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Abstract

Modulated Fourier expansion is used to show long-time near-conser-

vation of the total and oscillatory energies of numerical methods for Hamil-

tonian systems with highly-oscillatory solutions. The numerical methods

considered are an extension of the trigonometric methods. A brief dis-

cussion of conservation properties in the continuous problem and in the

multi-frequency case is also given.

1 Introduction

We consider Hamiltonian systems

ṗ = −∇qH(p, q)
q̇ = ∇pH(p, q),

(1.1)

with the Hamiltonian function

H(p, q) = K(p1, q) +
1

2
pT
2 p2 +

ω2

2
qT
2 q2, (1.2)

where the vectors p = (p1, p2) and q = (q1, q2) are partitioned according to the
partition of the square matrix

Ω =

(
0 0
0 ωI

)

with blocks of arbitrary dimension and where ω is a large positive parameter.
We assume that the initial values satisfy

1

2
||p(0)||2 +

1

2
||Ωq(0)||2 ≤ E, (1.3)

where E is independent of ω.
Our attention will particularly focus on the near-conservation of the oscilla-

tory energy

I(p, q) =
1

2
(pT

2 p2 + ω2qT
2 q2) (1.4)

2 Present address: Mathematisches Institut, Univ. Tübingen, D-72076 Tübingen, Ger-

many. email: cohen@na.uni-tuebingen.de
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over long time intervals.

By taking the function K in (1.2) to be
1

2
pT
1 p1 +U(q), we recover the Hamil-

tonian function considered by Hairer and Lubich (2000) (see also (Hairer et al.,
2002, Chap. XIII)). Our aim, in this article, is to extend the results of (Hairer
& Lubich, 2000) to the more general Hamiltonian functions (1.2).

In particular, it is possible to consider coupling between the position q and

the momenta p1, such as K(p1, q) =
1

2
pT
1M(q)−1p1, where M(q) is a mass

matrix. Simple examples described by such a Hamiltonian are the stiff spring
pendulum (Ascher & Reich, 1999a) or the diatomic molecule (Ascher & Re-
ich, 1999b). More complicated examples can be found in physics, molecular
dynamics or in astronomy (as we will see below).

Example 1.1 As a concrete example, we consider the motion of a planar elastic
dumbbell spacecraft acting under a central gravitational field. Such a satellite
is composed of two equal masses m connected by a stiff spring with stiffness
constant k � 1. As in (Sanyal et al., 2003), we place the origin at the center
of the central body, the radial distance from the origin to the satellite is denoted
by r, and the distance of each mass particle from the center of mass of the
spacecraft is q. We denote by φ the angular position of the dumbbell and by θ
the attitude angle. This is shown in Figure 1.

r

2q

φ

θ

Figure 1: Planar dumbbell spacecraft.

For this problem, the Lagrangian reads

L(ṙ, φ̇, θ̇, q̇, r, φ, θ, q) = m(ṙ2 + q̇2 + q2θ̇2 + 2q2θ̇φ̇+ (r2 + q2)φ̇2)

− Vg(r, θ, q) − 2k(q − l)2, (1.5)

where l is half the unstretched length of the spring, and

Vg(r, θ, q) = −µm

r

(
2 − q2

r2
(1 − 3 cos2(θ))

)
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is the gravitational potential.
After a change of coordinate (for details see Appendix A and (Sanyal et al.,

n.d.)), we obtain the following Hamiltonian function

H(pρ, pφ, pθ, pσ , ρ, φ, θ, σ) =
1

2

(
p2

ρ +
1

ρ2
(pφ − pθ)

2 +
1

(σ + ε)2
p2

θ + p2
σ − 2

ρ

+
(σ + ε)2

ρ3
(1 − 3 cos2(θ)) + ω2σ2

)
, (1.6)

where the values for the parameters ε and ω are take from (Sanyal et al., n.d.)
and are given by ε = 7.5 ·10−5 and ω =

√
1800. This Hamiltonian function is of

the type (1.2) with slow components (i.e. q1) (ρ, φ, θ) and fast component (i.e.
q2) σ.

Let us use a very precise numerical method (namely DOP853, for a defi-
nition, see (Hairer et al., 1993)), and plot, see Figure 2, the different ener-
gies involved in this problem for the initial values taken from (Sanyal et al.,
n.d.): ρ(0) = 1, θ(0) = π/2, σ(0) = 0.2ε, pφ(0) = 0.999958 + (σ(0) + ε)2(0.07 +
0.999958), pθ(0) = (σ(0)+ε)2(0.07+0.999958) and zero for the remaining ones.

100 200 300 400 500 600 700 800 900.0
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185 190 195.1

.2
H

106I − 0.5I

Figure 2: Scaled total and oscillatory energies for Hamiltonian problem with
(1.6), with a zoom of I .

As mentioned above, the oscillatory energy is nearly preserved over long time
intervals.

To explain this behaviour, we begin with presenting the modulated Fourier
expansion of the exact solution (Section 2). Then, we discuss an extension of the
numerical methods given in (Hairer & Lubich, 2000) (Section 3). In Section 4,
we apply the approach of the modulated Fourier expansion to the numerical
solution and explain its good behaviour. In Section 5, we extend the class of
studied problems by adding a small perturbation to the function H of (1.2). In
the last section we briefly discuss the multi-frequency case of the Hamiltonian
(1.2).

2 Modulated Fourier expansion of the exact so-

lution

To show the near-conservation of the oscillatory energy for Hamiltonian systems
with the Hamiltonian function (1.2), we follow the lines of (Hairer et al., 2002,
Sect. XIII.5). Here, we state the results omitting the proofs (a detailed version
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can be found in (Cohen, 2004, Chap. 5)). In this article, we focus our attention
on the proofs for the numerical solution (see Section 4), because the ideas to
show the near-conservation of the oscillatory energy for the exact solution are
very similar.

To show this geometric property, we assume that the derivatives of the func-
tion K in (1.2) are bounded independently of ω. We then give the modulated
Fourier expansion of the exact solution.

Theorem 2.1 If the solution (p(t), q(t)) of the Hamiltonian system (1.1) with
the Hamiltonian function (1.2) satisfies condition (1.3) and stays in a compact
set for 0 ≤ t ≤ T , then the solution admits an expansion

p(t) =
∑

|k|<N

eikωtηk(t) +RN (t),

q(t) =
∑

|k|<N

eikωtζk(t) + SN (t),
(2.1)

for arbitrary N ≥ 2, where the remainder terms are bounded by

RN (t) = O(ω−N ), SN (t) = O(ω−N ), for 0 ≤ t ≤ T.

The real functions η = η0 = (η1, η2), ζ = ζ0 = (ζ1, ζ2) and the complex functions
ηk = (ηk

1 , η
k
2 ), ζk = (ζk

1 , ζ
k
2 ) are bounded, together with all their derivatives, by

ζ1 = O(1), η1 = O(1), ζ2 = O(ω−2), η2 = O(ω−2),

ζ1
1 = O(ω−2), η1

1 = O(ω−2), ζ1
2 = O(ω−1), η̇1

2 = O(ω−1),

ζk
1 = O(ω−k−1), ηk

1 = O(ω−k−1), ζk
2 = O(ω−k−2), ηk

2 = O(ω−k−1),

(2.2)

for k = 2, . . . , N − 1. Moreover, we have η−k = ηk and ζ−k = ζk. These
functions are unique up to terms of size O(ω−N ). The constants symbolized by
the O-notation are independent of ω and t with 0 ≤ t ≤ T but depend on N,T
and E.

The modulation functions ηk and ζk have almost-invariants that are related
to the total energy H and to the oscillatory energy I . To see this, let us define
p = (p−N+1, . . . , p0, . . . , pN−1) with pk = eikωtηk (a similar notation is used for
q). To this end, we insert (2.1) into the system (1.1) with the Hamiltonian func-
tion (1.2), expand the nonlinearity around (p0

1, q
0) and compare the coefficients

of eikωt. The modulation functions are then determined to satisfy the following
system (for k = 0, . . . , N − 1)

ṗk + Ω2qk = −∇q−kK(p1,q) + O(ω−N ) (2.3)

q̇k =

(
0 0
0 I

)
pk + ∇p−kK(p1,q) + O(ω−N ), (2.4)

with

K(p1,q) = K(p0
1, q

0) +
∑

s(α)+s(β)=0

1

m!n!
Dm

1 D
n
2K(p0

1, q
0)(pα

1 ,q
β). (2.5)

Here, the sum is over all integers m and n greater than or equal to zero and all
multi-indices α = (α1, . . . , αm), β = (β1, . . . , βn) with integers 0 < |αj |, |βj | <
N which have a given sum s(α), resp. s(β).
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Neglecting the O(ω−N ) terms, (2.3)–(2.4) is a Hamiltonian system with

H(p,q) =
1

2

∑

|k|<N

(
q−kT

Ω2qk + p−k
2

T
pk
2

)
+ K(p1,q). (2.6)

Moreover, this formal invariant is close to the Hamiltonian (1.2): using the
bounds of Theorem 2.1 and the fact that p1

2 = iωq12 + O(ω−1), we see that the
dominating terms of (1.2) and (2.6) coincide up to terms of size O(ω−1).

Besides this formal invariant, system (2.3)–(2.4) has another formal invariant

I(p,q) = −iω
∑

0<|k|<N

kq−kT
pk (2.7)

which turns out to be close to the oscillatory energy (1.4). In fact, like before,
the bounds obtained in Theorem 2.1 show that

I(p,q) = −iω(q−1
2 )T p1

2 + iω(q12)
T p−1

2 + O(ω−1).

This implies that (2.7) and (1.4) are equal up to terms of size O(ω−1).
This permits us to prove the main result of this section, which states that

the oscillatory energy (1.4) is nearly conserved over long time intervals.

Theorem 2.2 If the solution (p(t), q(t)) of the Hamiltonian problem (1.1) with
the Hamiltonian function (1.2), with initial values satisfying (1.3), stays in a
compact set for 0 ≤ t ≤ ωN , then

I(p(t), q(t)) = I(p(0), q(0)) + O(ω−1) + O(tω−N ).

The constants symbolized by O are independent of ω and t, but depend on E
and N .

Benettin et al. (1987) studied almost similar Hamiltonian functions and showed,
using other techniques, the near-conservation of the oscillatory energy over ex-
ponentially long time intervals.

To conclude this section, we want to mention that a finer analysis, similar
to the one given in (Cohen et al., 2003) for the Hamiltonian function H(p, q) =
1

2
(pT p+qT Ω2q)+U(q), should also show the near-conservation of the oscillatory

energy over exponentially long time intervals.

3 Numerical methods

In this section, we adapt the trigonometric methods given in (Hairer & Lubich,
2000) to the case of the Hamiltonian function (1.2). Developing the Hamiltonian
system for this Hamiltonian function, we obtain

ṗ1 = −∇q1
K(p1, q)

ṗ2 = −ω2q2 −∇q2
K(p1, q)

q̇1 = ∇p1
K(p1, q)

q̇2 = p2.
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Treating the second components of p and q with a symmetric trigonometric
method and the first components with the Störmer-Verlet method, one gets the
following numerical scheme

pn+1/2 = pn − h

2
Ψ̂∇qK(p

n+1/2
1 ,Φqn)

qn+1
1 = qn

1 +
h

2

(
∇p1

K(p
n+1/2
1 ,Φqn) + ∇p1

K(p
n+1/2
1 ,Φqn+1)

)

qn+1
2 = cos(hω)qn

2 + h sinc(hω)p
n+1/2
2 (3.1)

p̃
n+1/2
1 = p

n+1/2
1

p̃
n+1/2
2 = −ω sin(hω)qn

2 + cos(hω)p
n+1/2
2

pn+1 = p̃n+1/2 − h

2
Ψ̂∇qK(p

n+1/2
1 ,Φqn+1),

where, here and in the sequel, Ψ̂ = ψ̂(hΩ), Φ = φ(hΩ), Ψ̂2 = ψ̂(hω) and

sinc(ζ) = sin(ζ)/ζ. The filter functions ψ̂, φ are even real-valued functions with

ψ̂(0) = φ(0) = 1.
We remark that the method is explicit if the function K(p1, q) takes the

form K(p1, q) = 1
2p

T
1M(q2)p1 + U(q). This was not the case for the dumbbell

problem of the first section, however, the special structure of the Hamiltonian
(1.6) makes the numerical method explicit for this problem too. We also remark

that if K(p1, q) =
1

2
pT
1 p1 + U(q), the numerical method (3.1) reduces to the

trigonometric methods analysed in (Hairer et al., 2002, Chap.XIII). In the next
section, we will extend all previous results concerning the trigonometric methods
to our numerical method.

As in (Hairer et al., 2002, Sect. XIII.2), we can show that if ψ̂(ζ) = φ(ζ)
holds, then method (3.1) is symplectic (for details see (Cohen, 2004, Chap. 5)).

Example 3.1 Let us return to the dumbbell spacecraft. In Figure 3, we plot the
total energy H and the oscillatory energy I obtained by numerical method (3.1).

For the filter functions, we choose ψ̂2(ζ) = sinc2(ζ/2)/ sinc(ζ) and φ2(ζ) =

ψ̂2(ζ). With this choice, the numerical method is symmetric and symplectic.
We see that this numerical method also approximately conserves H and I. This
will be explained in the next section.
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Figure 3: Energies along the numerical solution of the dumbbell spacecraft
problem (see Example 1.1) with step size h = 0.03.

4 Modulated Fourier expansion of the numeri-

cal solution

In this section, we explain, with the help of the modulated Fourier expansion,
the good behaviour of our numerical methods (3.1) applied to the Hamiltonian
problems (1.1) with the Hamiltonian function (1.2).

We are interested in the long-time conservation of the total energy H and
of the oscillatory energy I along the numerical solution. We make the following
assumptions:

• The initial values satisfy

1

2
‖p0‖2 +

1

2
‖Ωq0‖2 ≤ E. (4.1)

• The numerical solution stays in a compact set.

• We impose a lower bound on the step size: h/ω ≥ c0 > 0.

• We assume the numerical non-resonance condition:
∣∣∣sin

(1

2
khω

)∣∣∣ ≥ c
√
h, for k = 1, . . . , N, with N ≥ 2. (4.2)

For a given h and ω, this condition imposes a restriction on N . In the
sequel, N is a fixed integer such that (4.2) holds.

• For the filter functions, we require the following conditions:

|ψ̂(hω)| ≤ C1 sinc2
(

1

2
hω

)
,

|ψ̂(hω)| ≤ C2| sinc(hω)|.
(4.3)

• Finally, for
µ(ζ) = φ2(ζ)ψ̂

−1
2 (ζ), (4.4)

we require µ(hω) ≥ c1 > 0.

Now, we can state the main result of this section.
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Theorem 4.1 Under the above assumptions, we have, for the numerical solu-
tion (3.1),

H(pn, qn) = H(p0, q0) + O(h)
I(pn, qn) = I(p0, q0) + O(h),

for 0 ≤ nh ≤ h−N+1.

As in Section 2, we begin to prove that the numerical solution has on a small
interval, say 0 ≤ t = nh ≤ T , a modulated Fourier expansion.

Theorem 4.2 Under the assumptions of Theorem 4.1, the numerical solution
(pn, qn) of (3.1) admits, for 0 ≤ t = nh ≤ T , the expansion

pn =
∑

|k|<N

eikωtηk
h(t) +Rh,N (t),

qn =
∑

|k|<N

eikωtζk
h(t) + Sh,N(t),

(4.5)

where the remainder terms are bounded by

Rh,N (t) = O(thN−2), Sh,N(t) = O(thN−2). (4.6)

For the modulation functions, we have the following bounds

ζh,1 = O(1), ηh,1 = O(1), ζh,2 = O(ω−2), ηh,2 = O(ω−1),

ζ1
h,1 = O(ω−2), η1

h,1 = O(ω−2), ζ1
h,2 = O(ω−1), η̇1

h,2 = O(ω−1),

ζk
h,1 = O(ω−k−1), ηk

h,1 = O(ω−k−1), ζk
h,2 = O(ω−k−2), ηk

h,2 = O(ω−k−1),

(4.7)

for k = 2, . . . , N−1. Moreover, we have η−k = ηk and ζ−k = ζk. The constants
symbolized by the O-notation are independent of ω and h, but depend on E,N, c0
and T .

To obtain this result, we use very similar ideas as in the proof of Theorem 5.2
of (Hairer et al., 2002, Sect. XIII.5.2). But, in this case, the proof becomes more
complicated and more technical.
Proof. We look for two functions

ph(t) = ηh(t) +
∑

0<|k|<N

eikωtηk
h(t)

qh(t) = ζh(t) +
∑

0<|k|<N

eikωtζk
h(t),

(4.8)

with smooth (in the sense that all their derivatives are bounded independently
of h and ω) coefficients ζh, ζ

k
h , ηh and ηk

h, which have a small defect when they
are inserted into the numerical method (3.1):

pn = ph(t) + O(hN−1)
qn = qh(t) + O(hN−1).

Construction of the coefficient functions. To find the coefficient functions
ηk

h and ζk
h , we insert (4.8) in the numerical method (3.1), expand the nonlinearity

functions ∇pK and ∇qK around (ηh,1(t),Φζh(t)) and compare the coefficients
of eikωt. To motivate the ansatz (4.11) below, we compare the dominant terms
appearing doing these manipulations.
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• Looking at the first expression in (3.1), we implicitly define, for t = nh+
h

2
,

p̂h(t) = ph(t− h

2
) − h

2
Ψ̂∇qK(p̂h,1(t),Φqh(t− h

2
)).

As for (4.8), we also define

pn+1/2 = p̂h(t) = ξh(t) +
∑

0<|k|<N

eihωtξk
h(t). (4.9)

The coefficient functions of (4.9) satisfy ξk
h(t) = ηk

h(t) + O(h).

• For the second term of the numerical method (3.1), we have

qh,1(t+
h

2
) − qh,1(t− h

2
) =

h

2

(
∇p1

K(p̂h,1(t),Φqh(t− h

2
))

+ ∇p1
K(p̂h,1(t),Φqh(t+

h

2
))

)
.

Using (4.8), we get

∑

|k|<N

eikω(t+h/2)ζk
h(t+

h

2
) −

∑

|k|<N

eikω(t−h/2)ζk
h(t− h

2
)

=
h

2

(
∇p1

K(p̂h,1(t),Φqh(t− h

2
)) + ∇p1

K(p̂h,1(t),Φqh(t+
h

2
))

)
.

Expanding the smooth functions ηh and ζh around h = 0 and the function
∇p1

K into their Taylor series, and comparing the coefficient of eikωt yields
for k = 0 (for sake of clarity, we supress the argument t in the coefficient
functions)

ζh,1 +
h

2
ζ̇h,1 − ζh,1 +

h

2
ζ̇h,1 + O(h3) = h∇p1

K(ηh,1,Φζh)

+
h

2

∑

s(α)+s(β)=0

1

m!n!
Dm+1

1 Dn
2K(ηh,1,Φζh)(ηα

h,1,Φζ
β
h )

+
h

2

∑

s(α)+s(β)=0

1

m!n!
eiωh/2(s(β)−s(α))

× Dm+1
1 Dn

2K(ηh,1,Φζh)(ηα
h,1,Φζ

β
h ) + O(h2),

where we used the same notations as in Section 2. This yields a relation
for ζ̇h,1(t). Similarly, for k 6= 0, we obtain

ζk
h,1 =

h

4i sin(kω h
2 )

( ∑

s(α)+s(β)=k

1

m!n!
e−ikωh/2

× Dm+1
1 Dn

2K(ηh,1,Φζh)(ηα
h,1,Φζ

β
h )

+
∑

s(α)+s(β)=k

1

m!n!
eiωh/2(s(β)−s(α))

× Dm+1
1 Dn

2K(ηh,1,Φζh)(ηα
h,1,Φζ

β
h )

)
+ O(h2).

• Similar relations are obtained for the coefficient functions ζh,2(t), ζ
k
h,2(t)

and η̇h,1, η
k
h,1.
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• For the last formula of (3.1), we use the symmetry of the method, exchang-

ing n↔ n+1 and h↔ −h , we get pn
h,2 = ω sin(hω)qn+1

h,2 +cos(hω)p
n+1/2
h,2 +

h

2
ψ̂2(hω)∇q2

K(p
n+1/2
h,1 ,Φqn

h). Taking n − 1 in place of n in this last ex-

pression and adding this quantity to pn+1
h,2 yields

pn+1
2 + pn−1

2 = cos(hω)(p
n+1/2
2 + p

n−1/2
2 )

+
h

2
ψ̂2(hω)

(
∇q2

K(p
n−1/2
1 ,Φqn−1) −∇q2

K(p
n+1/2
1 ,Φqn+1)

)
.

Inserting (4.8) and using the fact that p
n−1/2
1 = pn−1

1 +O(h) and p
n+1/2
1 =

pn
1 + O(h), we obtain

ph,2(t+
h

2
) + ph,2(t− 3h

2
) = 2 cos(hω)ph,2(t− h

2
)

+
h

2
cos(hω)ψ̂2(hω)

(
∇q2

K(ph,1(t− 3h

2
),Φqh(t− h

2
))

−∇q2
K(ph,1(t− h

2
),Φqh(t− h

2
))

)

+
h

2
ψ̂2(hω)

(
∇q2

K(ph,1(t− 3h

2
),Φqh(t− 3h

2
))

−∇q2
K(ph,1(t− h

2
),Φqh(t+

h

2
))

)
+ O(h2).

(4.10)

This relation is true for every t, so we can exchange t with t +
h

2
. Using

the operator

L(hD) = ehD − 2 cos(hΩ) + e−hD = 4 sin(
h

2
hΩ +

1

2
ihD) sin(

h

2
hΩ − 1

2
ihD)

defined in (Hairer et al., 2002, Chap.XIII), we can rewrite formula (4.10)
as

L(hD)ph,2(t) =
h

2
cos(hω)ψ̂2(hω)

(
∇q2

K(ph,1(t− h),Φqh(t))

−∇q2
K(ph,1(t),Φqh(t))

)
+

h

2
ψ̂2(hω)

(
∇q2

K(ph,1(t− h),Φqh(t− h))

−∇q2
K(ph,1(t),Φqh(t+ h))

)
+ O(h2).

Now, by the hypothesis (4.2) on N , the dominant terms in the Taylor
expansions of L(hD) and L(hD + ihkω) give the desired first terms for
the series of the coefficient functions ηk

h,2. Indeed, we have

ηh,2(t) =
h

8s2
1

ψ̂2(hω) cos(hω)(. . .) +
h

8s2
1

ψ̂2(hω)(. . .) + O(h2)

η̇1
h,2(t) =

1

4is2

ψ̂2(hω) cos(hω)(. . .) +
1

4is2

ψ̂2(hω)(. . .) + O(h)

ηk
h,2(t) = − h

8sk−1sk+1

ψ̂2(hω) cos(hω)(. . .)

− h

8sk−1sk+1

ψ̂2(hω)(. . .) + O(h2),

where we used the abbreviation sk = sin(
k

2
hω), and where the (. . .) terms

are big expressions involving sums like those encountered in the formulas
for ζk

h,1 (see above).
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This motivates the ansatz

ζ̇h,1 = f10(·) + hf11(·) + . . .

η̇h,1 = g10(·) + hg11(·) + . . .

η̇1
h,2 =

bΨ2

s2

(
g1
20(·) + hg1

21(·) + . . .
)

ζk
h,1 =

h

sk

(
fk
10(·) + hfk

11(·) + . . .
)

ηk
h,1 =

h

sk

(
gk
10(·) + hgk

11(·) + . . .
)

ζk
h,2 = hfk

21(·) + h2fk
22(·) + . . .

ηh,2 =
hbΨ2

s2
1

(
g20(·) + hg21(·) + . . .

)

ηk
h,2 =

hbΨ2

sk−1sk+1

(
gk
20(·) + hgk

21(·) + . . .
)
,

(4.11)

where the dots stands for power series in h with coefficient functions f k
mn and

gk
mn depending on the variables ζh,1, ηh,1, η

1
h,2 and hω. The series present in the

ansatz usually diverge, we thus truncate them after the O(hN ) terms. Inserting
this ansatz into the numerical method (3.1) and comparing powers of h yields
recurrence relations for the bounded functions fk

mn and gk
mn.

Initial values and bounds (4.7). The conditions ph,1(0) = p1(0), ph,2(0) =
p2(0), qh,1(0) = q1(0) and ph,2(h) = p2(h), give the system

p1(0) = ηh,1(0) + O(ω−2)
p2(0) = 2Re(η1

h,2(0)) + O(ω−1)

q1(0) = ζh,1(0) + O(ω−2)
ωq2(0) = 2Im(η1

h,2(0)) + O(ω−1),

which can be solved using the implicit function theorem to yield locally the de-
sired initial values ηh,1(0), ζh,1(0), η1

h,2(0) for the differential equations appearing
in the ansatz. The assumption (4.1) on the initial values of the problem, the
hypothesis on the filter functions (4.3) and (4.11) implie that η1

h,2(t) = O(1) for
0 ≤ t ≤ T .

Using the hypothesis on the filter functions (4.3) and a closer look at the
functions fk

mn and gk
mn (which contain at least k times the small factors ζ1

h or
η1

h,1) gives the bounds (4.7) on the coefficient functions of the modulated Fourier
expansion.
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Defect. Let us define the components of the defect, for t = nh,

d1(t) = qh,1(t+ h) − qh,1(t) − h

2

(
∇p1

K(p̂h,1(t+
h

2
),Φqh(t))

+ ∇p1
K(p̂h,1(t+

h

2
),Φqh(t+ h))

)

d2(t) = ph,1(t+ h) − ph,1(t) +
h

2

(
∇q1

K(p̂h,1(t+
h

2
),Φqh(t))

+ ∇q1
K(p̂h,1(t+

h

2
),Φqh(t+ h))

)

d3(t) = qh,2(t+ h) − cos(hω)qh,2(t) − h sinc(hω)ph,2(t)

+
h2

2
sinc(hω)ψ̂2(hω)∇q2

K(p̂h,1(t+
h

2
),Φqh(t))

d4(t) = ph,2(t+ h) + ω sin(hω)qh,2(t) − cos(hω)ph,2(t)

+
h

2
sinc(hω)ψ̂2(hω)∇q2

K(p̂h,1(t+
h

2
),Φqh(t)).

By definition of the coefficient functions ζk
h and ηk

h, we have d1(t) = d2(t) =
d3(1) = O(hN ). For the fourth component of the defect, we have to use the
two-step formulation for ph,2, this gives d4(t + h) + d4(t − h) = O(hN ). With
our choice for the initial values, the defect at t = 0 is d4(0) = O(hN ), so that
we have d4(t) = O(hN ) + O(thN−1).

We still have to estimate the remainders (4.6). To do this, we define Rn =
||pn − ph(t)||, Sn = ||qn − qh(t)||, and the norm ||(S1, R1, S2, R2)||∗ =
||(S1, R1, ωS2, R2)||. To estimate the remainders (4.6), we first have to estimate

the difference p
n+1/2
1 − p̂h,1(t+

h

2
). Using the definition (4.9) and the fact that

the gradient of the function K(p1, q) satisfies a Lipschitz condition, we obtain

||pn+1/2
1 − p̂h,1(t+

h

2
)|| ≤ ||Rn

1 || + C1h||pn+1/2
1 − p̂h,1(t+

h

2
)|| + C2h||Sn||,

for some constants Cj . This gives

||pn+1/2
1 − p̂h,1(t+

h

2
)|| ≤ α, where α =

1

1 − C1h

(
||Rn

1 || + C2h||Sn||
)
.

Similarly, we obtain

||(S1, R1, S2, R2)
n+1||∗ ≤ ||(S1, R1, S2, R2)

n||∗ + hκ1α
+ hκ2||(S1, R1, S2, R2)

n+1||∗
+ hκ3||(S1, R1, S2, R2)

n||∗ + κ4h
N−1,

for some constants κj . Using this relation repeatedly and the fact that
||(S1, R1, S2, R2)

0||∗ = O(hN ) (by definition of the initial values), we obtain the
following estimate for the remainders

||(S1, R1, S2, R2)
n||∗ ≤

(
1 + hκ1

1 − hκ2

)n

||(S1, R1, S2, R2)
0||∗ + κ3(n+ 1)hN−1

≤ CnhN−1,

where κj and C are some constants. This concludes the proof. �
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Next, we show that the modulation functions of the numerical solution have
almost-invariants that are obtained similarly to the one for the exact solution.
In the proof of Theorem 4.2, we show that the defects of the functions on the
right-hand sides of the equalities in (4.5) inserted into the method (3.1) are
small. This implies that the modulated functions satisfy the following system
(this is to be compared with (2.3)–(2.4)):

p̂h(t) − ph(t− h

2
) = −h

2
Ψ̂∇qK(p̂h,1(t),Φqh(t− h

2
))

qh,1(t+
h

2
) − qh,1(t− h

2
) =

h

2

(
∇p1

K(p̂h,1(t),Φqh(t− h

2
))

+ ∇p1
K(p̂h,1(t),Φqh(t+

h

2
))

)
+ O(hN )

ph,1(t+
h

2
) − p̂h,1(t) = −h

2
∇q1

K(p̂h,1(t),Φqh(t+
h

2
)) + O(hN )

ph,2(t+
h

2
) + ω sin(hω)qh,2(t− h

2
) − cos(hω)p̂h,2(t)

= −h

2
ψ̂2(hω)∇q2

K(p̂h,1(t),Φqh(t+
h

2
)) + O(hN )

qh,2(t+
h

2
) − cos(hω)qh,2(t− h

2
) = h sinc(hω)p̂h,2 + O(hN ),

(4.12)

where we recall qh(t) =
∑

|k|<N

qk
h(t), ph(t) =

∑

|k|<N

pk
h(t) and p̂h(t) =

∑

|k|<N

p̂ k
h (t)

with qk
h(t) = eikωtζk

h(t), pk
h(t) = eikωtηk

h(t) and p̂ k
h (t) = eikωtξk

h(t). Comparing
the coefficient of eikωt, we get, writing the resulting equations in terms of p̂ k

h , p
k
h

and qk
h,

p̂ k
h (t) − pk

h(t− h

2
) = −h

2
Ψ̂Φ−1∇q−kKh(p̂1(t),q(t− h

2
))

qk
h,1(t+

h

2
) − qk

h,1(t−
h

2
) =

h

2

(
∇p−k

1

Kh(p̂1(t),q(t− h

2
))

+ ∇p−k
1

Kh(p̂1(t),q(t +
h

2
))

)
+ O(hN )

pk
h,1(t+

h

2
) − p̂ k

h,1(t) = −h

2
∇q−k

1

Kh(p̂1(t),q(t+
h

2
)) + O(hN )

pk
h,2(t+

h

2
) + ω sin(hω)qk

h,2(t−
h

2
) − cos(hω)p̂ k

h,2(t)

= −h

2
ψ̂2(hω)φ−1

2 (hω)∇q−k
2

Kh(p̂1(t),q(t +
h

2
)) + O(hN )

qk
h,2(t+

h

2
) − cos(hω)qk

h,2(t−
h

2
) = h sinc(hω)p̂ k

h,2(t) + O(hN ),

(4.13)

where, similarly to (2.5), we define

Kh(p̂1,q) = K(p̂ 0
1 ,Φq

0) +
∑

s(α)+s(β)=0

1

m!n!
Dm

1 D
n
2K(p̂ 0

1 ,Φq
0)(p̂α

1 , (Φq)β),

(4.14)
for a vector p̂1 = (p̂−N+1

h,1 , . . . , p̂ 0
h,1, . . . , p̂

N−1
h,1 ) and p̂ k

h,1 = eikωtξk
h,1(t), where

ξk
h,1(t) are the modulation functions of p̂h,1(t). The same notation is used for

q. From here on, we omit the index h in the modulation functions.
As for the exact solution, the modulation functions η = (η−N+1, . . . , ηN−1)

and ζ = (ζ−N+1, . . . , ζN−1) have two formal invariants. We now give the result
concerning the first one.
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Lemma 4.3 Under the assumptions of Theorem 4.1, the coefficient functions
η and ζ of the modulated Fourier expansion of the numerical solution satisfy

Ĥh[ η , ζ ](t) = Ĥh[ η , ζ ](0) + O(thN ), (4.15)

for 0 ≤ t ≤ T . Moreover, we have

Ĥh[ η , ζ ](t) = 2ω2µ(hω)(ζ−1
2 )T ζ1

2 +K(η1,Φζ) + O(h). (4.16)

Proof. The idea of the proof is to multiply the relations in (4.13) by a derivative
of some coefficient functions, then we take the sum over all k with |k| < N and
show that the resulting formula is in fact a total derivative of a function, say,
Ĥh[ η , ζ ](t).

After multiplications and summations, we get from (4.13) that

∑

|k|<N

{
−q̇−k(t− h

2
)T ΦΨ̂−1

(
p̂ k(t) − pk(t− h

2
)
)

+ ˙̂p
−k

1 (t)T (qk
1 (t+

h

2
) − qk

1 (t− h

2
)) − q̇−k

1 (t+
h

2
)T (pk

1(t+
h

2
) − p̂ k

1 (t))

− q̇−k
2 (t+

h

2
)Tφ2(hω)ψ̂−1

2 (hω)
(
pk
2(t+

h

2
)

+ω sin(hω)qk
2 (t− h

2
) − cos(hω)p̂ k

2 (t)
)}

=
h

2

d

dt

{
Kh(p̂1(t),q(t +

h

2
)) + Kh(p̂1(t),q(t − h

2
))

}
+ O(hN ).

(4.17)

Expanding the functions ζk(t± h
2 ) and ηk(t± h

2 ) around t and replacing p̂ k
2 (t)

by the last formula of (4.13) shows that the left-hand side of this equation is a
total derivative. Moving the terms from the left to the right-hand side of the
equation, we get

d

dt
Ĥh[ η , ζ ](t) = O(hN ),

and an integration yields statement (4.15) of the theorem.

This construction of Ĥh[ η , ζ ](t), the bounds of the modulation functions,
hypothesis (4.3) on the filter functions and the fact that we have η1

2 = iωζ1
2 +

O(h2) yield (4.16) and concludes the proof. �

Concerning the second formal invariant, similarly to formula (6.16) in (Hairer
et al., 2002, Sect. XIII.6), we have the following relation

ω
∑

0<|k|<N

ik
(
(p̂ k)T∇pkKh(p̂1,q) + (qk)T∇qkKh(p̂1,q)

)
= 0, (4.18)

for Kh(p̂1(t),q(t)) of (4.14). The same tricks as those used in the proof of the
last lemma permit to prove the following lemma.

Lemma 4.4 Under the assumptions of Theorem 4.1, the coefficient functions
η and ζ of the modulated Fourier expansion of the numerical solution satisfy

Îh[ η , ζ ](t) = Îh[ η , ζ ](0) + O(thN ), (4.19)

for 0 ≤ t ≤ T . Moreover, we have

Îh[ η , ζ ](t) = 2ω2µ(hω)(ζ−1
2 )T ζ1

2 + O(h2). (4.20)
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Proof. This time, we multiply and sum the equations in (4.13) in order to apply
identity (4.18). We get

iω
∑

0<|k|<N

k
{
−q−k(t− h

2
)T ΦΨ̂−1(p̂ k(t) − pk(t− h

2
))

+ p̂−k
1 (t)T (qk

1 (t+
h

2
) − qk

1 (t− h

2
)) − q−k

1 (t+
h

2
)T (pk

1(t+
h

2
) − p̂ k

1 (t))

− q−k
2 (t+

h

2
)Tφ2(hω)ψ̂−1

2 (hω)
(
pk
2(t+

h

2
) + ω sin(hω)qk

2 (t− h

2
)

− cos(hω)p̂ k
2 (t)

)}

=
hω

2

∑

0<|k|<N

ik
{
p̂ k(t)T∇pkKh(p̂1(t),q(t− h

2
))

+ qk(t− h

2
)T∇qkKh(p̂1(t),q(t− h

2
)) + p̂ k(t)T∇pkKh(p̂1(t),q(t +

h

2
))

+qk(t+
h

2
)T∇qkKh(p̂1(t),q(t +

h

2
))

}
+ O(hN ).

The left-hand side of this equation is again a total derivative. For the right-hand
side, we have, using (4.18), 0 + O(hN ). Thus, we get

d

dt
Îh[ η , ζ ](t) = O(hN ),

and an integration from 0 to t yields the result (4.19). As before, statement
(4.20) follows from the bounds on the modulation functions. �

We now return to the proof of Theorem 4.1. We see that for symplectic numer-
ical methods, we have µ(hω) = 1 and hence Îh[ η , ζ ](nh) = I(pn, qn) + O(h)

and Ĥh[ η , ζ ](nh) = H(pn, qn) + O(h). This proves the theorem in the case
of symplectic methods. The additional hypothesis on the function µ (see (4.4))
and the arguments given in the proof of Theorem 7.1. in (Hairer et al., 2002,
Sect. XIII.7) show that the numerical method (3.1) nearly preserves the total
energy H and the oscillatory energy I over long time intervals as stated in
Theorem 4.1.

5 Further generalization in the kinetic energy

In this section we apply similar techniques to those given above to Hamiltonian
problems (1.1) with a small perturbation in the Hamiltonian function (1.2). In
fact, we consider the Hamiltonian

H(p, q) = K(p1, q) +
1

2
pT
2 p2 +

ω2

2
qT
2 q2 + S(p, q), (5.1)

where S(p, q) is a quadratic function in the variable p and satisfies
S(p1, p2, q1, 0) = 0 (that is, it is small). Basically, the only thing that changes
is that we have to add (for the notations, see Section 2)

S(p,q) = S(p0, q0) +
∑

s(α)+s(β)=0

1

m!n!
Dm

1 D
n
2S(p0, q0)(pα,qβ),
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to the function K in (2.5).
Similarly to Theorem 2.2, we can show that the oscillatory energy (1.4) is

nearly preserved along the exact solution of Hamiltonian problems with Hamil-
tonian function (5.1) over long time intervals.

Numerical methods. Concerning numerical methods to solve Hamiltonian
problems with (5.1), we propose to make a splitting and obtain the following
numerical method

Φh = (φS
h/2)

∗ ◦ φh ◦ φS
h/2, (5.2)

where the ∗ denotes the adjoint method. For the numerical scheme φh, we
take the numerical method described in Section 3 and for φS

h/2 we take either
the explicit Euler method, the Störmer-Verlet scheme or the symplectic Euler
method (all methods work equally well).
Remark: Since the function S(p, q) in (5.1) is small, we do not apply a filter
function to the method φS

h/2. It is however possible to adapt the following proofs
to this case.

Example 5.1 The motion of a triatomic molecule can be modeled by a Hamil-
tonian system with the Hamiltonian function (5.1). To describe the motion of
such a molecule, we use polar coordinates, as shown in Figure 4.

m1 m2

m3

r1 r2
θ1

θ2

Figure 4: Triatomic molecule.

The third mass (m3) is kept fixed, the angle between the other masses is stiff
with stiffness constant ω/

√
2 and the two other springs have a stiffness constant

ω. The Hamiltonian reads

H(pr1
, pr2

, pθ1
, pθ2

, r1, r2, θ1, θ2) =
1

2

(
p2

r1
+ p2

r2
+ (r2 + 1)−2(pθ2

− pθ1
)2

+(r1 + 1)−2p2
θ1

)
+

ω2

2
(r21 + r22 +

θ2
1

2
) +

1

2
θ22 .

(5.3)
The last term is just an external potential to keep the molecule moving. After
suitable coordinate changes (see Appendix A), this Hamiltonian becomes

H(p1, p2,1, p2,2, p2,3, q1, q2,1, q2,2, q2,3) =
1

2
(p2

1 + p2
2,1 + p2

2,2 + p2
2,3)

+
ω2

2
(q22,1 + q22,2 + q22,3) +

1

4
(q1 − q2,3)

2 − 1

4

2q2,2 + q2
2,2

(1 + q2,2)2
(p1 − p2,3)

2

− 1

4

2q2,1 + q2
2,1

(1 + q2,1)2
(p1 + p2,3)

2,

(5.4)
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which is of the form (5.1) with

S(p, q) = −1

4

2q2,2 + q2
2,2

(1 + q2,2)2
(p1 − p2,3)

2 − 1

4

2q2,1 + q2
2,1

(1 + q2,1)2
(p1 + p2,3)

2.

Let us apply our numerical method to this problem with ω = 50 and initial
conditions p(0) = 1, q1(0) = 0.4, q2,1(0) = q2,2(0) = 1/ω, q2,3(0) = 1/(

√
2ω). In

Figure 5, we plot the Hamiltonian H and the oscillatory energy I obtained by
numerical method (5.2) (where we choose for φS

h/2, the Störmer-Verlet method).

50 100 1502.5

3.0

3.5

H

I

Figure 5: Numerical solution of Hamiltonian problem with (5.4). For φS
h/2, we

use the Störmer-Verlet method. Step size h = 0.01.

We note that, in this example, our numerical methods are symplectic, sym-
metric and explicit.

The proofs given in the preceding section can be adapted to the numerical
method (5.2). However, they become more technical and therefore we only
mention some important points of the proofs.

Numerical energy conservation for the method (5.2). Here, we prove the
analogue of Theorem 4.1 for the numerical method (5.2) where for the choice of
the method φS

h/2, we take the symplectic Euler method.

Theorem 5.2 Under the assumptions of Theorem 4.1, we have, for the numer-
ical solution (5.2),

H(pn, qn) = H(p0, q0) + O(h)
I(pn, qn) = I(p0, q0) + O(h),

for 0 ≤ nh ≤ h−N+1.

The proof of this conservation result follows the lines of the proof of the
aforementioned theorem: we first recall the numerical method and then give
the analogues of the Lemmas 4.3 and 4.4. They help us to explain the near-
conservation of the total and oscillatory energies for the numerical method (5.2)
over long time intervals. Since the proof of the existance of a modulated Fourier
expansion for the numerical scheme (5.2) is very similar to the one of Theor-
erm 4.2, we do not give it here.
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For our particular choice of φS
h/2, the numerical scheme (5.2) now reads

p̂n = pn − h

2
∇qS(p̂n, qn)

q̂ n = qn +
h

2
∇pS(p̂n, qn)

p̃n+1/2 = p̂n − h

2
Ψ̂∇qK(p̃

n+1/2
1 ,Φq̂ n)

q̌n+1
1 = q̂ n

1 +
h

2

(
∇p1

K(p̃
n+1/2
1 ,Φq̂ n) + ∇p1

K(p̃
n+1/2
1 ,Φq̌n+1)

)

q̌n+1
2 = cos(hω)q̂ n

2 + h sinc(hω)p̃
n+1/2
2 (5.5)

p̌n+1
1 = p̃

n+1/2
1 − h

2
∇q1

K(p̃
n+1/2
1 ,Φq̌n+1)

p̌n+1
2 = −ω sin(hω)q̂ n

2 + cos(hω)p̃
n+1/2
2 − h

2
ψ̂2(hω)∇q2

K(p̃
n+1/2
1 ,Φq̌n+1)

pn+1 = p̌n+1 − h

2
∇qS(p̌n+1, qn+1)

qn+1 = q̌n+1 +
h

2
∇pS(p̌n+1, qn+1).

As in (4.12), the coefficients of the modulated Fourier expansion of the numerical
scheme (5.2) satisfy

p̂h(t) = ph(t) − h

2
∇qS(p̂h(t), qh(t))

q̂h(t) = qh(t) +
h

2
∇pS(p̂h(t), qh(t))

p̃h(t) − p̂h(t− h

2
) = −h

2
Ψ̂∇qK(p̃h,1(t),Φq̂h(t− h

2
))

q̌h,1(t+
h

2
) − q̂h,1(t− h

2
) =

h

2

(
∇p1

K(p̃h,1(t),Φq̂h(t− h

2
))

+ ∇p1
K(p̃h,1(t),Φq̌h(t+

h

2
))

)

p̌h,1(t+
h

2
) − p̃h,1(t) = −h

2
∇q1

K(p̃h,1(t),Φq̌h(t+
h

2
))

p̌h,2(t+
h

2
) + ω sin(hω)q̂h,2(t− h

2
) − cos(hω)p̃h,2(t)

= −h

2
ψ̂2(hω)∇q2

K(p̃h,1(t),Φq̌h(t+
h

2
))

q̌h,2(t+
h

2
) − cos(hω)q̂h,2(t− h

2
) = h sinc(hω)p̃h,2

ph(t) = p̌h(t) − h

2
∇qS(p̌h(t), qh(t)) + O(hN )

qh(t) = q̌h(t) +
h

2
∇pS(p̌h(t), qh(t)) + O(hN ),

where we define qh(t) =
∑

|k|<N

qk
h(t) and ph(t) =

∑

|k|<N

pk
h(t) with qk

h(t) =

eikωtζk
h(t), pk

h(t) = eikωtηk
h(t) (similar notations are used for p̂h(t), q̂h(t), p̌h(t),
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q̌h(t) and p̃h(t)). Comparing the coefficient of eikωt, we get, writing the resulting
equations in terms of p̃k

h, p
k
h, q

k
h, p̂

k
h , q̂

k
h , p̌

k
h and q̌k

h,

p̂ k
h (t) = pk

h(t) − h

2
∇q−kSh(p̂(t),q(t))

q̂ k
h (t) = qk

h(t) +
h

2
∇p−kSh(p̂(t),q(t))

p̃ k
h (t) − p̂ k

h (t− h

2
) = −h

2
Ψ̂Φ−1∇q−kKh(p̃1(t), q̂(t− h

2
))

q̌k
h,1(t+

h

2
) − q̂ k

h,1(t−
h

2
) =

h

2

(
∇p−k

1

Kh(p̃1(t), q̂(t− h

2
))

+ ∇p−k
1

Kh(p̃1(t), q̌(t+
h

2
))

)

p̌k
h,1(t+

h

2
) − p̃ k

h,1(t) = −h

2
∇q−k

1

Kh(p̃1(t), q̌(t+
h

2
))

p̌k
h,2(t+

h

2
) + ω sin(hω)q̂k

h,2(t−
h

2
) − cos(hω)p̃ k

h,2(t)

= −h

2
ψ̂2(hω)φ−1

2 (hω)∇q−k
2

Kh(p̃1(t), q̌(t+
h

2
))

q̌k
h,2(t+

h

2
) − cos(hω)q̂ k

h,2(t−
h

2
) = h sinc(hω)p̃ k

h,2(t)

pk
h(t) = p̌k

h(t) − h

2
∇q−kSh(p̌(t),q(t)) + O(hN )

qk
h(t) = q̌k

h(t) +
h

2
∇p−kSh(p̌(t),q(t)) + O(hN ),

(5.6)

where, similarly to (2.5), we define

Sh(p̂,q) = S(p̂ 0, q0) +
∑

s(α)+s(β)=0

1

m!n!
Dm

1 D
n
2K(p̂ 0, q0)(p̂α,qβ), (5.7)

for a vector p̂ = (p̂−N+1
h , . . . , p̂ 0

h , . . . , p̂
N−1
h ) and p̂ k

h = eikωtξk
h(t), where ξk

h(t) are
the modulation functions of p̂h(t). The same notation is used for q and Sh(p̌,q).
From here on, we do not write the index h in the modulation functions.

As before, the modulation functions η = (η−N+1, . . . , ηN−1) and
ζ = (ζ−N+1, . . . , ζN−1) have two formal invariants. We now give the result
concerning the first one.

Lemma 5.1 Under the assumptions of Theorem 4.1, the coefficient functions
η and ζ of the modulated Fourier expansion of the numerical solution satisfy

Ĥh[ η , ζ ](t) = Ĥh[ η , ζ ](0) + O(thN ), (5.8)

for 0 ≤ t ≤ T . Moreover, we have

Ĥh[ η , ζ ](t) = 2ω2µ(hω)(ζ−1
2 )T ζ1

2 +K(η1,Φζ) + O(h). (5.9)

Proof. To simplify the following proof, we consider the case µ(hω) = 1 (that is,
the numerical method φh in (5.2) is symplectic).

Multiplying the relations in (5.6) (except those that contain the function
Sh(p,q), which will be used later) by the same coefficient functions as in (4.17)
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and summing up, we get

∑

|k|<N

{
− ˙̂q

−k
(t− h

2
)T

(
p̃ k(t) − p̂ k(t− h

2
)
)

+ ˙̃p
−k

1 (t)T (q̌k
1 (t+

h

2
) − q̂ k

1 (t− h

2
)) − ˙̌q−k

1 (t+
h

2
)T (p̌k

1(t+
h

2
) − p̃ k

1 (t))

−( ˙̌q−k
2 (t+

h

2
))T

(
p̌k
2(t+

h

2
) + ω sin(hω)q̂ k

2 (t− h

2
) − cos(hω)p̃ k

2 (t)
)}

=
h

2

d

dt

{
Kh(p̃1(t), q̂(t− h

2
)) + Kh(p̃1(t), q̌(t+

h

2
))

}
.

Expanding the functions ζk(t± h
2 ) and ηk(t± h

2 ) around t shows that the left-
hand side of this equation is a total derivative. In contrast to the proof of
Lemma 4.3, we have the following term:

∑

|k|<N

{
˙̂q
−k

(t− h

2
)T p̂ k(t− h

2
) − ˙̌q−k(t+

h

2
)T p̌k(t+

h

2
)
}

which depends on the numerical method φS
h/2. In order to show that this ex-

pression is also a total derivative, we insert the two first and two last formulas
of (5.6) into it, and get

∑

|k|<N

{
q̇−k(t− h

2
)T pk(t− h

2
) − q̇−k(t+

h

2
)T pk(t+

h

2
)

−h

2

(
q̇−k(t− h

2
)T∇q−kSh(p̂(t− h

2
),q(t− h

2
))

−pk(t− h

2
)T d

dt
∇pkSh(p̂(t− h

2
),q(t− h

2
))

+q̇−k(t+
h

2
)T∇q−kSh(p̌(t+

h

2
),q(t+

h

2
))

−pk(t+
h

2
)T d

dt
∇pkSh(p̌(t+

h

2
),q(t+

h

2
))

)

−h2

4

(
∇q−kSh(p̂(t− h

2
),q(t− h

2
))T d

dt
∇pkSh(p̂(t− h

2
),q(t− h

2
))

−∇q−kSh(p̌(t+
h

2
),q(t+

h

2
))T d

dt
∇pkSh(p̌(t+

h

2
),q(t+

h

2
))

)}
+ O(hN ).

The two first terms of this expression are in fact a total derivative. To show
that the remaining terms are also a total derivative, we add and subtract

˙̂p
−k

(t− h

2
)T∇p−kSh(p̂(t− h

2
),q(t− h

2
))

and
˙̌p−k(t+

h

2
)T∇p−kSh(p̌(t+

h

2
),q(t+

h

2
))

to make the total derivatives of Sh(p̂(t− h

2
),q(t− h

2
)), pk(t− h

2
)T∇pkSh(p̂(t−

h

2
),q(t− h

2
)) and ∇q−kSh(p̂(t− h

2
),q(t− h

2
))T∇pkSh(p̂(t− h

2
),q(t− h

2
)) appear

(as well as the corresponding ones with argument t+
h

2
).

Moving the terms from the left to the right-hand side of the equation, we
get

d

dt
Ĥh[ η , ζ ](t) = O(hN ),
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and an integration yields statement (5.8) of the theorem.

This construction of Ĥh[ η , ζ ](t), the bounds of the modulation functions,
hypothesis (4.3) on the filter functions and the fact that we have η1

2 = iωζ1
2 +

O(h2) yield (5.9) and conclude the proof. �

Concerning the second formal invariant, similarly to formula (4.18), we have
the following equality

ω
∑

0<|k|<N

ik
(
(pk)T∇pkSh(p,q) + (qk)T∇qkSh(p,q)

)
= 0, (5.10)

for Sh(p(t),q(t)) of (5.7). Similar tricks as those used in the proof of the last
lemma help to prove the following lemma.

Lemma 5.3 Under the assumptions of Theorem 4.1, the coefficient functions
of the modulated Fourier expansion of the numerical solution satisfy

Îh[ η , ζ ](t) = Îh[ η , ζ ](0) + O(thN ), (5.11)

for 0 ≤ t ≤ T . Moreover, we have

Îh[ η , ζ ](t) = 2ω2µ(hω)(ζ−1
2 )T ζ1

2 + O(h2). (5.12)

Proof. Again, for the sake of simplicity, we only give the proof for µ(hω) = 1.
This time, we multiply and sum the equations in (5.6) in order to apply the
identities (4.18) and (5.10). We get

iω
∑

0<|k|<N

k
{
−q̂−k(t− h

2
)T (p̃ k(t) − p̂ k(t− h

2
))

+ p̃−k
1 (t)T (q̌k

1 (t+
h

2
) − q̂ k

1 (t− h

2
)) − q̌−k

1 (t+
h

2
)T (p̌k

1(t+
h

2
) − p̃ k

1 (t))

−q̌−k
2 (t+

h

2
)T (p̌k

2(t+
h

2
) + ω sin(hω)q̂ k

2 (t− h

2
) − cos(hω)p̃ k

2 (t))
}

=
hω

2

∑

0<|k|<N

ik
{
p̃ k(t)T∇pkKh(p̃1(t), q̂(t− h

2
))

+ q̂ k(t− h

2
)T∇qkKh(p̃1(t), q̂(t− h

2
)) + p̃ k(t)T∇pkKh(p̃1(t), q̌(t+

h

2
))

+q̌k(t+
h

2
)T∇qkKh(p̃1(t), q̌(t+

h

2
))

}
.

Inserting the definition of the modulation functions corresponding to the sym-
plectic Euler scheme and its adjoint, adding and subtracting the following terms

p̂−k(t− h

2
)T∇p−kSh(p̂(t− h

2
),q(t− h

2
))

and
p̌−k(t+

h

2
)T∇p−kSh(p̌(t+

h

2
),q(t+

h

2
)),

we see that the left-hand side of this equation is again a total derivative. Using
(4.18), the right-hand side is zero. Thus, we get

d

dt
Îh[ η , ζ ](t) = O(hN ),

and an integration from 0 to t yields the result (5.11). As before, statement
(5.12) follows from the bounds on the modulation functions. �
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These two lemmas explain the long-time conservation of the total and of the
oscillatory energies along the numerical solution of the scheme (5.2), as stated
in Theorem 5.2.

Finally, we would like to mention that the proofs given above can also be
repeated for the composition

Φh = φS
h/2 ◦ φh ◦ φS

h/2,

where φS
h/2 is still the symplectic Euler method. This leads to conservation

properties for a symplectic, non-symmetric numerical scheme.

6 The multi-frequency case

In this final section, we briefly discuss the multi-frequency case. We consider the
Hamiltonian function (in accordance with the notations used in (Cohen et al.,
2004) and (5.1))

H(p, q) = K(p1, q) +
1

2

l∑

j=2

(pT
j pj + ω2

j q
T
j qj) + S(p, q), (6.1)

where q = (q1, . . . , ql) with qj ∈ R
dj (the same notation is used for p), ωj = λj

1

ε
with λj ≥ 1 real distinct numbers and ε a small positive parameter.

Concerning the exact solution of Hamiltonian systems with the Hamiltonian
(6.1), in complete analogy to (Cohen et al., 2004, Theorem 7.1), we have the
following result.

Theorem 6.1 Let N be such that (weak non-resonance condition)

|k · λ| ≥ C
√
ε for k ∈ Z

`−1 \M with |k| ≤ N

where k · λ = k2λ2 + . . . + k`λ` , |k| = |k2| + . . . + |k`| and M = {k ∈ Z
`−1 :

k2λ2 + . . . + k`λ` = 0}. If the initial values satisfy (1.3), then, as long as the
exact solution of the system stays in a compact set, we have

Ij
(
p(t), q(t)

)
= Ij

(
p(0), q(0)

)
+ O(ε) for 0 ≤ t ≤ ε · min(ε−M+1, ε−N)

where
Ij

(
p(t), q(t)

)
=

1

2
(pj

T pj + ω2
j qj

T qj) (6.2)

for j = 2, . . . , `, and with M = min{|k| : 0 6= k ∈ M}.

The idea of the proof is still to write the solution as a modulated Fourier expan-
sion and to construct a system that determines the modulation functions of this
expansion. One gets a system similar to (2.3)–(2.4) and finds almost-invariants
related to (6.2).

For the multi-frequency case too, similar results have also been showed by
Benettin et al. (1989).

Concerning the numerical solution, we extend method (5.2) to the multi-
frequency case and obtain similar results concerning the near-conservation prop-
erties of the numerical solution as those given in (Cohen et al., 2004). We make
the following assumptions (see Section 4):
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• The initial values satisfy

1

2
‖p0‖2 +

1

2
‖Ωq0‖2 ≤ E.

• The numerical solution stays in a compact set.

• We impose a lower bound on the step size: h/ω ≥ c0 > 0.

• We assume the numerical non-resonance condition:
∣∣∣sin

( h

2ε
k ·λ

)∣∣∣ ≥ c
√
h, for all k ∈ Z

`−1 \M with |k| ≤ N, with N ≥ 2.

• The function ψ satisfies, with ξj = hωj = hλj/ε,

|ψ(ξj)| ≤ C
∣∣ sinc

(1

2
ξj

)∣∣ for j = 2, . . . , `.

• We finally assume that

|ψ(ξj)| ≤ C sinc2
(1

2
ξj

)
,

|ψ(ξj)| ≤ C |φ(ξj)| for j = 2, . . . , `.

Theorem 6.2 Under the above conditions, the numerical solution obtained by
the method (5.2) satisfies

H(pn, qn) = H(p0, q0) + O(h) for 0 ≤ nh ≤ σ1h · min(ε−M+1, h−N )

Ij(p
n, qn) = Ij(p

0, q0) + O(h) for 0 ≤ nh ≤ σjh · min(ε−M+1, h−N )

for j = 2, . . . , `. Here, σj = |σ(ξj)|, and σ1 = min{1, σ2, . . . , σ`}, where σ(ξ) =
sinc(ξ)φ(ξ)/ψ(ξ). The constants symbolized by O are independent of n, h, ε,
λj satisfying the above conditions, but depend on N and the constants in the
conditions.

Example 6.3 Taking different spring constants in Example 5.1, one can get a
simple model of the water molecule. Following Izaguirre et al. (1999) (see also
http://amber.scripps.edu/), we take for the bond length constant ω2 =

√
553

and for the harmonic bond angle constant ω3 =
√

100. For such a molecule, the
Hamiltonian (5.4) now reads

H(p1, p2,1, p2,2, p3, q1, q2,1, q2,2, q3) =
1

2
(p2

1 + p2
2,1 + p2

2,2 + p2
3)

+
1

2
(ω2

2q
2
2,1 + ω2

2q
2
2,2 + 2ω2

3q
2
3) +

1

4
(q1 − q3)

2 +
1

4

( 1

(r0 + q2,2)2
− 1

)

×(p1 − p3)
2 +

1

4

( 1

(r0 + q2,1)2
− 1

)
(p1 + p3)

2,

(6.3)

where r0 = 0.9572 is the unstretched length of the springs. For initial values
p(0) = 0.5, q1(0) =

√
2, q2,1(0) = 1/ω2, q2,2(0) = 1/ω2, q3(0) = 1/ω3, we plot,

in Figure 6, the total and oscillatory energies and the the first component of I
along the numerical solution of the Hamiltonian system with Hamiltonian (6.1).

As predicted, I is nearly preserved. This is not the case for I2, due to the fact
that the frequencies ω2 and ω3 are not sufficiently large. Indeed, in Figure 7, we
plot the same quantities as in Figure 6 but with a ten times larger vector ω.

This time all these quantities are nearly preserved.
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Figure 6: Energies along the numerical solution of the Hamiltonian problem
(6.3) with h = 0.01 and using for φS

h/2 the Störmer-Verlet method.

100 200 300 400.0

.5

1.0

1.5

2.0

2.5

3.0

3.5
H

I = I2 + I3

I2

Figure 7: Same plot as in Figure 6 but with ω ten times larger (and h = 0.01).

Appendix A

Coordinate changes in Example 1.1. To obtain the Hamiltonian function
(1.6), we first consider, as in (Sanyal et al., 2003), the Lagrangian

L(ṙ, φ̇, θ̇, q̇, r, φ, θ, q) = m(ṙ2 + q̇2 + q2θ̇2 + 2q2θ̇φ̇+ (r2 + q2)φ̇2)

− Vg(r, θ, q) − 2k(q − l)2

and scale the variables: for R > 0, we define ω̂ =
√

µ

R3
and τ = ω̂t. We also

define the new positions ρ =
r

R
and σ =

q

l
. In the new variables, the Lagrangian

function reads

L(ρ̇, φ̇, θ̇, σ̇, ρ, φ, θ, σ) = mω̂2R2
{
ρ̇2 + ε2σ̇2 + ε2σ2θ̇2 + 2ε2σ2θ̇φ̇

+(ρ2 + ε2σ2)φ̇2 +
1

ρ

(
2 − ε2

σ2

ρ2
(1 − 3 cos2(θ))

)
− 2χε2(σ − 1)2

}
,
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with ε =
l

R
and χ =

k

mbω2
. A last coordinate change, namely σ = ε(σ−1), leads

to

L(ρ̇, φ̇, θ̇, σ̇, ρ, φ, θ, σ) =
1

2

(
ρ̇2 + ρ2φ̇2 + σ̇2 + (ε+ σ)2(φ̇+ θ̇)2 +

2

ρ

− (ε + σ)2

ρ3

(
1 − 3 cos2(θ)

)
− 2χσ2

)
,

where we have chosen the constants so that we obtain a factor
1

2
in front of

the Lagrangian. Finally, calculating the corresponding momenta, one gets the
Hamiltonian function (1.6).
Coordinate changes in Example 5.1. To obtain the Hamiltonian (5.4), we
rewrite (5.3) as

H(p, q) =
1

2
pTMp+

1

2
qTAq + . . . ,

where the dots stand for small terms (i.e. terms containing r1 or r2), q =
(r1, r2, θ1, θ2) and

M =




1 0 0 0
0 1 0 0
0 0 2 −1
0 0 −1 1


 and A =




ω2 0 0 0
0 ω2 0 0
0 0 ω2/2 0
0 0 0 1


 .

We make the symplectic change of coordinates p̂ = Cp, q̂ = Dq with the follow-
ing matrices

C =




1 0 0 0
0 1 0 0

0 0
√

2 −
√

2/2

0 0 0
√

2/2


 and D =




1 0 0 0
0 1 0 0

0 0
√

2/2 0

0 0
√

2/2
√

2


 .

The Hamiltonian function now reads H(p̂, q̂) =
1

2
p̂T p̂+

1

2
q̂T Âq̂ + . . . with

Â =




ω2 0 0 0
0 ω2 0 0
0 0 ω2 + 1/2 −1/2
0 0 −1/2 1/2


 ,

and it is of the desired form (5.1).
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