. (3)

It follows that the distribution of T (p), conditioned on the event that |T (p)| = k, is Tk (in
particular, it is independent of p). Sometimes, it will be convenient to think of the empty set
as the tree of size 0, and then we will use the notation T0 = ∅. For every 1 ≤ k ≤ ∞, we define
ηk(p) := P(|T (p)| = k). Note that we allow for k =∞, and that

∑∞
k=1 ηk(p) + η∞(p) = 1, since

we always start with the root so that P(|T (p)| = 0) = 0.
For two trees T, T ′ we say that T ⊆ T ′ if V (T ) ⊆ V (T ′). Note that it follows by definition

that E(T ) ⊆ E(T ′). The following theorem is due to [5]. It is not explicitly stated, but as they
point out (p. 427), it follows from their argument.

Theorem 1.1 (Luczak, Winkler) There exists a coupling of (Tk)k≥1 (where Tk ∼ Tk for
every 1 ≤ k <∞) such that

P(T1 ⊂ T2 ⊂ · · · ) = 1. (4)

Remark: It is proved in [2] that equation (4) does not hold for general offspring distributions.

It is well known, that for p > 1/2, P(|T (p)| = ∞) > 0. For such p > 1/2, let T∞(p) denote
a random tree whose distribution equals that of T (p), conditioned on the event |T (p)| = ∞.
Furthermore, with (Tk)k≥1 as in Theorem 1.1, we define

T∞(1/2) :=
∞⋃

k=1

Tk. (5)

For any p ≥ 1/2, we let T∞(p) denote the distribution of T∞(p). Since (Tk)k≥1 does not depend
on the parameter p, it may seem strange to use the notation T∞(1/2) (i.e. p = 1/2). However,
in Section 2, we will describe a way to sample trees with distribution T∞(p), and then we will
see that

⋃∞
k=1 Tk naturally corresponds to the critical case p = 1/2.

We can now state our main theorem.

Theorem 1.2 For any 1/2 ≤ p1 < p2 ≤ 1, there exists a coupling of T∞(p1) and T∞(p2) (where
T∞(p1) ∼ T∞(p1) and T∞(p2) ∼ T∞(p2)) such that

P(T∞(p1) ⊆ T∞(p2)) = 1.

Remark: We prove the theorem by giving an explicit construction of the coupling.
As mentioned before, the corresponding result for Galton-Watson trees with Poisson offspring

distributions was proved in [4], while the corresponding result for Bin(d, p) offspring distribution
was proved in [1] for d = 2, 3.

We have the following corollary.
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Corollary 1.3 For any k and p ≥ 1/2, there exists a coupling of Tk and T∞(p), (where Tk ∼ Tk
and T∞(p) ∼ T∞(p) ) such that

P(Tk ⊂ T∞(p)) = 1.

Remark: This is an immediate consequence of Theorem 1.1, (5) and Theorem 1.2.

We will end this section by briefly discussing the difficulties involved in proving Theorem
1.2. In order to construct a coupling satisfying the statement of Theorem 1.2, it is useful to
be able to generate (or sample) trees with distribution T∞(p). A natural way to do this is
to use a sequential procedure using conditional probabilities as follows (where we will use the
easily established result, see Lemma 2.1, that η∞(p) = (2p − 1)/p for p > 1/2). Informally, we
construct T̄ (p) ∼ T∞(p), by in the first step letting T̄ 1(p) be infinite with probability P(|T 1(p)| =
∞||T (p)| =∞) = pη∞(p)/η∞(p) = p, and of size k <∞ with probability P(|T 1(p)| = k||T (p)| =
∞) = pηk(p). In the second step, if |T̄ 1(p)| =∞, then we let T̄ 2(p) be infinite with probability
P(|T 2(p)| = ∞||T 1(p)| = |T (p)| = ∞) = pη∞(p), while if |T̄ 1(p)| = k < ∞, we let T̄ 2(p) be
infinite with probability P(|T 2(p)| = ∞||T 1(p)| = k, |T (p)| = ∞) = · · · = p. Continuing in this
way until one finds a subtree which is infinite, and later a subtree which is of size 0 (which marks
the end of the procedure), one can produce a tree T̄ (p) ∼ T∞(p).

This is one of the most natural ways of sampling a tree with distribution T∞(p). However, it is
not possible to use this procedure to construct a coupling proving Theorem 1.2. This can be seen
by first observing that any coupling of T∞(p1) and T∞(p2) satisfying P(T∞(p1) ⊆ T∞(p2)) = 1
must certainly satisfy |Tn

∞(p1)| ≤ |Tn
∞(p2)| for every n. With positive probability, we could have

that |T̄ 1(p1)| < ∞ while |T̄ 1(p2)| = ∞. Then, the conditional probability that |T̄ 2(p1)| = ∞ is
p1, while the conditional probability that |T̄ 2(p2)| =∞ is p2η∞(p2). Of course, for some choices
of p1, p2 we can have that p1 > p2η∞(p2), and so we do not get that |T 2(p1)| ≤ |T 2(p2)| with
probability 1.

In a second attempt, one might try to remedy the problem of our first attempt by first
determining which subtrees T̄ 1(p), T̄ 2(p), . . . should be infinite, and which should be finite. Then,
one could proceed by coupling these subtrees so that if T̄ i(p1) is infinite than so is T̄ i(p2).
However, one will then find that with positive probability, both T̄ 1(p1) and T̄ 1(p2) are finite,
and then one would have to let |T̄ 1(pi)| = k with probability

P(|T (pi)| = k||T (pi)| <∞) =
ηk(pi)

1− η∞(pi)
= ckp

k−1
i (1− pi)k pi

1− pi
= ηk(1− pi). (6)

Because of (6), we see that conditioned on T̄ 1(p1) and T̄ 1(p2) both being finite, we cannot
have that |T 1(p1)| ≤ |T 1(p2)| with probability 1. In fact, a canonical coupling will result in
|T 1(p2)| ≤ |T 1(p1)|.

Therefore, the key to proving Theorem 1.2 is to find a way to generate a tree with distribution
T∞(p) which has the desired monotonicity properties and does not fall into any of the traps
described above. In Section 2 we give this procedure along with some preliminary results. We
then use this in Section 3 to prove Theorem 1.2.

2 Generating a tree with distribution T∞(p)

We start this section by proving the following easy lemma, already used in the introduction.
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Lemma 2.1 If p ≤ 1/2, then η∞(p) = 0 and if p > 1/2, then η∞(p) = 2p−1
p .

Proof. We have that

1− η∞(p) =
∞∑

k=0

P(Xo = k)(1− η∞(p))k

=
∞∑

k=0

pk(1− p)(1− η∞(p))k =
1− p

1− p(1− η∞(p))
.

Solving for η∞(p), we have two solutions, η∞(p) = 0 and η∞(p) = 2p−1
p . It is well known that

the tree is supercritical iff p > 1/2 from which the result follows.

We proceed by describing a procedure that will generate a tree T̃ (p). In Lemma 2.2 we show
that this procedure is well defined. Lemmas 2.3 and 2.4 will then prove that T̃ (p) ∼ T∞(p) for
every p ≥ 1/2, while Lemma 2.5 will provide us with the crucial monotonicity properties used
to prove our main results.

However, before we give any details, we will explain some heuristics of the construction
and the coupling. Consider therefore a tree with distribution T∞(1/2). It is well known (see
for instance [3] sections 5 and 7) that such a tree will consist of one single infinite path to
which there are smaller trees attached. In fact, it is possible to prove (and indeed we do
this in Lemma 2.3) that such a tree can be generated in the following informally described
way. Start with the root o, and sample X1, X2 independently from a Geometric distribution
with parameter 1/2. Then, attach independent trees with distribution T (1/2) to the vertices
(1), . . . , (X1). Proceed by attaching an independent tree with distribution T∞(1/2) to (X1 + 1)
and end the construction by attaching independent trees with distribution T (1/2) to the vertices
(X1 + 2), . . . , (X1 + X2 + 1). This implies that the probability that the infinite subtree can be
found at position l (i.e. belongs to the lth child of the root) equals P(X1 = l − 1) = 2−l.

In order to construct the coupling of T̃ (1/2) ∼ T (1/2) and T̃ (p) ∼ T (p) for 1/2 < p in
the desired way, we start by finding the infinite subtree of T̃ (1/2) as above. For this, we
simply use a random variable X such that P(X = l) = 2−l. Given this number l, the above
paragraph tells us that for T̃ (1/2), the subtrees T̃ 1(1/2), . . . , T̃ l−1(1/2) should be i.i.d. T (1/2).
We then require the corresponding subtree T̃ l(p) to be infinite also for T̃ (p). The conditional
distributions of T̃ 1(p), . . . , T̃ l−1(p) are slightly more complicated, but the key is that they will
be independent, which facilitates a coupling of T̃ i(1/2) and T̃ i(p) for 1 ≤ i ≤ l − 1 such that
T̃ i(1/2) ⊂ T̃ i(p). Of course, it is not apriori clear that it is possible to achieve the coupling
T̃ i(1/2) ⊂ T̃ i(p) but this is addressed in Lemma 2.5. We note that if our construction would
instead condition on the smallest number k such that T̃ k(p) is infinite, then the conditional
distributions of T̃ 1(p), . . . T̃ k−1(p) would be T (1−p) as described in (6). Thus, just as described
in the Introduction, our coupling would fail.

Of course, we also have to address the subtrees T̃ l+1(1/2), . . . and T̃ l+1(p), . . . which is done
in a similar, albeit slightly more complicated (as the conditional distributions of T̃ l+1(p), . . . are
dependent of each other and T̃ 1(p), . . . , T̃ l(p)) way, to ensure that the end result T̃ (1/2) (T̃ (p))
indeed has distribution T∞(1/2) (T∞(p)). Finally, it will turn out that the construction will not
only work to couple T̃ (1/2) and T̃ (p), but will in fact work for any 1/2 ≤ p1 < p2 ≤ 1.
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Below, X will (as discussed) determine the position of the single infinite subtree for T̃ (1/2),
Lm(p) will determine the size of the subtree T̃m(p) while m0 − 1 will be the total number of
subtrees.

We now turn to the formal description. We let X be such that P(X = l) = 2−l for every
l ≥ 1, and (Ui)i≥1 be an i.i.d. sequence of U [0, 1] random variables which is also independent
of X. For p ≥ 1/2, we then define the random variables L1(p), L2(p), . . . through the following
procedure

1. For every m < X and 1 ≤ k <∞, we let Lm(p) = k if

k−1∑
l=1

2pηl(p) ≤ Um <

k∑
l=1

2pηl(p), (7)

while if Um >
∑∞

l=1 2pηl(p) we let Lm(p) =∞.

2. We let LX(p) =∞.

3. In order to define Lm(p) for every m > X, we proceed sequentially. Assume therefore that
Lm−1(p) has been determined. We then define n∞(p,m) := |{i ≤ m−1 : Li(p) =∞}| and
let Lm(p) = 0 if

Um <
2n∞(p,m)p(1− p)

(2n∞(p,m) − 2)p+ 1
, (8)

and for 1 ≤ k <∞, we let Lm(p) = k if

2n∞(p,m)p(1− p)
(2n∞(p,m) − 2)p+ 1

+
k−1∑
l=1

pηl(p) ≤ Um <
2n∞(p,m)p(1− p)

(2n∞(p,m) − 2)p+ 1
+

k∑
l=1

pηl(p), (9)

and otherwise we let Lm(p) =∞.

For our construction of T̃ (p), we will only use the Lm(p) such that m < m0 := min{m : Lm(p) =
0}. We have the following lemma.

Lemma 2.2 By the above construction, for any m < l, we have that P(Lm(p) = ∞|X = l) =
pη∞(p). Furthermore, we have that for m > l,

P(Lm(p) =∞|X = l, n∞(p,m) = n) = pη∞(p)
(2n − 1)p

(2n − 2)p+ 1
.

Proof. Using that η∞(p) = (2p− 1)/p, we have that

pη∞(p) +
∞∑

k=1

2pηk(p) = 2p− 1 + 2p(1− η∞(p)) = 2p− 1 + 2(1− p) = 1,
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and furthermore, for any n ≥ 1,

2np(1− p)
(2n − 2)p+ 1

+
(2n − 1)p

(2n − 2)p+ 1
pη∞(p) +

∞∑
k=1

pηk(p)

=
2np(1− p)

(2n − 2)p+ 1
+

(2n − 1)p
(2n − 2)p+ 1

(2p− 1) + p(1− η∞(p))

=
p2(2n+1 − 2− 2n) + p(−2n + 1 + 2n)

(2n − 2)p+ 1
+ 1− p

= p
p(2n − 2) + 1
(2n − 2)p+ 1

+ 1− p = 1,

proving the lemma.
Remark: Note that this also proves that the procedure determining (Lm(p))m≥1 is well defined,
since all relevant (conditional) probabilities are positive and sum to one.

We now turn to the construction of T̃ (p).

1. Let X, (Lm(p))m≥1 be defined as above.

2. Let (T∞,m(p))m≥1 be an i.i.d. sequence which is independent of the other random variables
in this list, and where T∞,m(p) ∼ T∞(p) for every m ≥ 1.

3. Let for every m ≥ 1, (Tk,m)k≥1, be a sequence of random variables such that Tk,m ∼ Tk for
every k ≥ 1. Furthermore, let (Tk,m)k≥1 be independent for different m and independent
of the other random variables in this list.

Recall that m0 = min{m : Lm(p) = 0}, and define the tree T̃ (p) by

V (T̃ (p)) = {o}
m0−1⋃
m=1

⋃
v∈TLm(p),m

{(m, v)}.

Here, we abuse the notation somewhat in that we write TLm(p),m instead of TLm(p),m(p) when
Lm(p) =∞. Informally, the tree T̃ (p) is constructed by starting with a root and then attaching
trees of size Lm(p) at the vertex {(m)} for every m < m0. One key property of the tree T̃ (p)
is that T̃ (p) ∼ T∞(p), which we prove next. Since the proofs in the cases p = 1/2 and p > 1/2
are completely different, we split the result into two lemmas. We point out that Lemma 2.3 can
be shortened by using the technique of size-biased Galton-Watson trees at criticality (see [3],
Chapter 7, and the references within). However, in order to keep the paper self-contained, we
give a proof from first principles.

Lemma 2.3 We have that T̃ (1/2) ∼ T∞(1/2).
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Proof. Recall from (5) the definition of T∞(1/2). We have from this that for any 1 ≤ l ≤ m,
1 ≤ k1, . . . , kl−1, kl+1, km <∞, and with kl = kl(n) = n− (k1 + · · ·+ kl−1 + kl+1 + · · ·+ km)− 1,

P(|T 1
∞(1/2)| = k1, . . . , |T l−1

∞ (1/2)| = kl−1, |T l
∞(1/2)| =∞,

|T l+1
∞ (1/2)| = kl+1, . . . , |Tm

∞(1/2)| = km, |Tm+1
∞ (1/2)| = 0)

= lim
n→∞

P(|T 1
n | = k1, . . . , |Tm

n | = km, |Tm+1
n | = 0)

= lim
n→∞

P(|T 1(p)| = k1, . . . , |Tm(p)| = km, |Tm+1(p)| = 0||T (p)| = n)

= lim
n→∞

∏m
i=1 pηki

(p)
ηn(p)

(1− p) = lim
n→∞

pm+k1−1+···+km−1(1− p)k1+···+km

pn−1(1− p)n

∏m
i=1 cki

cn
(1− p)

= lim
n→∞

∏m
i=1 cki

cn
=

 ∏
1≤i≤m:i 6=l

cki

 lim
n→∞

cn−k−1

cn
,

where we use (3) and k := k1 + · · ·+ kl−1 + kl+1 + · · ·+ km. Observe that the choice of p ∈ (0, 1)
is irrelevant (as discussed in the introduction), and that if |T (p)| = n, then

∑∞
j=1 |T j(p)| =

n − 1 which explains the definition of kl. Furthermore, as in Lemma 2.1 of [1], we have that
limn→∞ cn−1/cn = 1/4, so we conclude that

P(|T 1
∞(1/2)| = k1, . . . , |T l−1

∞ (1/2)| = kl−1, |T l
∞(1/2)| =∞,

|T l+1
∞ (1/2)| = kl+1, . . . , |Tm

∞(1/2)| = km, |Tm+1
∞ (1/2)| = 0)

=
1

4k+1

 ∏
1≤i≤m:i 6=l

cki

 =
1
4

∏
1≤i≤m:i 6=l

cki

22ki
=

1
4

∏
1≤i≤m:i 6=l

1
2
ηki

(1/2).

We continue by noting that

P(|T̃ 1(1/2)| = k1, . . . , |T̃ l−1(1/2)| = kl−1, |T̃ l(1/2)| =∞,
|T̃ l+1(1/2)| = kl+1, . . . , |T̃m(1/2)| = km, |T̃m+1(1/2)| = 0)

= P(L1(1/2) = k1, . . . , Ll−1(1/2) = kl−1, Ll(1/2) =∞,
Ll+1(1/2) = kl+1, . . . , Lm(1/2) = km, Lm+1(1/2) = 0|X = l)P(X = l)

=

(
l−1∏
i=1

ηki
(1/2)

)(
m∏

i=l+1

1
2
ηki

(1/2)

)
1
2

2−l =
1
4

∏
1≤i≤m:i 6=l

1
2
ηki

(1/2).

This establishes that the joint distribution of the sizes of T 1
∞(1/2), T 2

∞(1/2), . . . is the same as
that of T̃ 1(1/2), T̃ 2(1/2), . . .. Furthermore, it is easy to see that conditioned on |T i

∞(1/2)| = ki,
the distribution of H(T i

∞(1/2)) is Tki
. By construction of T̃ (1/2), the same holds for T̃ i(1/2).

Furthermore, by (5), T∞(1/2) is the limiting distribution of Tn ∼ Tn when letting n → ∞.
Therefore, conditioned on |T l

∞(1/2)| = ∞, we have that H(T l
∞(1/2)) ∼ T∞(1/2). By construc-

tion of T̃ (1/2), it holds that also H(T̃ l(1/2)) ∼ T∞(1/2). We conclude that T∞(1/2) and T̃ (1/2)
must have the same distribution.
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Lemma 2.4 For every p > 1/2, we have that T̃ (p) ∼ T∞(p).

Proof. Let I,J ⊂ {1, 2, . . .} be such that I 6= ∅, I ∩ J = ∅, and I ∪ J = {1, 2, . . . , I + J}
where I = |I| and J = |J |. Informally, I = {i1, . . . , iI} will be the set of children with an
infinite number of descendants, while J = {j1, . . . , jJ} will be the set of children with a finite
number of descendants. Here, we have ordered the elements of I,J so that i1 < i2 < · · · < iI
and j1 < j2 < · · · < jJ . Using that T∞(p) is a random tree with the same distribution as T (p)
conditioned on being infinite, we observe that for any k = (k1, . . . , kJ) ∈ {1, 2, . . .}J

P(|T i1
∞(p)| = · · · = |T iI

∞(p)| =∞, |T j1
∞(p)| = k1, . . . , |T jJ

∞ (p)| = kJ , |T I+J+1
∞ (p)| = 0)

=
(pη∞(p))I

∏J
l=1 pηkl

(p)
η∞(p)

(1− p) = p(1− p)(pη∞(p))I−1
J∏

l=1

pηkl
(p). (10)

We now need to show that when using the construction of T̃ (p) we get the analogous expression.
For any i ∈ I let j(i) be the smallest j ∈ J such that j > i if such a j exists. We get that

P(|T̃ i1(p)| = · · · = |T̃ iI (p)| =∞, |T̃ j1(p)| = k1, . . . , |T̃ jJ (p)| = kJ , |T̃ I+J+1(p)| = 0)

=
I∑

l=1

2−ilP(Li1(p) = · · · = LiI (p) =∞, Lj1(p) = k1, . . . , LjJ (p) = kJ , LI+J+1(p) = 0|X = il)

=
I∑

l=1

2−il(pη∞(p))l−1

 ∏
jm<il

2pηkm(p)

 (11)

×P(Lil+1
(p) = · · · = LiI (p) =∞, Lj(il)(p) = kj(il), . . . , LjJ (p) = kJ , LI+J+1(p) = 0|X = il).

The first equality simply divides into cases depending on the value of X. The second equality
uses (7) and the first part of Lemma 2.2. We proceed by considering (the possibly empty) set
of j such that il < j < il+1. Using that 2−il

∏
jm<il

2 = 2−l, we then get that (11) equals

I∑
l=1

2−l(pη∞(p))l−1

 ∏
jm<il

pηkm(p)

 ∏
il<jm<il+1

pηkm(p)


×P(Lil+1

(p) = · · · = LiI (p) =∞, Lj(il+1)(p) = kj(il+1), . . . , LjJ (p) = kJ , LI+J+1(p) = 0|X = il)

=
I∑

l=1

2−l(pη∞(p))l−1

 ∏
jm<il+1

pηkm(p)

 pη∞(p)
(2l − 1)p

(2l − 2)p+ 1

×P(Lil+2
(p) = · · · = LiI (p) =∞, Lj(il+1)(p) = kj(il+1), . . . , LjJ (p) = kJ , LI+J+1(p) = 0|X = il),

where we in the second step use Lemma 2.2. Iterating this procedure, and using (8), we get that

P(|T̃ i1(p)| = · · · = |T̃ iI (p)| =∞, |T̃ j1(p)| = k1, . . . , |T̃ jJ (p)| = kJ , |T̃ I+J+1(p)| = 0)

= · · · =

(
J∏

m=1

pηkm(p)

)
(pη∞(p))I−1

I∑
l=1

2−l

(
I−1∏
m=l

(2m − 1)p
(2m − 2)p+ 1

)
2Ip(1− p)

(2I − 2)p+ 1
,
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where
I−1∏
m=l

(2m − 1)p
(2m − 2)p+ 1

:= 1, (12)

if l = I.
Comparing this to (10), we need to prove that for every I,

I∑
l=1

2−l

(
I−1∏
m=l

(2m − 1)p
(2m − 2)p+ 1

)
2I

(2I − 2)p+ 1
= 1, (13)

and this we do by induction. First, we note that this trivially holds for I = 1. Assume therefore
that it holds for I ≥ 1, and observe that by (12),

I+1∑
l=1

2−l

(
I∏

m=l

(2m − 1)p
(2m − 2)p+ 1

)
2I+1

(2I+1 − 2)p+ 1

=
2I+1

(2I+1 − 2)p+ 1

(
2−(I+1) +

I∑
l=1

2−l

(
I∏

m=l

(2m − 1)p
(2m − 2)p+ 1

))

=
2I+1

(2I+1 − 2)p+ 1

(
2−(I+1) +

I∑
l=1

2−l

(
I−1∏
m=l

(2m − 1)p
(2m − 2)p+ 1

)
2I

(2I − 2)p+ 1
(2I − 1)p

2I

)

=
2I+1

(2I+1 − 2)p+ 1

(
2−(I+1) +

(2I − 1)p
2I

)
=

1 + 2(2I − 1)p
(2I+1 − 2)p+ 1

= 1,

where we use the induction assumption in the third equality.

In order to prove Theorem 1.2 using our construction of T̃ (p), we will need the monotonicity
properties stated in our next lemma, which consists of three parts.

Lemma 2.5 Consider the functions
pηk(p), (14)

and
2np(1− p)

(2n − 2)p+ 1
. (15)

1. For any 1 ≤ k <∞, the function of (14) is non-increasing in p for p ≥ 1/2.

2. For any n ≥ 1, the function of (15) is non-increasing in p for p ≥ 1/2.

3. For any 1/2 ≤ p < 1, the function of (15) is non-increasing in n for n ≥ 1.

Proof. We have that pηk(p) = ckp
k(1 − p)k, which is clearly non-increasing in p for p ≥ 1/2.

Furthermore, since p(1 − p) and 1/((2n − 2)p + 1) are non-increasing in p for p ≥ 1/2 and any
n ≥ 1, the first two parts of the statement follows.

The third part follows by observing that the function of (15) is non-increasing in n iff(
(2n+1 − 2)p+ 1

)
2n ≥ 2n+1 ((2n − 2)p+ 1) ,

which simplifies to 1− 2p ≥ 2− 4p and holds for all p ∈ [1/2, 1].
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3 Proof of Theorem 1.2

In order to prove Theorem 1.2, we will start by proving it in a special case, and then use this to
prove the full statement.

Theorem 3.1 For any p > 1/2, there exists a coupling of T∞(1/2) and T∞(p) (where T∞(1/2) ∼
T∞(1/2) and T∞(p) ∼ T∞(p)) such that

P(T∞(1/2) ⊂ T∞(p)) = 1.

Remark: The proof of Theorem 1.2 will be very similar, and therefore we will only address the
necessary changes.

Proof of Theorem 3.1. In order to facilitate the display of formulas, we will use the notation
p1 = 1/2 and p2 = p.

We will construct a sequence of pairs of trees (T̃l(p1), T̃l(p2))l≥1 such that T̃l(pi) ∼ T∞(pi)
for every l ≥ 1, and

P(T̃l(p1) ∩ (∪l
n=0Vn) ⊂ T̃l(p2) ∩ (∪l

n=0Vn)) = 1, (16)

for every l ≥ 1. That is, (T̃l(p1), T̃l(p2)) will be ordered up to distance l from the root. From
this, the statement will easily follow.

We start by proving (16) for l = 1. We will use the procedure of Section 2 to generate our
trees, but we will do it simultaneously for p1 and p2. Consider therefore the following random
variables that we will use in our construction of (T̃1(p1), T̃1(p2)).

1. X is such that P(X = l) = 2−l for l ≥ 1. It is also independent of all other random
variables listed.

2. (Ui)i≥1 is an i.i.d. collection of U [0, 1] random variables which is also independent of all
other random variables listed.

3. For every m ≥ 1, (Tk,m)k≥1 is a collection of random variables such that Tk,m ∼ Tk
and P(T1,m ⊂ T2,m ⊂ · · · ) = 1, which is possible by Theorem 1.1. Furthermore, we
take (Tk,m)k≥1 to be independent for different m, and independent from all other random
variables listed. We also let T∞,m(p1) =

⋃∞
k=1 Tk,m.

4. Finally, (T∞,m(p2))m≥1 is an i.i.d. collection such that T∞,m(p2) ∼ T∞(p2) for every m,
and (T∞,m(p2))m≥1 is independent from all other random variables listed.

For any m < X and 1 ≤ k <∞, we let Lm(pi) = k iff

k−1∑
l=1

2piηl(pi) ≤ Um ≤
k∑

l=1

2piηl(pi)

and otherwise we let Lm(pi) = ∞. Thus, we see that Lm(pi) is chosen with probabilities as
in (7) and in Lemma 2.2. Furthermore, by the first part of Lemma 2.5 we conclude that
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Lm(p1) ≤ Lm(p2) for every such m. We also let LX(p1) = LX(p2) =∞. Recall that n∞(pi,m) =
|{j ≤ m− 1 : Lj(pi) =∞}| and note that by our construction,

n∞(p1, X) ≤ n∞(p2, X). (17)

We proceed as follows. For m = X + 1, we let Lm(pi) = 0 iff

Um <
2n∞(pi,m)pi(1− pi)

(2n∞(pi,m) − 2)pi + 1
,

and for 1 ≤ k <∞, we let Lm(pi) = k iff

2n∞(pi,m)pi(1− pi)
(2n∞(pi,m) − 2)pi + 1

+
k−1∑
l=1

piηl(pi) ≤ Um <
2n∞(pi,m)pi(1− pi)

(2n∞(pi,m) − 2)pi + 1
+

k∑
l=1

piηl(pi),

and otherwise we let Lm(pi) = ∞. By Lemma 2.5, Lm(p1) ≤ Lm(p2) and in particular it is
possible for Lm(p1) = 0 while Lm(p2) > 0. This uses all three parts of that lemma. As a
consequence, we get that n∞(p1, X + 1) ≤ n∞(p2, X + 1).

Continue for m = X + 2 etc in the natural way, and define m0(pi) = min{m : Lm(pi) = 0}.
As above, Lemma 2.5, shows that Lm(p1) ≤ Lm(p2) for every m. Define

V (T̃1(pi)) := {o}
m0(pi)−1⋃

m=1

⋃
v∈TLm(pi),m

{(m, v)}, (18)

where again, we abuse notation by writing TLm(pi),m instead of TLm(pi),m(pi) when Lm(pi) =∞.
Thus, T̃1(pi) is defined through the procedure of Section 2, and so by Lemmas 2.3 and 2.4

we see that T̃ (pi) ∼ T∞(pi) for i = 1, 2. By construction, we have that

P(T̃1(p1) ∩ ({o} ∪ V1) ⊂ T̃1(p2) ∩ ({o} ∪ V1)) = 1.

We now proceed inductively, and so assume that (16) holds for some l ≥ 1. We repeat the
above procedure, but using 3’ below instead of points 3 and 4.

3’ For every m ≥ 1, (Tk,m)k≥1 is a collection of random variables such that Tk,m ∼ Tk and
P(T1,m ⊂ T2,m ⊂ · · · ) = 1, which is possible by Theorem 1.1. We take (Tk,m)k≥1 to
be independent for different m, and also independent from all other random variables
listed, and let T∞,m(p1) =

⋃∞
k=1 Tk,m. Furthermore, we let (T∞,m(p2))m≥1 be such that

T∞,m(p2) ∼ T∞(p2) and coupled with T∞,m(p1) so that

P(T∞,m(p1) ∩ (∪l
n=0Vn) ⊂ T∞,m(p2) ∩ (∪l

n=0Vn)) = 1.

This is possible by the induction hypothesis.

We then construct (T̃l+1(p1), T̃l+1(p2)) using 1,2 and 3’. To see why (T̃l+1(p1), T̃l+1(p2))
satisfies (16) for l+ 1, it suffices to observe the following. By the induction hypothesis, any pair
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of trees used in (18) are already ordered up to distance l from their roots, and so by attaching
them to vertices at distance one from the root of T̃l+1(pi), the new trees are ordered up to
distance l + 1 from their roots.

In order to conclude the argument, let γl be a measure on {0, 1}V × {0, 1}V with marginal
distributions T∞(p1) and T∞(p2) such that γl(ξ(∪l

n=0Vn) ≤ η(∪l
n=0Vn)) = 1. Here, we identify

a tree T and an element ξT ∈ {0, 1}V by letting ξT (v) = 1 iff v ∈ T, and the measure γl

exists by the above construction. Since {0, 1}V × {0, 1}V is compact, there exists a subsequen-
tial limiting measure γ on {0, 1}V × {0, 1}V with marginal distributions T∞(p1) and T∞(p2)
such that γ(ξ(V) ≤ η(V)) = liml γ(ξ(∪l

n=0Vn) ≤ η(∪l
n=0Vn)) = 1. By Strassen’s theorem

it follows that there exists random trees T∞(p1) ∼ T∞(p1) and T∞(p2) ∼ T∞(p2) such that
P(T∞(p1) ⊂ T∞(p2)) = 1.

We are now ready to prove Theorem 1.2. Since the proof is very similar to the proof of
Theorem 3.1, we will only address the minor changes.
Proof of Theorem 1.2. We can assume that p1 > 1/2 since the case p1 = 1/2 has already
been proved. We change point 3 to

3 For every m ≥ 1, (Tk,m)k≥1 and T∞,m(p1) is a collection of random variables such that
Tk,m ∼ Tk, T∞,m(p1) ∼ T∞(p1) and coupled so that P(T1,m ⊂ T2,m ⊂ · · · ⊂ T∞(p1)) = 1,
which is possible by Theorems 1.1 and 3.1. Furthermore, we take (Tk,m)k≥1 and T∞,m(p1)
to be independent for different m, and also independent from all other random variables
listed.

Point 3’ is changed accordingly.
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