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1 Introduction
We consider the generalised hyperelastic-rod wave equation
1
Ut — Uggt + §g(u)m - ’7(2uxumm + uummm) = 07 u|t:0 = Uop, (1)

with periodic boundary conditions and where u = u(z,t) and g is a given smooth func-
tion. The generalised hyperelastic-rod wave was first introduced in [8]; it defines a whole
class of equations, depending on the function g and the value of v, which contains several
well-known nonlinear dispersive equations. Taking v = 1 and g(u) = 2ru + 3u? (with
k > 0), equation (1) reduces to the Camassa Holm equation:

Ut — Uggt + KUy + 3UUy — 2UpUpy — Ulgyy = 0. (2)



Since its apparition in [4] in the context of water wave propagation where u represents
the height’s free surface above a flat bottom while x is a parameter, the Camassa Holm
equation has been extensively studied, mainly because of its rich mathematical structure.
The Camassa Holm equation possesses a Lax pair which allows for a scattering and
inverse scattering analysis, showing that the equation is integrable (|4, 12, 16, 26]). It is
a geodesic on the group of diffeomorphisms for a given metric (|27, 15]). In addition, the
Camassa—Holm equation is bi-Hamiltonian (see Section 2 for definitions and references).
The bi-Hamiltonian structure of the equation will be used in this article to derive energy
preserving numerical schemes (see Section 3). For g(u) = 3u?, equation (1) becomes the
hyperelastic-rod wave:

Up — Uggt + 3““:0 - 7(2uccuxx + uu:c:c:c) = 07 (3)

which was introduced by Dai [18] in 1998. The equation models the propagation of
nonlinear waves in cylindrical axially symmetric hyperelastic-rod. The parameter v € R
is a constant depending on the material and prestress of the rod. The well-posedness of
the Cauchy problem for (3) is established in [17, 38]. For g(u) = 2u + u? and for v = 0,
equation (1) leads to the Benjamin-Bona-Mahony (BBM) equation (or regularised long
wave) [1]:

Ut — Uggt + Uy + U, = 0, (4)

which describes surface wave in a channel. While the solutions of the BBM equation are
unique and globally defined in time, the solutions of the Camassa—Holm and hyperelastic-
rod wave equations may break down in finite time. Due to the particular circumstances
in which this occurs, this situation is also refered as wave breaking (see [13, 14| for more
details). After wave breaking, the solutions are no longer unique and, in this article, only
solutions before wave breaking will be considered.

We now briefly review — without intending to be exhaustive — the numerical schemes
related to the generalised hyperelastic-rod wave equation that can be found in the lit-
erature. For the Camassa—Holm equation, schemes using pseudospectral discretisation
have been used in [5, 25|. Methods based on multipeakons, a special class of solutions
of the Camassa—Holm equation, can be found in |7, 6, 24, 23|. Finite difference schemes
with convergence proof are studied in [9, 22]. In [37|, the authors use a finite element
method to derive a scheme which is high order accurate and nonlinearly stable. The
Camassa-Holm equation admits a multi-symplectic formulation which can be used to de-
rive multi-symplectic numerical schemes, see [10]. For the BBM equation, conservative
finite difference schemes were proposed in [36] with a convergence and stability analysis.
We also refer to [30, 28|. As far as the hyperelastic-rod wave equation, the authors are
only aware of the numerical scheme given in 32| which is based on a Galerkin approxi-
mation and preserves a discretisation of the energy.

In this article we derive finite difference schemes for the generalised hyperelastic-rod
equation which preserve some of the geometric properties of the equation. The first
property is a global one, namely the preservation of the energy, while the second is local
and corresponds to the preservation of multi-symplecticity. In Section 2, we look at the
Hamiltonian (or “Hamiltonian-like”) formulations of (1) and explain how methods for



ordinary differential equations based on discrete gradients that have been developed in
[33] can be applied to equation (1). In Section 3, the discrete gradients are computed
and the corresponding energy preserving schemes are derived. In Section 4, we review
some of the general theory of multi-symplectic PDEs following the approach of Bridges
and Reich [3] and based on the work in [10], we derive a multi-symplectic scheme for the
generalised hyperelastic-rod wave equation (1). Finally, we illustrate the behaviour of
these new schemes by numerical experiments in Section 5.

2 The discrete gradient approach

In this section we review the Hamiltonian formulation for partial differential equations,
give some “Hamiltonian like formulations” for our various equations and finally present
the discrete gradient methods for ODEs of [33].

We first consider the Camassa—Holm equation (2) in his limiting case x = 0:

Up — Uggt + 3UUL — 2UgUgpy — Ulgrr = 0.

Defining m = u—uy,, this equation can be rewritten as a Hamiltonian partial differential
equation, that is,
oH
my = D(m) (5)

%)
where the functional H(m) is the Hamiltonian and g—H denotes the variational derivative
m
of H with respect to m defined as

(P 4
om’ 2 de

(here (v,w);2 = [v(z)w(z)dz denotes the L:scalar product). Equation (5) defines a
Hamiltonian equation if in addition the operator D(m) is antisymmetric with respect to
the L2-scalar product, that is,

. H(m +em) for all m
e=

(v, D(Mm)w) 2 = — (D(M)v,w) 2,
and its Lie-Poisson bracket

{F,HY(m) = <§—£,D(m) 6H>L2

om
satisfies the Jacobi identity
{{rGLHY+{{G H} F} + {{H,F},G} = 0. (6)

The Camassa-Holm equation has a bi-Hamiltonian structure (see [35] for the definition
and [4, 11] for the proofs): It is Hamiltonian for the two following pairs of antisymmetric
operator and Hamiltonian function,

Di(m)(-) = —(u — uzz)()z — ((u — za) () s
Hi(m) = / (2 4 12) dz (7

N —



and
Dy(m)(-) = —(0x(1 — 0zz)) ("),
Ha(m) = 1 / (® + ) da. (8)

For the other partial differential equations considered in the introduction, it is not clear
if they also possess a Hamiltonian structure (the issue here being the Jacobi identity (6)),
nevertheless we have the following “Hamiltonian-like” formulations. For the hyperelastic-
rod wave (3), there exist, at least, two functionals H;(m), which corresponds to the
energy of the problem, and Hs(m) and two antisymmetric operators Di(m) and Da(m)
such that this equation can be written as a Hamiltonian problem as in (5). They are
given by

Di(m)(-) = —(u — YUaz) ()z — (= Ytuza)(+))as
Ha(m) = L / (u? + u2) dz (9)
and
Da(m)(-) = —(0x(1 — 05)) (1),
Ha(m) = 1 / (0 + yu) da. (10)
For the Camassa-Holm equation given by (2), we obtain

Di(m)() = —(u — ugg + E)()fc — ((u — gy + E)())xv

2 2
Hy[m] = %/(uz—i-u?c)dx (11)
and
Da(m)(-) = —(0x(1 — 022)) ("),
Halm] = 5 /( 3 4 kw2 + uud) da. (12)

For the generalised hyperelastic-rod wave (1), the formulation equivalent to (9) is not
available and we only have a Hamiltonian like formulation given by

Dy(m)(-) = —(02(1 = 2a)) ("),

Ho(m) = %/(G(u)—i—’yuufc)dx, (13)

where G is an integral of g, i.e., G’ = g. Finally, for the BBM equation (4), we have
1 1
Di(m)() = ~(% 4+ 1) = (& + D

Hi(m) = %/(u2 + u2) dz, (14)



and
Da(m) (1) = —(0x(1 — Ouz)) ("),
Ho(m) = %/( 2+ u;)da;. (15)

A remarkable feature of a Hamiltonian partial differential equation is the fact that the
Hamiltonian functional H is conserved along the exact solution of the problem. Indeed,
we have 1 51 d 5 5

(0 (3 o) =0 0
using the fact that the operator D(m) is antisymmetric. The Hamiltonians H; and He
are thus conserved along the exact solution of the partial differential equations considered
here. Our goal in the next section will be to exploit this feature of the exact solution to
design numerical schemes that exactly preserve a discretised version of these Hamiltoni-
ans. To do so, we first have to find appropriate discretisations of the partial differential
equations (see Section 3 for the details) and then integrate the obtained differential
equations in time by the discrete gradient approach.

We now review the discrete gradient approach used in the numerical integration of
ODEs proposed in [33] (see also references therein). For a given smooth function H :
R™ — R and a skew-symmetric matrix D(y) depending on y, we consider the differential
equation in R" given by

y=fly) =D(y)VH(y). (17)
We say that VH is a discrete gradient of H if

H(y')—H(y) =VH(y,y') (y —y) forall y,y € R" (18)

and the consistency relation VH (y,y) = VH(y) is satisfied. Given a discrete gradient
V H, one can construct schemes of the form

% = D(ynayn—l—laAt)vH(ynayn-f-l)? (19)

where we impose that the operator v — D(y,y’, At)(v) is antisymmetric for all y,1/, At
and, for consistency reason, D(y,y,O) = D(y). There exist several discrete gradients of
the same function H and one of them is given by the mean value discrete gradient, see
|21, 33|, which is given by

1
VH(yn, yn-i—l) = /0 VH((l - C)yn + Cyn-i-l)dg' (20)

In the next section, we will introduce another discrete gradient which can be applied to
the type of Hamiltonians we will be considering.
Schemes which takes the form (19) exactly preserve the value of H(y,), as we have

H(yn—i-l) - H(yn) = VH(yn, yn—l-l) : (yn—l-l - yn)
= Ath(yn, yn-i-l) ) D(ym Yn+1, h)vH(ym yn-i-l) =0. (21)



3 Energy preserving schemes

We consider periodic solutions on the interval [0,77]. We introduce the partition of [0, 7]
in points separated by a distance Az = 1/n denoted z; = iAx for i = 0,...,n — 1. We
consider the time step discretisation step At and t; = jAt. At x = x; and t = ¢, the
value of w is approximated by uf We define the right and left discrete derivatives with
respect to space at (z;,t;) as

(0Fu)] = T (e, —ul).

and the symmetric derivative as
1 _

In order to derive energy-preserving schemes, we have to define all the continuous oper-
ations at the discrete level. The L?-scalar product in the continuous case becomes the
following discrete one

n—1
(u,v) = Az Z U;v; (22)
i=0
for which the following discrete summation by part rules hold:
(0Fu,v)y = — (u,07v) and (Syu,v) = — (u, 6,v) . (23)

We have to discretise the Hamiltonians H; and Hy. We will only consider in details the
hyperelastic-rod wave equation, the results for the other equations being listed below.
We approximate H; and Ha by

n—1

Hi(m) = %;EEE:(U?—%(5IUQQ) (24)

and

Hy(m) = 55 3 (uf + yui(6zu:)?). (25)
i=0

respectively. Here m = (1 — 62)u. Several methods to compute discrete gradients are
given in [33]. In this section, we present another method which can be used in the case
where the Hamiltonians consist only of sums and products of the unknown variables
(ie. {w;}'=y), as in (24) and (25). For a scalar function f, we denote the difference
f(m')— f(m) by 6[f] and the average w by u[f]. A straightforward computation
shows that, for any m and m/, we have

Pl gy~ F(m)a(m) = 5 (7(m)—F (m)(gom’ () +3 (glm)—g(m)) (') (m)
which rewrites with our new notation as
S[(f - 9)] = 6[f] - nlg] + dlg] - ulf]. (26)



Note the similarity between (26) and the Leibniz rule (fg)' = f'g + ¢'f and it becomes
clear that the operator p is introduced to account for the failure of a simple difference
to fulfill the Leibnitz rule. By recursively applying the product rule (26), we obtain

|
—

n

O[] = 0(ui)? + (6ui)’]

ok

~
I
)

3

ok

(20[uilpui) + 266z uil pl0zuil)-

-
Il

We use the fact that § and g commute with §, (which follows from the linearity of ¢),
the summation by part rule, and we obtain

n—1
O[H] = Az (S[uilp[us] — nluild[63ui))
1=0

= Ax Z_: il (8[ug) — 8[07us))
=0

— (. 5T

by the definition of the discrete scalar product (22). Hence, using the fact that m =
(1 —82)u, we get

/
Hiy(m') — Hi(m) = <“ j“,m'—m> (27)
and therefore , ,
VHym ) = 15 = (1= )7 (M) 2%)

For the second Hamiltonian of the hyperelastic-rod wave given by (25) , we obtain

oHz) = 57 n_ol 0l + yus(6,u;)?)
g gm[u?]a[ui] + 2] + 0lul (5 ) + 2 plul 60601
_ %; (o) + 21l? + {0002 ) 3] + 2yl o315,
_ b (W21 -+ 20l + 7l B — 240 ] ) s
= <%;;[_u2] + plu)? + 2ul(du)?) — 75x(ﬂ[u]5xﬂ[u])75[u]> :
Hence,

VHy(m,m') = (1-43)7" (%/L[UZ] + p[u)? + 2ul(0u)?] = V0o (uuldsnlul)),  (29)



VHy(m,m') = i(l — 67t (2u2 + 20" + 2un’ + y((6,u)? + (0.u')%)
— 0 (w4 ') (Su + m'))). (30)

Note that, if we take p equals to the identity in (27) and (29) (so that the product rule
holds exactly) and replace the discrete spatial derivative d, by its continuous counterpart
0., then we obtain 55% and ‘?1—m?, respectively and in this way we check the consistency
of the approximation.

Let us now compute the mean value discrete gradient, which we now denote vaj(m, m’)
(for j = 1,2), as given by (20), that is,

1
" H () = /O VH,((1 = Cym + Cm')dC. (31)

Here the gradient VH is defined with respect to the discrete scalar product (22) and we
have, for all m,

(VHy(m),im) = | Hi(m+em)
Ele=0
n—1 n—1
= Az z:(u,ﬁZ + 0,ui0,U;) = Az Z(ul(ﬂ, — 0241;) = (u,m),
=0 i=0

after one summation by part, so that

VHi(m) = u. (32)
In the same way, we obtain
(VH(m),m) = <|  H(m+ em)
Ele=0
n—1
= % (Buid; + i (pui)® + 2yUi0p U0y ;)
i=0
so that
VHs(m) = (1 - 62)~! (guz + 1(6,u)? 'yéx(uéxu)) (33)

(the multiplications are meant componentwise). From (31) and (32), we get

1 /
" Himm') = [ (1= Out Gy = 15



and the mean value discrete gradient coincides with the discrete gradient computed earlier
in (28). For the second Hamiltonian, from (31) and (33), we obtain

1
V" a(m,m') = (1= ) ([ (30 Qur )+ 3000 - u+ )’

0
— 362 (1= Qut Cu) (3 (1 = Ou+ Cu)) ) dC)
=(1-063)7"t (%( 2+ +u?) + %((&Eu)2 + Spudpu’ + (6,u)?)
— %5:,; (uéxu + %uéxu' + %u'éxu + u'&m')) (34)

which differs from the discrete gradient computed earlier in (30). It remains to discretise
the operators D; and Dy. We use the following approximations:

Di(m)(v) = —((u = 703u)d,0) — 8z ((u — 87u)v) (35)
and
Dy(m)(v) = =6,(1 = 67)(v). (36)

Using the summation by part rule (26), it can be checked that the discrete operators Dy
and Dy are antisymmetric for the discrete scalar product (22). The discrete gradients
(28), (30) and (34) are symmetric in m and m’, that is, VH(m,m') = VH(m/,m) for
any m and m/. For the extensions of the operators D; and Dy, we take

Dy(m,m’, At)(v) = —((5(utu) = 262 (u+1))5p0) — (5 (ut w') = 182 (u+u))v) (37)

and B
Da(m,m’, At) = Dy(m), (38)
respectively. With these special choices, both operators are symmetric in time, that is,

Dj(m,m’, At) = D;(m’,m, —At) (39)

for j = 1,2 and for all m, m’, At. Finally, we obtain three schemes which all preserve
one of the Hamiltonians, see (21). The first scheme is given by

i~ : , _ . :
% = Di(m? T, m?, AY)VH (m T, m7)

or, more explicitely,
W =l — %(1 — o)t ((uj+1 + ! — 82 (Wt + )6y (w4 )
+ 0, ((uj+1 +d — ’yéﬁ(ujH + uj)) (uj+1 + u3)>> (40)
It preserves the discrete energy Hi. The second scheme is given by

j+1 j P . .
2= Dy )V Hy 1, m)



or, more explicitely,

wt = ud — %&E(l — 64t (2((uj+1)2 + /el + (u)?)
+ (6071 + (6,u7)?)
— Y0 (uj+15xuj+1 + w7 + ISt + Uj5xuj))- (41)

The third scheme is given by

SR o ‘ '
% = Dy(m?)V HQ(mJ-l-l’m])

or more explicitely
W = G0 = )7 (2@ e+ (w))
B (6 4 8 5,0+ (50)?)

= 25, (20,0 4 I TG + Sl 206,00) ). (42)

The schemes (41) and (42) preserve the discrete Hamiltonian Ho. The three schemes are
second-order in time since they are symmetric in time by equation (39), see [33]. For the
Camassa Holm equation and the BBM equation, the schemes corresponding to (40) are

Wt =l — %(1 —02)7t (((1 — 6% (W + ) + k), (W T + )
#6,(((- )+ )+ o)) )
and
G4+l g At 2\—1 Jj+1 7 Jj+1 J
Wt =l - 21— 62) (((u +ud )8, (W )
+ 6, (W2 + (W) + 207! 4+ 3u/ T + 3uj)>,

respectively. For any scalar function, and in particular G, the discrete gradient is unique
as we have VG (u,u') = w
the schemes (41) and (42) rewrites

: . For the generalised hyperelastic-rod wave equation,

Wt = d — %593(1 -0~ (ZvG(ujJrlvuj)
+ (5,07 + (,u7)?)

— 46, (W opu? T + W T opud 4w Gpul T+ ujéxuj))

10



and
W =l — %&E(l — 9271 (ZVG(ujH,uj)
+ 2 (0T o+ S T, + (8,07)?)
= 205, (200,00 w T 4l 4 28,0 ).
In the particular cases of the Camassa Holm equation and the BBM equation, we have
VG(u,u') = k(u+ ') +u® +u? + uu

and
VG(u,u') =u+u + %(u2 4+’ 4 ),

respectively.

4 Multi-symplectic integrators

We begin this section by reviewing the concept of multi-symplecticity in a general con-
text, for more details, see e.g. [2, 3, 34]. A partial differential equation of the form
F(u,ug, Uy, Uty - . .) = 0 is said to be multi-symplectic if it can be written as a system of
first order equations:

Mz + K z, = V,5(2), (43)

with z € R? a vector of state variables, typically consisting of the original variable u as
one of its components. The matrices M and K are skew-symmetric d X d-matrices, and
S is a smooth scalar function depending on z. Equation (43) is not necessarily unique
and the dimension d of the state vector may differ from one expression to another. A
key observation for the multi-symplectic formulation (43) is that the matrices M and K
define symplectic structures on subspaces of R,

w=dz A Mdz, k=dz AN Kdz.

Considering any pair of solutions to the variational equation associated with (43), we
have, see |3], that the following multi-symplectic conservation law applies

Oww + Ozk = 0. (44)

With the two skew-symmetric matrices M and K, one can also define the density
functions

E(z):S(z)—%szz, F(z):%z?Kz,
é(z):S(z)—%z;sz, f(z):%ngz,

which immediately yield the local conservation laws

WE(z)+0,F(2) =0 and  9(z) + 0,G(z) =0,

11



for any solution to (43). Thus, under the usual assumption on vanishing boundary terms

for the functions F'(z) and G(z) one obtains the globally conserved quantities of (energy
and momentum)

£(z) = / Blz)de  and  I(2) = / T(2) da.

Since the multi-symplectic conservation law (44) is a local conservation law, the multi-
symplectic formulation of a partial differential equation may lead to numerical schemes
which render well the local properties of the equation. To derive multi-symplectic inte-
grators, we follow the approach given in [2] (see also [3]) and write the partial differential
equation as a system of first order equations (43) and then discretise it. For an alternative
construction of multi-symplectic integrators see for example [31].

The main philosophy behind the use of symplectic integrators for Hamiltonian differ-
ential equation is that the schemes are designed to preserve the symplectic form of the
equation at each time step. For multi-symplectic partial differential equations, the idea
of Bridges and Reich |3| was to develop integrators which satisfy a discretised version of
the multi-symplectic conservation law (44). For this purpose, they considered a direct
discretisation of (43), replacing the derivatives with divided differences, and the contin-
uous function z(z,t) by a discrete version 2™ ~ z(x,,t;) on a uniform rectangular grid.
We set Ax =41 — xp,n € Z, and At =t;41 —t;, ¢ > 0 as in Section 3.

Following their notation, we write

M@f’izn’i 4 K@?izmi _ VZS(ZnJ)’ (45)

where a;“' and 91" are discretisations of the partial derivatives d; and 0., respectively.
A natural way of inferring multi-symplecticity on the discrete level is to demand that for
any pairs (U™, V™) of solutions to the corresponding variational equation of (45), one
has '

afﬂwn,i + ag7i/{n,i =0,

where
wn,i(Un’i, V'I’L,Z) _ <MUn’i, ‘/n,i>7 /in,i(Un’i, Vn,z) _ <KUn’i, ‘/n,i>7

with the Euclidean scalar product {-,-) on R
As for the Camassa-Holm equation, see [10], setting z = [u, ¢, w, v, v]T, we derive the
following multi-symplectic formulation (43) for the generalised hyperelastic-rod wave (1):

0 1/2 0 0 —1/2 0 0 0 -1 0 —w——g(u)—77
-1/2 0 0 0 0 0O 0 1 0 O 0
0 0 00 0 zz+ 10 =1 0 0 0]z = —u ,
0 0 0 0 0 1 0 0 0 O v
12 0 00 0 00 0 0 0 v+ v

12



2
with the scalar function S(z) = —wu — %G(u) - vu% + vv, recalling G(u) := [ g(u).
We now turn to the calculation of the global invariants (energy and momentum) defined

above. For the hyperelastic-rod wave, an integration of the conservation law 9;1(z) +

9,G(z) = 0 leads to:

1d

Yo (—uz0 + u? 4 u? — Ullzy ) dx + [é(z)] =0,

where the brackets stand for the difference of the function evaluated at the upper and
lower limit of the integral. As in [10], after an integration by parts on the first and last
term, using periodic (or vanishing at infinity) boundary conditions of u (i.e. [u] = [uy] =
[uzz] = [¢¢] = 0), we obtain the following global invariant for the hyperelastic-rod wave:

I= %/(u2 + u?)de.
Similarly, the second conservation law 9,E(z) + 8,F(z) = 0 leads to

&= —%/( 3 4 yuul)de.

We remark that these two conserved quantities are (up to a multiplicative constant) the
Hamiltonian functionals given in (9)-(10).

The Euler box scheme. By taking the splitting M = M, + M_ with M, = M_ = %M

(and similarly for K') we obtain the Euler-box scheme, a multi-symplectic integrator for
the generalised hyperelastic-rod wave, expressed in terms of u (see [10] and [34]):

o 4Ax2un,z+1 + (un+2,z+1 o 2un,z+1 + un—2,z+1) _

8 szAt{—Lun’i_l 1 (—lg(u”"‘lvi) + %g(un_lvi) __ (un+2,z‘ _ un,i)Z

2At C2Az\ 2 8Az2

Y N n—2,0)2 1 _on42ii—1 nyi—1 _  n—2i—1

8Aw2(u u ) +4AacAt( U + 2u u )
Y (un+27i (un+3,i . un-i—l,i) _ 2un,i(un+1,i o un—l,i) + un—2,i(un—1,i . un—3,i)))}
4Az? ’

Equation (1) can be rewritten in the form
1 v,,2 _
Up — Uggt + (§g(u) + 5“’:{:):5 - ’Y(uux)mﬁ =0 (47)
and the corresponding Euler-box scheme is given in a more compact form by

Su™t — 525U + 6, (%g(u"’i) + %(&Eu"’i)z) — 02 (w5 um) = 0, (48)

recalling from Section 3 the definitions of the centered differences d, = %(5; + 65 ) and,

similarly in time, §; = %(5t+ + 9, ). Note that this scheme is only linearly implicit.

13



5 Numerical experiments

In this section, we present some numerical experiments for the hyperelastic-rod wave
equation (3). We consider two types of initials conditions: A smooth traveling wave and
a single peakon. They are obtained in the following way (see [19, 29| for a derivation of
all the traveling wave of (3)). Looking at the “Hamiltonian-like” formulation of (3) with
(9), we define

V=U—YlUgg
so that m = ’YT_lu + % and the partial differential equation becomes

%((7 — Dug + vy) + (vu)s + vty = 0. (49)
For a traveling wave with speed ¢, we have
u(t,z) =U(x — ct) and v(t,x) = V(z — ct)

and (49) yields
—5((7 —~ U + V) +V'U+2VU =0.

Thus,
(U — g)v’+2U/(V— %(’y— 1)) = 0. (50)

After multiplying both sides of (50) by (u — %), we get

(U = V' 420/ (U = )V = £y~ 1) =0

which can be integrated and gives

(V- £G-DU -5 =a G1)

for some constant «. Using the fact that V.= U — ~U"”, we can rewrite (51) and obtain

" c(y—1 1 e}
U :—(VWM;U—ﬁ (52)
which is a second order equation for the traveling wave U. After multiplying (52) by U,
and integrating one more time we recover the equations given in [19, 29]. However, (52)
may be easier to implement numerically. We do not obtain smooth traveling waves for all
the values of the parameters «, ¢ and v. For ¢ = @ = 3, we solve numerically (52) with
initial data U(0) = 1 and U,(0) = 0. The results are presented in Figure 1 for different
values of .

Taking o = 0 in (52), we obtain the peakons. Indeed, on the line, the general solution
of this second order differential equation is given by

U(C) — C(’Yz; 1) _|_Ae—C/\ﬁ + BGC/W,
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Figure 1: Smooth traveling waves for the hyperelastic rod equation for different values of
.

for some constants A and B. As it is noted in [29], a traveling wave can only have a
point of discontinuity {y when U reaches the value %, that is, U((p) = % For a single
peakon, there is only one point of discontinuity (y (the top of the peak) and we impose
(o = 0. To obtain vanishing at infinity boundary conditions, we must have A = B and
thus

U() = g(’YT—l + (1= 2 e ldlvay

so that, on the line, the peakon-solution of the hyperelastic-rod wave is then given by
_c —|z—ct
u(w,t) = 5 (v = 1+ (3 = y)e” 77V,

Still for & = 0, by choosing the points of discontinuity at —7'/2 and T'/2, we obtain the
periodic peakon. On the interval [-7'/2,T/2], this gives

U) = i(y -1+ ﬁ(;)\ﬁ))cosh(%)),

so that the periodic peakon is

_ ¢ B—7) d(x — ct)
u(x,t)—a<’y—l+mcosh( % )), (53)

for d(z) = = — % where Z is the unique element of [0,7") for which there exists k € Z
such that z =z + % + ET.

Before we proceed with the numerical experiments, let us give some remarks concerning
implementation issues. For the multi-symplectic scheme (48) applied to equation (3),
the first needed step for the iteration will be computed along the exact solution of the
problem. The integrals in the Hamiltonians given in (9) and (10) will be discretised by
the trapezoidal rule and the derivatives appearing in these quantities by the symmetric
derivative d,. Thus, these discretisations will give us the conserved quantities (24), resp.
(25) from the energy-preserving schemes (40), (41) and (42).
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Figure 2: L'-error of the schemes (40), (41), (42) and (48) at time Tend = 2 for the

smooth solution (left) and for the peakon (right). The dashed lines have slopes
two, resp. one.

All the numerical experiments will be done for the hyperelastic-rode wave with the
constant v = 0.8. The smooth traveling wave considered will be the solution of (52) with
¢ = o = 3. In this case we obtain a period T~ 3.8609 for the traveling wave. For the
single peakon (53), we take 7' =40 and ¢ = 1.

We first consider the temporal rate of convergence of our schemes. We vary the time
step At and set the space step to Az = 0.9 Az/c. One can see from Figure 2 that the
order of convergence is two for the smooth solution and one for non-smooth one, and this
holds for all the schemes.

Similar behaviours are also observed for the spatial rate of convergence of the numerical
methods: order one for the non-smooth solution and order two for the smooth one. The
results are however not displayed.

We next plot the discretisations (24) and (25) of the Hamiltonian functionals of our
problem. For the smooth solution, the grid parameters are Az = 0.04 and At = 0.01.
For the single peakon solution, they are given by Az = 0.27 and At = 0.01. The
integrations are done over the time interval [0,5]. Figures 3 and 4 display the results
for the discretisation of the Hamiltonians given by (24) and (25), respectively. We have
noted that, when taking smaller time step size, the results given by the multi-symplectic
scheme tends to those of the energy-preserving schemes (41) and (42).

Let us conclude this paper by two remarks. First, from our numerical experiments, we
can see that all the schemes perform in a comparable manner, and in particular it is not
clear if one can take advantage of the global or local nature of the schemes (global for the
schemes (40), (41), (42) as they preserve one of the Hamiltonians, or local for the multi-
symplectic scheme (48)). The second remark is about the degree of freedom we have when
deriving the schemes that have been presented. We already saw that the discrete gradient
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Figure 3: The Hamiltonian (24) along the numerical solutions given by the schemes (40),
(41), (42) and (48) for the smooth (left) and non-smooth (right) solution.
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Figure 4: The Hamiltonian (25) along the numerical solutions given by the schemes (40),
(41), (42) and (48) for the smooth (left) and non-smooth (right) solution.

17



of a function is not unique and presented two ways of computing it. In addition, when
discretising the Hamiltonian functionals H; and He and the antisymmetric operators Dy
and Dy, we used systematically the symmetric discrete derivative §. We could have used
instead left and right discrete derivatives and obtain schemes with the same preserving
property. For example, instead of (35), we can take

Dy(m)(v) = = ((u = 10zu)d; v) — & ((u — y87u)v). (54)

By using the discrete summation by part rule (23), we can check that this operator
is antisymmetric and, in the same way as we derived from (35) the numerical scheme
(40), we can obtain from (54) a numerical scheme that ezactly preserves the discrete
Hamiltonian H;. We have implemented this particular scheme and observed that it may
be very unstable, for example in the case of a smooth wave (traveling from left to right)
as initial data. This bad behaviour is due to the discrete difference operator 6; in (54),
which models the transport of the momentum u — yu,, at a speed u. In the case we are
looking at, the “information” is traveling in the same direction as the wave, from left to
right, but the right discrete derivative 6] compute the difference by taking values from
the opposite direction, from the right. We can observe that, if we consider as initial data
a wave now traveling from right to left, the same scheme performs well. This confirms
the stabilizing effect of the symmetric discrete derivative and justifies its use. It also
shows that the preservation of energy alone does not guarantee the well-behaviour of a
scheme.
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