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Theproblem (1)

We consider

Oru(t,x) — O2u(t,z) + pu(t,z) — g(u(t,z)) =0,

where
t >0, —m <z <, and periodic boundary conditions.
p > 0 real.

the smooth nonlinearity with ¢(0) = ¢'(0) = 0.

small initial data in an appropriate Sobolev space, say
bounded by a small paramete(will be specified).



Theproblem (I1)

Along every solution(z,t) = »  u;(t)é’" of the linear wave
J=—00

equationd;u(z, t) — O7u(x,t) + pu(x,t) = 0, we have, for allj,
i (t) + (p + 5°) u(t) = 0.

The solution isu;(t) = €«i*, where we denote

wj =\ p+ 5

thefrequencie®f the linear equation.



Theproblem (I11)

Still for the linear wave equatiofi’u — 0*u + pu = 0, along
every solutionu(z,t) = > u;(t)€’", theactions(energy
divided by frequency)

1 W

J

remain constant in time.



Theproblem (I11)

Still for the linear wave equatiofi’u — 9%u + pu = 0, along

every solutionu(z,t) = 5 (t)€7* theactions(energy

J)=—00 Uy
divided by frequency)

1 W
Ii(t) = 5— [Ou; () |° + =

26,(}]' 2

u;(t)|°

remain constant in time.
For the nonlinear wave equation, the sunmaofions

() = L) + T (t), €>1,  Jo(t) = Ip(t)

remain almost constant for long times.



Theproblem (1V)
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0
Ofu(t, z) — O%u(t, x) + u(t, z) — u(t,x)* = 0
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Results

The actions remain nearly constant over long times'{.

A Sobolev-type norm of the solution is nearly constant
over long times4~).

Bambusi2003, Bourgain1996.



Wor king spaces

Forv € L?, 2r-periodic,u(z) = )  v;€/", we consider, for
J=—00

s > 0, the norm

— 28 2 1/2
olly = (D i [ul?)

j=—00

and the Sobolev-type space

H* ={velL*: |v|, < ool



Some precisions...(l)
For s large enough (depends on the non-resonance condition
we assume that the initial data satisfy

(- 01 + 80t 0)2) " <=

Or In other words,

0

1 By
Z wj (zw, ‘atuj(o)‘ +?]u3( )| ) 5€

j=—00 J



Some precisions...(l1)

Theorem. Under a non-resonance condition for, for small
enough initial data, we have for an arbitrary (large) integ¥

Zw23+1 Je(t) JE(O)‘ <Ceforo<t<e™

where the constartt’' depends onV, but not one.



Some precisions...(l1)

Theorem. Under a non-resonance condition for, for small
enough initial data, we have for an arbitrary (large) integ¥

Zw23+1 Je(t) JE(O)‘ <Ceforo<t<e™

where the constartt’' depends onV, but not one.

Corollary. In the same norm that specifies the smallness
condition on the Initial data, the solution remains nearly

constant forr < ¢ V:

lul, Ol + 10 )5 = [lul, 0) 5 + 10wl 0)[[s+O(e?) .



The modulated Fourier expansion (I)
The spatially27-periodic solutions of

Ou(t, r) — O*u(t,x) + pu(t,z) = 0

are superpositions of plane wawes* /¢ wherej is an
arbitrary integer and

wj=p+j?
are the frequencies of the problem.

If the nonlinearityg is evaluated at superposition of plane wave
Its Taylor expansion involves mixed products of such waves.



The modulated Fourier expansion (I1)
We search for an approximation of the solutigix, ¢)

u(x,t) ~ Z Xz, et) e Z Z d(kw)t+ije,

|k[|<K Ik||<K j=—0o0
The sum Is over all

k = (k¢)e=o  with integersk, and [[k|| := ) |k < K :=2N
(>0

and we write

k-w:Z]{gng.

(>0



The modulated Fourier expansion (111)
How to find the functiong’ ?



The modulated Fourier expansion (111)

How to find the functions}‘ ?

We insert the MFE | .
> 2w, et) @Mt = 57, 37, 2 (et) €T into the PDE

O:u — O7u+ pu — g(u) = 0, Taylor expansion, and compare th
coefficients ofe(kw)t+ijz.




The modulated Fourier expansion (111)

How to find the functions}‘ ?

We insert the MFE | .
> 2w, et) @Mt = 57, 37, 2 (et) €T into the PDE

O:u — O7u+ pu — g(u) = 0, Taylor expansion, and compare th
coefficients ofe(kw)t+ijz.

(wz — (k-w)) k(1) + 2ie(k - w)]( T) —|—€Z()

J

+EY Y g0 K =0

m  kl4...+km=k

F;(v) = v; is thej*" Fourier coeff. ofv and(-) is the derivatives
with respect tor = «t.



Themodulated Fourier expansion (1V)

k = ::<j> = ( ..,0,£1,0,.. ) —> ODEs fOij-E<j>Z

::2i8w]’2;-:<j> S —82'sz-c<j> — .7'—]' Z C e



The modulated Fourier expansion (1V)

k = ::<j> = ( ..,0,£1,0,.. ) —> ODEs fOijE<j>:

toicw;zr ) = 25— F Y L

. . k-
Algebraic equations for;:

(wf — (k- w))] —2ie(k - w)z — %% —fz

Need todivide by w; — |k - w| == use a non-resonance
condition.



The modulated Fourier expansion (1V)

k = ::<j> = ( ..,0,£1,0,.. ) —> ODEs fOijE<j>:

. . k-
Algebraic equations for;:

(wf — (k- w) ?) 2K zi = —2ie(k - w)z — €

toicw;zr ) = 25— F Y L

z—fz

Need todivide by w; — |k - w| == use a non-resonance

condition.

If this denominator is too small (say; -
setz = 0.

:k-w| <81/2),



The modulated Fourier expansion (V)
Iterative construction of the functiorz# such that afte2 vV
iterations the defect is of siz8(¢"V ):



The modulated Fourier expansion (V)
Iterative construction of the functiorz:# such that aftee NV

iterations the defect is of siz8(¢"V ):
k = ::<j> we set

A1 n+1 . n
F2lew; {Zﬁ”} = — {522f<]> + F; Z . }

k # +(j) andj with |w; £ k - w| > ¢!/ we set

J J

(wz - (k-w)2) {zk} n+1

N
— {Zis(k°w)2}{+82é;{+fj > }
m=2

Z;{ = 0 for k + ::<j> with \wj + k- w\ < gl/2,



The modulated Fourier expansion (V1)

Theorem. For the solutionu(z, t) of the nonlinear wave
eguation, we have

u(x,t) = Z Mz, et) @E (1),
k[l <2N

where the remainder is bounded by

1r(, )1 + 10 )] < CNTE for 0<t<e

Moreover, the modulation function$ are bounded.
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By construction, we have

N
(m)
g\ (0) 1 m
Ry =y + oy + Y d oy s
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Almost-invariants ()

We introduce the notation
y = (Y5 ||<x With y*(z,t) = 2X(z,et) ),

By construction, we have

N
(m)
g\ (0) 1 m
Ry =y + oy + Y d oy s
m=2 klf...4km=k

where the defects(z, t) = d¥(z, et) ek« = O(eN ),

We can rewrite it as

O7y* — 0oy + py* + V  U(y) = €~



Almost-invariants (I 1)
We find almost-invariants for this system:

S ‘d y(t), By (t ))‘ <CN2for < et

(>0



Almost-invariants (I 1)
We find almost-invariants for this system:

S ! ‘d y(t), By (t ))‘ <CN2for < et

(>0
These almost-invariants are close to the actignis(t), d;u(t)):

Ty (@), 0y (t)) = Jo(u(t), duu(t)) + v(t)

fort < e tandforalll > 0, with >~ w;* ' y(t) < C.



Almost-invariants (I111)

We use these results repeatedly on intervals of leagtHor
modulated Fourier expansions corresponding to different
starting values

(u(t,), Owu(t,)) att, =ne .

We can thus patch many short time intervals together andmobt:

Theorem. Under a non-resonance condition for, for small
Initial data, we have for an arbitrary (large) integey

Jo(t J()
Zw23+1|€ €( )’§05f0r0§t§5_N
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