Euler-Maruyama

Des Higham Department of Mathematics and Statistics University of Strathclyde

Euler-Maruyama

- Definition of Euler–Maruyama Method
- Weak Convergence
- Strong Convergence

Recap: SDE

Given functions f and g, the stochastic process $\mathbf{X}(t)$ is a soluton of the SDE

$$d\mathbf{X}(t) = f(\mathbf{X}(t))dt + g(\mathbf{X}(t))d\mathbf{W}(t)$$

if $\mathbf{X}(t)$ solves the integral equation

$$\mathbf{X}(t) - \mathbf{X}(0) = \int_0^t f(\mathbf{X}(s)) \, ds + \int_0^t g(\mathbf{X}(s)) \, d\mathbf{W}(s)$$

Discretize the interval [0,T]: let $\Delta t = T/N$ and $t_n = n\Delta t$ Compute $\mathbf{X}_n \approx \mathbf{X}(t_n)$ Initial value \mathbf{X}_0 is given

Euler-Maruyama

Exact solution:

$$\mathbf{X}(t_{n+1}) = \mathbf{X}(t_n) + \int_{t_n}^{t_{n+1}} f(\mathbf{X}(s)) ds + \int_{t_n}^{t_{n+1}} g(\mathbf{X}(s)) d\mathbf{W}(s)$$

Euler-Maruyama:

$$\mathbf{X}_{n+1} = \mathbf{X}_n + \Delta t f(\mathbf{X}_n) + \Delta \mathbf{W}_n g(\mathbf{X}_n)$$

(Left endpoint Riemann sums)

In MATLAB, $\Delta \mathbf{W}_n$ becomes sqrt(Dt)*randn

$$f(x) = \mu x$$
 and $g(x) = \sigma x$, $\mu = 2$, $\sigma = 0.1$, $X(0) = 1$

Solution: $\mathbf{X}(t) = \mathbf{X}(0)e^{(\mu - \frac{1}{2}\sigma^2)t + \sigma \mathbf{W}(t)}$

Disc. Brownian path with $\delta t = 2^{-8}$, E-M with $\Delta t = 4\delta t$:

$$|\mathbf{X}_N - \mathbf{X}(T)| = 0.69$$

Reducing to $\Delta t = 2\delta t$ gives $|\mathbf{X}_N - \mathbf{X}(T)| = 0.16$ Reducing to $\Delta t = \delta t$ gives $|\mathbf{X}_N - \mathbf{X}(T)| = 0.08$

Convergence?

 \mathbf{X}_n and $\mathbf{X}(t_n)$ are random variables at each t_n

In what sense does $|\mathbf{X}_n - \mathbf{X}(t_n)| \to 0$ as $\Delta t \to 0$?

There are many, non-equivalent, definitions of convergence for sequences of random variables

The two most common and useful concepts in numerical SDEs are

- Weak convergence: error of the mean
- Strong convergence: mean of the error

Weak Convergence

Weak convergence: capture the average behaviour

Given a function Φ , the weak error is

$$e_{\Delta t}^{\text{weak}} := \sup_{0 \le t_n \le T} |\mathbb{E} \left[\Phi(\mathbf{X}_n) \right] - \mathbb{E} \left[\Phi(\mathbf{X}(t_n)) \right]|$$

 Φ from e.g. set of polynomials of degree at most k

Converges weakly if $e_{\Delta t}^{\rm weak} \to 0$, as $\Delta t \to 0$

Weak order p if $e_{\Delta t}^{\mathrm{weak}} \leq K \Delta t^p$, for all $0 < \Delta t \leq \Delta t^*$

In practice we estimate $\mathbb{E}[\Phi(\mathbf{X}_n)]$ by Monte Carlo simulation over many paths \Rightarrow " $1/\sqrt{M}$ " sampling error

$$f(x) = \mu x$$
 and $g(x) = \sigma x$, $\mu = 2$, $\sigma = 0.1$, $X(0) = 1$

Solution has $\mathbb{E}[X(t)] = e^{\mu t}$

Measure weak endpoint error $|a_M - e^{\mu T}|$ over $M = 10^5$ discretized Brownian paths. Try $\Delta t = 2^{-5}, 2^{-6}, 2^{-7}, 2^{-8}, 2^{-9}$

Least squares fit: power is 1.011 (Confidence intervals smaller than graphics symbols) Suggests weak order p=1

Weak Euler-Maruyama

$$\mathbf{X}_{n+1} = \mathbf{X}_n + \Delta t f(\mathbf{X}_n) + \widehat{\Delta \mathbf{W}}_n g(\mathbf{X}_n)$$

where
$$\mathbb{P}\left(\widehat{\Delta \mathbf{W}}_n = \sqrt{\Delta t}\right) = \frac{1}{2} = \mathbb{P}\left(\widehat{\Delta \mathbf{W}}_n = -\sqrt{\Delta t}\right)$$

E.g. use sqrt(Dt)*sign(randn)

or sqrt(Dt)*sign(rand-0.5)

Least squares fit: power is 1.03

Weak Euler-Maruyama

Generally, EM and weak EM have weak order p=1 on appropriate SDEs for $\Phi(\cdot)$ with polynomial growth

Can prove via **Feynman-Kac formula** that relates SDEs to PDEs

Strong Convergence

Strong convergence: follow paths accurately

Strong error is

$$e_{\Delta t}^{\text{strong}} := \sup_{0 \le t_n \le T} \mathbb{E}\left[\left|\mathbf{X}_n - \mathbf{X}(t_n)\right|\right]$$

Converges strongly if $e^{\rm strong}_{\Delta t} \to 0$, as $\Delta t \to 0$

Strong order p if $e_{\Delta t}^{\rm strong} \leq K \Delta t^p$, for all $0 < \Delta t \leq \Delta t^*$

 $f(x)=\mu x$ and $g(x)=\sigma x$, $\mu=2$, $\sigma=1$, X(0)=1

Solution: $\mathbf{X}(t) = \mathbf{X}(0)e^{(\mu - \frac{1}{2}\sigma^2)t + \sigma \mathbf{W}(t)}$

M=5,000 disc. Brownian paths over [0,1] with $\delta t=2^{-11}$ For each path apply EM with $\Delta t=\delta t, 2\delta t, 4\delta t, 16\delta t, 32\delta t, 64\delta t$ Record $\mathbb{E}\left[|\mathbf{X}_N-\mathbf{X}(1)|\right]$ for each δt

Least squares fit: power is 0.51

Strong Convergence

Generally EM has strong order $p = \frac{1}{2}$ on appropriate SDEs

Can prove using Ito's Lemma, Ito isometry and Gronwall

Note: strong convergence ⇒ weak convergence, but this doesn't recover the optimal weak order

Strong Convergence

Euler-Maruyama has

$$\mathbb{E}\left[\left|\mathbf{X}_{n} - \mathbf{X}(t_{n})\right|\right] \leq K\Delta t^{\frac{1}{2}}$$

Markov inequality says

$$\mathbb{P}(|\mathbf{X}| > a) \le \frac{\mathbb{E}[|\mathbf{X}|]}{a}, \quad \text{for any } a > 0$$

Taking
$$a=\Delta t^{\frac{1}{4}}$$
 gives $\mathbb{P}\left(|\mathbf{X}_n-\mathbf{X}(t_n)|\geq \Delta t^{\frac{1}{4}}\right)\leq K\Delta t^{\frac{1}{4}}$, i.e.

$$\mathbb{P}\left(\left|\mathbf{X}_{n} - \mathbf{X}(t_{n})\right| < \Delta t^{\frac{1}{4}}\right) \ge 1 - K\Delta t^{\frac{1}{4}}$$

Along any path error is small with high prob.

Higher Strong Order

If g(x) is constant, then EM has strong order p=1

More generally, strong order p=1 is achieved by the Milstein method

$$\mathbf{X}_{n+1} = \mathbf{X}_n + \Delta t f(\mathbf{X}_n) + \Delta \mathbf{W}_n g(\mathbf{X}_n) + \frac{1}{2} g(\mathbf{X}_n) g'(\mathbf{X}_n) \left(\Delta \mathbf{W}_n^2 - \Delta t \right)$$

(More complicated for SDE systems.)

Even Higher Strong Order: Warning!

Numerical methods for stochastic differential equations Joshua Wilkie Physical Review E, 2004

Claims to derive arbitrarily high (strong?) order methods, with a Runge–Kutta approach.

But using only Brownian increments, ΔW_n , rather than more general integrals like

$$\int_{t_n}^{t_{n+1}} \int_{t_n}^{t_{n+1}} d\mathbf{W}_1(s) d\mathbf{W}_2(t)$$

there is an order barrier of p = 1 (Rümelin, 1982).

Nonlinear SDEs

There is a **limited amount of theory** regarding convergence on nonlinear SDEs for which global Lipschitz conditions do not hold

em.m: part 1

```
%EM Euler-Maruyama method on linear SDE
%
 SDE is dX = lambda*X dt + mu*X dW, X(0) = Xzero,
       where lambda = 2, mu = 1 and Xzero = 1.
%
% Discretized Brownian path over [0,1] has dt = 2^{-8}.
% Euler-Maruyama uses timestep R*dt.
clf
                                 % set state of randn
randn('state',100)
lambda = 2; mu = 1; Xzero = 1; % problem parameters
T = 1; N = 2^8; dt = T/N;
dW = sqrt(dt)*randn(1,N);
                                 % Brownian increments
W = cumsum(dW);
                                 % disc. Brownian path
Xtrue = Xzero*exp((lambda-0.5*mu^2)*([dt:dt:T])+mu*W);
plot([0:dt:T],[Xzero,Xtrue],'m-'), hold on
```

em.m: part 2

```
R = 4; Dt = R*dt; L = N/R; % L EM steps of size <math>Dt = R*dt
                            % preallocate for efficiency
Xem = zeros(1,L);
Xtemp = Xzero;
for j = 1:L
   Winc = sum(dW(R*(j-1)+1:R*j));
   Xtemp = Xtemp + Dt*lambda*Xtemp + mu*Xtemp*Winc;
   Xem(j) = Xtemp;
end
plot([0:Dt:T],[Xzero,Xem],'r--*'), hold off
xlabel('t','FontSize',12)
ylabel('X','FontSize',16,'Rotation',0,'HorizontalAlignment',
emerr = abs(Xem(end)-Xtrue(end))
```

Least Squares Fit

$$\operatorname{Xerr}_{i} = C\Delta t_{i}^{q} \Rightarrow \log(\operatorname{Xerr}_{i}) = \log(C) + q\log(\Delta t_{i})$$

This is

$$\begin{bmatrix} 1 & \log(\Delta t_1) \\ 1 & \log(\Delta t_2) \\ \vdots & \vdots \end{bmatrix} \begin{bmatrix} \log(C) \\ q \end{bmatrix} = \begin{bmatrix} \log(\operatorname{Xerr}_1) \\ \log(\operatorname{Xerr}_2) \\ \vdots \end{bmatrix}$$

```
%%% Least squares fit of error = C * Dt^q %%%
A = [ones(p,1),log(Dtvals)']; rhs = log(Xerr);
sol = A\rhs; q = sol(2)
resid = norm(A*sol - rhs)
```