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Recap: SDE

Given functions f and g, the stochastic process X (¢) Is a
soluton of the SDE

dX(t) = f(X(t))dt + g(X(t))dW (2)

If X(¢) solves the integral equation

/ F(X(s)) ds + / 9(X(s)) AW (5)

Discretize the interval [0,7T]: let At =T/N and t, = nAt
Compute X,, ~ X(t,)
Initial value X Is given
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Euler—Maruyama
Exact solution :

X (tni1) = X(tn) + / " R(X(s)) ds + / " g(X(s) AW (s)

Euler-Maruyama

Xn—l—l = Xp + Atf(Xn) + AW, g(Xn)
(Left endpoint Riemann sums)

In MATLAB, AW,, becomes sqrt(Dt) *randn
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flx)=pxandg(z) =ocx,u=2,0 =0.1, X(0) =1

Solution : X (t) = X (0)el#—zo ) t+oW(1)
Disc. Brownian path with 6t = 278, E-M with At = 46¢:

| | | | | | | | |
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
t

Xy — X(T)| = 0.69
Reducing to At = 26t gives | Xy — X(T')| = 0.16
Reducing to At = it gives | Xy — X(T)| = 0.08

Basel, Feb 2010 — p.5/20



Convergence?

X, and X(t,) are random variables at each t,
In what sense does |X,, — X(¢,,)| — 0 as At — 07?

There are many, non-equivalent, definitions of convergence
for sequences of random variables

The two most common and useful concepts in numerical
SDEs are

m Weak convergence: error of the mean

m Strong convergence: mean of the error

Basel, Feb 2010 — p.6/20



Weak Convergence
Weak convergence: capture the average behaviour

Given a function @, the weak error Is

eng = sup [E[P(X,)] - E[S(X(tn))]]
0<t,<T

¢ from e.g. set of polynomials of degree at most &

Converges weakly if % — 0, as At —0

Weak order pif %2k < KA, forall 0 < At < A

In practice we estimate E[®(X,,)] by Monte Carlo simulation
over many paths = “1/+/M” sampling error
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flx)=pxandg(z) =ocx,u=2,0 =0.1, X(0) =1
Solution has E[X (t)] = e
Measure weak endpoint error |ay; — e*!'| over M = 10°
discretized Brownian paths. Try At =27°,276 27 278 279
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Least squares fit: power is 1.011
(Confidence intervals smaller than graphics symbols)

Suggests weak order p =1
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Weak Euler—Maruyama
X1 = Xy + Atf(Xy,) + mn 9(Xp)

where P (A/\\Nn = \/At) =1=P (A/\\Nn = —\/At)
E.g. use sqrt(Dt) =*sign(randn)
or sgrt(Dt)  *sign(rand-0.5)
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Least squares fit: power is 1.03
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Weak Euler—Maruyama

Generally, EM and weak EM have weak order p = 1 on
appropriate SDEs for @(-) with polynomial growth

Can prove via Feynman-Kac formula that relates SDEs to
PDEs
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Strong Convergence
Strong convergence: follow paths accurately

Strong error is

esAtgong ;= sup E HXn - X(tn)H
0<t,<T

strong

Converges strongly ife,, > — 0, as At — 0

Strong order pif 557" < KA, forall 0 < At < At
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f(x)=prandg(z)=0cx,u=2,0=1,X(0) =1
Solution: X(t) = X(0)elt—27 o W(1)
M = 5,000 disc. Brownian paths over [0, 1] with §t = 2711

For each path apply EM with At = 6t, 26t, 46t, 160t, 320t, 646t
Record E [| Xy — X(1)|] for each it
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Least squares fit: power is 0.51
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Strong Convergence

Generally EM has strong order p = 1 on appropriate SDES
Can prove using Ito’s Lemma, Ito isometry and Gronwall

Note: strong convergence = weak convergence,
but this doesn’t recover the optimal weak order
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Strong Convergence

Euler—-Maruyama has

E [|X, — X(ta)|] < KAt3
says

KX
P(IX]| > a) < H ”, for any a > 0
a

Taking a = Ati gives P (yxn ~ X(tn)| > At%) < KAt i.e.
P (|Xn ~X(ty)] < Ati) > 1 KAt

Along any path error is small with high prob.
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Higher Strong Order

If g(x) Is constant, then EM has strong order p = 1

More generally, strong order p = 1 is achieved by the
Milstein method

Xpp1 = Xy + At f(Xy) + AW, g(Xy)
+19(X,) g (X)) (AW? — At)

(More complicated for SDE systems.)
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Even Higher Strong Order: Warning!

Numerical methods for stochastic differential
equations
Joshua Wilkie
Physical Review E, 2004

Claims to derive arbitrarily high (strong?) order methods,
with a Runge—Kutta approach.

But using only Brownian increments, AW, rather than
more general integrals like

tovt i
/ / AW 1 ()W (1)
tn tn

there is an order barrier of p = 1 (Rimelin, 1982).
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Nonlinear SDES

There is a limited amount of theory regarding convergence

on nonlinear SDEs for which global Lipschitz conditions do
not hold
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em.m: part 1
%EM Euler-Maruyama method on linear SDE
%
% SDE is dX = lambda*X dt + mu*X dW, X(0) = Xzero,
% where lambda = 2, mu = 1 and Xzero = 1.
%
% Discretized Brownian path over [0,1] has dt = 2°(-8).
% Euler-Maruyama uses timestep R * dt.

clf

randn(’state’,100) % set state of randn
lambda = 2; mu = 1; Xzero = 1, % problem parameters

T =1 N = 278; dt = T/N;

dwW = sqgrt(dt) *randn(1,N); % Brownian increments
W = cumsum(dW); % disc. Brownian path

Xtrue = Xzero =*exp((lambda-0.5 *mu™2) * ([dt:dt:T])+mu *\W);
plot([0:dt:T],[Xzero,Xtrue],'m-"), hold on
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em.m: part 2
R =4; Dt = R+xdt; L = N/R; % L EM steps of size Dt = R * dt

Xem = zeros(l,L); % preallocate for efficiency
Xtemp = Xzero;
for | = 1L

Wwinc = sum(dW(R * (J-1)+1:R  *)));
Xtemp = Xtemp + Dt *lambda * Xtemp + mux Xtemp* Winc;
Xem(j)) = Xtemp;

end

plot([0:Dt:T],[Xzero,Xem],'r-- *’), hold off

xlabel(’t’,’FontSize’,12)

ylabel(’X’,’FontSize’,16,'Rotation’,0,’"Horizontal Al ignment’,’ri

emerr = abs(Xem(end)-Xtrue(end))
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Least Squares Fit

Xerr; = CAt! = log(Xerr;) = log(C') + qlog(At;)

This is
"1 log(Aty) ~ " log(Xerry) T
1 log(Ats) [ log(C) ] _ | log(Xerrs)
. . q .
%%%% Least squares fit of error = C * DU'q %%%

A = [ones(p,1),log(Dtvals)]; rhs = log(Xerr);
sol = Alrhs; q = sol(2)
resid = norm(A =*sol - rhs)
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