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heme.1 Introdu
tionWe 
onsider the generalised hyperelasti
-rod wave equation
ut − uxxt +

1

2
g(u)x − γ(2uxuxx + uuxxx) = 0, u|t=0 = u0, (1)with periodi
 boundary 
onditions and where u = u(x, t) and g is a given smooth fun
-tion. The generalised hyperelasti
-rod wave was �rst introdu
ed in [8℄; it de�nes a whole
lass of equations, depending on the fun
tion g and the value of γ, whi
h 
ontains severalwell-known nonlinear dispersive equations. Taking γ = 1 and g(u) = 2κu + 3u2 (with

κ ≥ 0), equation (1) redu
es to the Camassa�Holm equation:
ut − uxxt + κux + 3uux − 2uxuxx − uuxxx = 0. (2)1



Sin
e its apparition in [4℄ in the 
ontext of water wave propagation where u representsthe height's free surfa
e above a �at bottom while κ is a parameter, the Camassa�Holmequation has been extensively studied, mainly be
ause of its ri
h mathemati
al stru
ture.The Camassa�Holm equation possesses a Lax pair whi
h allows for a s
attering andinverse s
attering analysis, showing that the equation is integrable ([4, 12, 16, 26℄). It isa geodesi
 on the group of di�eomorphisms for a given metri
 ([27, 15℄). In addition, theCamassa�Holm equation is bi-Hamiltonian (see Se
tion 2 for de�nitions and referen
es).The bi-Hamiltonian stru
ture of the equation will be used in this arti
le to derive energypreserving numeri
al s
hemes (see Se
tion 3). For g(u) = 3u2, equation (1) be
omes thehyperelasti
-rod wave:
ut − uxxt + 3uux − γ(2uxuxx + uuxxx) = 0, (3)whi
h was introdu
ed by Dai [18℄ in 1998. The equation models the propagation ofnonlinear waves in 
ylindri
al axially symmetri
 hyperelasti
-rod. The parameter γ ∈ Ris a 
onstant depending on the material and prestress of the rod. The well-posedness ofthe Cau
hy problem for (3) is established in [17, 38℄. For g(u) = 2u + u2 and for γ = 0,equation (1) leads to the Benjamin-Bona-Mahony (BBM) equation (or regularised longwave) [1℄:

ut − uxxt + ux + uux = 0, (4)whi
h des
ribes surfa
e wave in a 
hannel. While the solutions of the BBM equation areunique and globally de�ned in time, the solutions of the Camassa�Holm and hyperelasti
-rod wave equations may break down in �nite time. Due to the parti
ular 
ir
umstan
esin whi
h this o

urs, this situation is also refered as wave breaking (see [13, 14℄ for moredetails). After wave breaking, the solutions are no longer unique and, in this arti
le, onlysolutions before wave breaking will be 
onsidered.We now brie�y review � without intending to be exhaustive � the numeri
al s
hemesrelated to the generalised hyperelasti
-rod wave equation that 
an be found in the lit-erature. For the Camassa�Holm equation, s
hemes using pseudospe
tral dis
retisationhave been used in [5, 25℄. Methods based on multipeakons, a spe
ial 
lass of solutionsof the Camassa�Holm equation, 
an be found in [7, 6, 24, 23℄. Finite di�eren
e s
hemeswith 
onvergen
e proof are studied in [9, 22℄. In [37℄, the authors use a �nite elementmethod to derive a s
heme whi
h is high order a

urate and nonlinearly stable. TheCamassa-Holm equation admits a multi-symple
ti
 formulation whi
h 
an be used to de-rive multi-symple
ti
 numeri
al s
hemes, see [10℄. For the BBM equation, 
onservative�nite di�eren
e s
hemes were proposed in [36℄ with a 
onvergen
e and stability analysis.We also refer to [30, 28℄. As far as the hyperelasti
-rod wave equation, the authors areonly aware of the numeri
al s
heme given in [32℄ whi
h is based on a Galerkin approxi-mation and preserves a dis
retisation of the energy.In this arti
le we derive �nite di�eren
e s
hemes for the generalised hyperelasti
-rodequation whi
h preserve some of the geometri
 properties of the equation. The �rstproperty is a global one, namely the preservation of the energy, while the se
ond is lo
aland 
orresponds to the preservation of multi-symple
ti
ity. In Se
tion 2, we look at theHamiltonian (or �Hamiltonian-like�) formulations of (1) and explain how methods for2



ordinary di�erential equations based on dis
rete gradients that have been developed in[33℄ 
an be applied to equation (1). In Se
tion 3, the dis
rete gradients are 
omputedand the 
orresponding energy preserving s
hemes are derived. In Se
tion 4, we reviewsome of the general theory of multi-symple
ti
 PDEs following the approa
h of Bridgesand Rei
h [3℄ and based on the work in [10℄, we derive a multi-symple
ti
 s
heme for thegeneralised hyperelasti
-rod wave equation (1). Finally, we illustrate the behaviour ofthese new s
hemes by numeri
al experiments in Se
tion 5.2 The dis
rete gradient approa
hIn this se
tion we review the Hamiltonian formulation for partial di�erential equations,give some �Hamiltonian like formulations� for our various equations and �nally presentthe dis
rete gradient methods for ODEs of [33℄.We �rst 
onsider the Camassa�Holm equation (2) in his limiting 
ase κ = 0:
ut − uxxt + 3uux − 2uxuxx − uuxxx = 0.De�ning m = u−uxx, this equation 
an be rewritten as a Hamiltonian partial di�erentialequation, that is,

mt = D(m)
δH
δm

, (5)where the fun
tional H(m) is the Hamiltonian and δH
δm

denotes the variational derivativeof H with respe
t to m de�ned as
〈

δH
δm

, m̃
〉

L2
=

d

dε

∣∣∣
ε=0

H(m + εm̃) for all m̃(here 〈v,w〉L2 =
∫

v(x)w(x)dx denotes the L2-s
alar produ
t). Equation (5) de�nes aHamiltonian equation if in addition the operator D(m) is antisymmetri
 with respe
t tothe L2-s
alar produ
t, that is,
〈v,D(m)w〉L2 = −〈D(m)v,w〉L2 ,and its Lie-Poisson bra
ket
{F,H}(m) =

〈
δF

δm
,D(m)

δH

δm

〉
L2satis�es the Ja
obi identity

{{F,G},H} + {{G,H}, F} + {{H,F}, G} = 0. (6)The Camassa-Holm equation has a bi-Hamiltonian stru
ture (see [35℄ for the de�nitionand [4, 11℄ for the proofs): It is Hamiltonian for the two following pairs of antisymmetri
operator and Hamiltonian fun
tion,
D1(m)(·) = −(u − uxx)(·)x − ((u − uxx)(·))x,

H1(m) =
1

2

∫
(u2 + u2

x)dx (7)3



and
D2(m)(·) = −(∂x(1 − ∂xx))(·),

H2(m) =
1

2

∫
(u3 + uu2

x)dx. (8)For the other partial di�erential equations 
onsidered in the introdu
tion, it is not 
learif they also possess a Hamiltonian stru
ture (the issue here being the Ja
obi identity (6)),nevertheless we have the following �Hamiltonian-like� formulations. For the hyperelasti
-rod wave (3), there exist, at least, two fun
tionals H1(m), whi
h 
orresponds to theenergy of the problem, and H2(m) and two antisymmetri
 operators D1(m) and D2(m)su
h that this equation 
an be written as a Hamiltonian problem as in (5). They aregiven by
D1(m)(·) = −(u − γuxx)(·)x − ((u − γuxx)(·))x,

H1(m) =
1

2

∫
(u2 + u2

x)dx (9)and
D2(m)(·) = −(∂x(1 − ∂xx))(·),

H2(m) =
1

2

∫
(u3 + γuu2

x)dx. (10)For the Camassa�Holm equation given by (2), we obtain
D1(m)(·) = −(u − uxx +

κ

2
)(·)x − ((u − uxx +

κ

2
)(·))x,

H1[m] =
1

2

∫
(u2 + u2

x)dx (11)and
D2(m)(·) = −(∂x(1 − ∂xx))(·),

H2[m] =
1

2

∫
(u3 + κu2 + uu2

x)dx. (12)For the generalised hyperelasti
-rod wave (1), the formulation equivalent to (9) is notavailable and we only have a Hamiltonian like formulation given by
D2(m)(·) = −(∂x(1 − ∂xx))(·),

H2(m) =
1

2

∫
(G(u) + γuu2

x)dx, (13)where G is an integral of g, i.e., G′ = g. Finally, for the BBM equation (4), we have
D1(m)(·) = −(

u

3
+

1

2
)(·)x − ((

u

3
+

1

2
)(·))x,

H1(m) =
1

2

∫
(u2 + u2

x)dx, (14)4



and
D2(m)(·) = −(∂x(1 − ∂xx))(·),

H2(m) =
1

2

∫
(u2 +

u3

3
)dx. (15)A remarkable feature of a Hamiltonian partial di�erential equation is the fa
t that theHamiltonian fun
tional H is 
onserved along the exa
t solution of the problem. Indeed,we have dHdt

=
〈

δH
δm

,
dmdt

〉
=

〈
δH
δm

,D(m)
δH
δm

〉
= 0, (16)using the fa
t that the operator D(m) is antisymmetri
. The Hamiltonians H1 and H2are thus 
onserved along the exa
t solution of the partial di�erential equations 
onsideredhere. Our goal in the next se
tion will be to exploit this feature of the exa
t solution todesign numeri
al s
hemes that exa
tly preserve a dis
retised version of these Hamiltoni-ans. To do so, we �rst have to �nd appropriate dis
retisations of the partial di�erentialequations (see Se
tion 3 for the details) and then integrate the obtained di�erentialequations in time by the dis
rete gradient approa
h.We now review the dis
rete gradient approa
h used in the numeri
al integration ofODEs proposed in [33℄ (see also referen
es therein). For a given smooth fun
tion H :

R
n → R and a skew-symmetri
 matrix D(y) depending on y, we 
onsider the di�erentialequation in R

n given by
ẏ = f(y) = D(y)∇H(y). (17)We say that ∇H is a dis
rete gradient of H if

H(y′) − H(y) = ∇H(y, y′) · (y′ − y) for all y, y′ ∈ R
n (18)and the 
onsisten
y relation ∇H(y, y) = ∇H(y) is satis�ed. Given a dis
rete gradient

∇H, one 
an 
onstru
t s
hemes of the form
yn+1 − yn

∆t
= D̃(yn, yn+1,∆t)∇H(yn, yn+1), (19)where we impose that the operator v 7→ D̃(y, y′,∆t)(v) is antisymmetri
 for all y, y′,∆tand, for 
onsisten
y reason, D̃(y, y, 0) = D(y). There exist several dis
rete gradients ofthe same fun
tion H and one of them is given by the mean value dis
rete gradient, see[21, 33℄, whi
h is given by

∇H(yn, yn+1) =

∫ 1

0
∇H((1 − ζ)yn + ζyn+1)dζ. (20)In the next se
tion, we will introdu
e another dis
rete gradient whi
h 
an be applied tothe type of Hamiltonians we will be 
onsidering.S
hemes whi
h takes the form (19) exa
tly preserve the value of H(yn), as we have

H(yn+1) − H(yn) = ∇H(yn, yn+1) · (yn+1 − yn)

= ∆t∇H(yn, yn+1) · D̃(yn, yn+1, h)∇H(yn, yn+1) = 0. (21)5



3 Energy preserving s
hemesWe 
onsider periodi
 solutions on the interval [0, T ]. We introdu
e the partition of [0, T ]in points separated by a distan
e ∆x = 1/n denoted xi = i∆x for i = 0, . . . , n − 1. We
onsider the time step dis
retisation step ∆t and tj = j∆t. At x = xi and t = tj, thevalue of u is approximated by uj
i . We de�ne the right and left dis
rete derivatives withrespe
t to spa
e at (xi, tj) as
(δ±x u)ji =

±1

∆x
(uj

i±1 − uj
i ).and the symmetri
 derivative as

δx =
1

2
(δ+

x + δ−x ).In order to derive energy-preserving s
hemes, we have to de�ne all the 
ontinuous oper-ations at the dis
rete level. The L2-s
alar produ
t in the 
ontinuous 
ase be
omes thefollowing dis
rete one
〈u, v〉 = ∆x

n−1∑

i=0

uivi (22)for whi
h the following dis
rete summation by part rules hold:
〈
δ±x u, v

〉
= −

〈
u, δ∓x v

〉 and 〈δxu, v〉 = −〈u, δxv〉 . (23)We have to dis
retise the Hamiltonians H1 and H2. We will only 
onsider in details thehyperelasti
-rod wave equation, the results for the other equations being listed below.We approximate H1 and H2 by
H1(m) =

∆x

2

n−1∑

i=0

(
u2

i + (δxui)
2
) (24)and

H2(m) =
∆x

2

n−1∑

i=0

(
u3

i + γui(δxui)
2
)
, (25)respe
tively. Here m = (1 − δ2

x)u. Several methods to 
ompute dis
rete gradients aregiven in [33℄. In this se
tion, we present another method whi
h 
an be used in the 
asewhere the Hamiltonians 
onsist only of sums and produ
ts of the unknown variables(i.e. {ui}
n−1
i=0 ), as in (24) and (25). For a s
alar fun
tion f , we denote the di�eren
e

f(m′)−f(m) by δ[f ] and the average f(m′)+f(m)
2 by µ[f ]. A straightforward 
omputationshows that, for any m and m′, we have

f(m′)g(m′)−f(m)g(m) =
1

2
(f(m′)−f(m))(g(m′)+g(m))+

1

2
(g(m′)−g(m))(f(m′)+f(m))whi
h rewrites with our new notation as

δ[(f · g)] = δ[f ] · µ[g] + δ[g] · µ[f ]. (26)6



Note the similarity between (26) and the Leibniz rule (fg)′ = f ′g + g′f and it be
omes
lear that the operator µ is introdu
ed to a

ount for the failure of a simple di�eren
eto ful�ll the Leibnitz rule. By re
ursively applying the produ
t rule (26), we obtain
δ[H1] =

∆x

2

n−1∑

i=0

δ[(ui)
2 + (δxui)

2]

=
∆x

2

n−1∑

i=0

(2δ[ui]µ[ui] + 2δ[δxui]µ[δxui]).We use the fa
t that δ and µ 
ommute with δx (whi
h follows from the linearity of δ),the summation by part rule, and we obtain
δ[H1] = ∆x

n−1∑

i=0

(δ[ui]µ[ui] − µ[ui]δ[δ
2
xui])

= ∆x
n−1∑

i=0

µ[ui](δ[ui] − δ[δ2
xui])

= 〈µ[u], δ[m]〉 ,by the de�nition of the dis
rete s
alar produ
t (22). Hen
e, using the fa
t that m =
(1 − δ2

x)u, we get
H1(m

′) − H1(m) =

〈
u′ + u

2
,m′ − m

〉 (27)and therefore
∇H1(m,m′) =

u + u′

2
= (1 − δ2

x)−1
(

m + m′

2

)
. (28)For the se
ond Hamiltonian of the hyperelasti
-rod wave given by (25) , we obtain

δ[H2] =
∆x

2

n−1∑

i=0

δ[u3
i + γui(δxui)

2]

=
∆x

2

n−1∑

i=0

(µ[u2
i ]δ[ui] + µ[ui]δ[u

2
i ] + γδ[ui]µ[(δxui)

2] + 2γµ[ui]µ[δxui]δ[δxui])

=
∆x

2

n−1∑

i=0

((
µ[u2

i ] + 2µ[ui]
2 + γµ[(δxui)

2]
)
δ[ui] + 2γµ[ui]µ[δxui]δ[δxui]

)

=
∆x

2

n−1∑

i=0

(
µ[u2

i ] + 2µ[ui]
2 + γµ[(δxui)

2] − 2γδx(µ[ui]δxµ[ui])
)
δ[ui]

=
〈

1

2
µ[u2] + µ[u]2 +

γ

2
µ[(δxu)2] − γδx(µ[u]δxµ[u]), δ[u]

〉
.Hen
e,

∇H2(m,m′) = (1 − δ2
x)−1

(1

2
µ[u2] + µ[u]2 +

γ

2
µ[(δxu)2] − γδx(µ[u]δxµ[u])

)
, (29)7



or
∇H2(m,m′) =

1

4
(1 − δ2

x)−1
(
2u2 + 2u′2 + 2uu′ + γ((δxu)2 + (δxu′)2)

− γδx

(
(u + u′)(δxu + δxu′)

))
. (30)Note that, if we take µ equals to the identity in (27) and (29) (so that the produ
t ruleholds exa
tly) and repla
e the dis
rete spatial derivative δx by its 
ontinuous 
ounterpart

∂x, then we obtain δH1

δm and δH2

δm , respe
tively and in this way we 
he
k the 
onsisten
yof the approximation.Let us now 
ompute the mean value dis
rete gradient, whi
h we now denote∇m
Hj(m,m′)(for j = 1, 2), as given by (20), that is,

∇
m

Hj(m,m′) =

∫ 1

0
∇Hj((1 − ζ)m + ζm′)dζ. (31)Here the gradient ∇H is de�ned with respe
t to the dis
rete s
alar produ
t (22) and wehave, for all m̃,

〈∇H1(m), m̃〉 =
ddε

∣∣∣
ε=0

H1(m + εm̃)

= ∆x
n−1∑

i=0

(uiũi + δxuiδxũi) = ∆x
n−1∑

i=0

(ui(ũi − δ2
xũi) = 〈u, m̃〉 ,after one summation by part, so that

∇H1(m) = u. (32)In the same way, we obtain
〈∇H2(m), m̃〉 =

ddε

∣∣∣
ε=0

H2(m + εm̃)

=
∆x

2

n−1∑

i=0

(3u2
i ũi + γũi(δxui)

2 + 2γuiδxuiδxũi)so that
∇H2(m) = (1 − δ2

x)−1
(

3

2
u2 +

γ

2
(δxu)2 − γδx(uδxu)

) (33)(the multipli
ations are meant 
omponentwise). From (31) and (32), we get
∇

m
H1(m,m′) =

∫ 1

0
((1 − ζ)u + ζu′)dζ =

u + u′

2

8



and the mean value dis
rete gradient 
oin
ides with the dis
rete gradient 
omputed earlierin (28). For the se
ond Hamiltonian, from (31) and (33), we obtain
∇

m
H2(m,m′) = (1 − δ2

x)−1
( ∫ 1

0

(
3

2

(
(1 − ζ)u + ζu′)2

+
γ

2

(
δx((1 − ζ)u + ζu′)

)2

− γδx

(
((1 − ζ)u + ζu′)(δx(1 − ζ)u + ζu′)

))dζ
)

= (1 − δ2
x)−1

(
1

2

(
u2 + uu′ + u′2) +

γ

6

(
(δxu)2 + δxuδxu′ + (δxu′)2

)

−
γ

3
δx

(
uδxu +

1

2
uδxu′ + 1

2
u′δxu + u′δxu′)) (34)whi
h di�ers from the dis
rete gradient 
omputed earlier in (30). It remains to dis
retisethe operators D1 and D2. We use the following approximations:

D1(m)(v) = −((u − γδ2
xu)δxv) − δx((u − γδ2

xu)v) (35)and
D2(m)(v) = −δx(1 − δ2

x)(v). (36)Using the summation by part rule (26), it 
an be 
he
ked that the dis
rete operators D1and D2 are antisymmetri
 for the dis
rete s
alar produ
t (22). The dis
rete gradients(28), (30) and (34) are symmetri
 in m and m′, that is, ∇H(m,m′) = ∇H(m′,m) forany m and m′. For the extensions of the operators D1 and D2, we take
D̃1(m,m′,∆t)(v) = −((

1

2
(u+u′)− γ

2
δ2
x(u+u′))δxv)−δx((

1

2
(u+u′)− γ

2
δ2
x(u+u′))v) (37)and

D̃2(m,m′,∆t) = D2(m), (38)respe
tively. With these spe
ial 
hoi
es, both operators are symmetri
 in time, that is,
D̃j(m,m′,∆t) = D̃j(m

′,m,−∆t) (39)for j = 1, 2 and for all m, m′, ∆t. Finally, we obtain three s
hemes whi
h all preserveone of the Hamiltonians, see (21). The �rst s
heme is given by
mj+1 − mj

∆t
= D̃1(m

j+1,mj ,∆t)∇H1(m
j+1,mj)or, more expli
itely,

uj+1 = uj −
∆t

4
(1 − δ2

x)−1

((
uj+1 + uj − γδ2

x(uj+1 + uj)
)
δx(uj+1 + uj)

+ δx

((
uj+1 + uj − γδ2

x(uj+1 + uj)
)
(uj+1 + uj)

))
. (40)It preserves the dis
rete energy H1. The se
ond s
heme is given by

mj+1 − mj

∆t
= D2(m

j)∇H2(m
j+1,mj)9



or, more expli
itely,
uj+1 = uj −

∆t

4
δx(1 − δ2

x)−1
(
2
(
(uj+1)2 + uj+1uj + (uj)2

)

+ γ((δxuj+1)2 + (δxuj)2)

− γδx

(
uj+1δxuj+1 + uj+1δxuj + ujδxuj+1 + ujδxuj

))
. (41)The third s
heme is given by

mj+1 − mj

∆t
= D2(m

j)∇
m

H2(m
j+1,mj)or more expli
itely

uj+1 = uj −
∆t

4
δx(1 − δ2

x)−1
(
2
(
(uj+1)2 + uj+1uj + (uj)2

)

+
2γ

3

(
(δxuj+1)2 + δxuj+1δxuj + (δxuj)2

)

−
2γ

3
δx

(
2uj+1δxuj+1 + uj+1δxuj + ujδxuj+1 + 2ujδxuj

))
. (42)The s
hemes (41) and (42) preserve the dis
rete Hamiltonian H2. The three s
hemes arese
ond-order in time sin
e they are symmetri
 in time by equation (39), see [33℄. For theCamassa�Holm equation and the BBM equation, the s
hemes 
orresponding to (40) are

uj+1 = uj −
∆t

4
(1 − δ2

x)−1

((
(1 − δx)2(uj+1 + uj) + κ

)
δx(uj+1 + uj)

+ δx

((
(1 − δ2

x)(uj+1 + uj)
)
(uj+1 + uj)

))and
uj+1 = uj −

∆t

6
(1 − δ2

x)−1
((

(uj+1 + uj)δx(uj+1 + uj)
)

+ δx

(
(uj+1)2 + (uj)2 + 2uj+1uj + 3uj+1 + 3uj

))
,respe
tively. For any s
alar fun
tion, and in parti
ular G, the dis
rete gradient is uniqueas we have ∇G(u, u′) =

G(u′) − G(u)

u′ − u
. For the generalised hyperelasti
-rod wave equation,the s
hemes (41) and (42) rewrites

uj+1 = uj −
∆t

4
δx(1 − δ2

x)−1
(
2∇G(uj+1, uj)

+ γ((δxuj+1)2 + (δxuj)2)

− γδx

(
uj+1δxuj+1 + uj+1δxuj + ujδxuj+1 + ujδxuj

))

10



and
uj+1 = uj −

∆t

4
δx(1 − δ2

x)−1
(
2∇G(uj+1, uj)

+
2γ

3

(
(δxuj+1)2 + δxuj+1δxuj + (δxuj)2

)

−
2γ

3
δx

(
2uj+1δxuj+1 + uj+1δxuj + ujδxuj+1 + 2ujδxuj

))
.In the parti
ular 
ases of the Camassa�Holm equation and the BBM equation, we have

∇G(u, u′) = κ(u + u′) + u2 + u′2 + uu′and
∇G(u, u′) = u + u′ + 1

3
(u2 + u′2 + uu′),respe
tively.4 Multi-symple
ti
 integratorsWe begin this se
tion by reviewing the 
on
ept of multi-symple
ti
ity in a general 
on-text, for more details, see e.g. [2, 3, 34℄. A partial di�erential equation of the form

F (u, ut, ux, utx, . . .) = 0 is said to be multi-symple
ti
 if it 
an be written as a system of�rst order equations:
M zt + K zx = ∇zS(z), (43)with z ∈ R

d a ve
tor of state variables, typi
ally 
onsisting of the original variable u asone of its 
omponents. The matri
es M and K are skew-symmetri
 d × d-matri
es, and
S is a smooth s
alar fun
tion depending on z. Equation (43) is not ne
essarily uniqueand the dimension d of the state ve
tor may di�er from one expression to another. Akey observation for the multi-symple
ti
 formulation (43) is that the matri
es M and Kde�ne symple
ti
 stru
tures on subspa
es of R

d,
ω = dz ∧ Mdz, κ = dz ∧ Kdz.Considering any pair of solutions to the variational equation asso
iated with (43), wehave, see [3℄, that the following multi-symple
ti
 
onservation law applies

∂tω + ∂xκ = 0. (44)With the two skew-symmetri
 matri
es M and K, one 
an also de�ne the densityfun
tions
Ẽ(z) = S(z) −

1

2
zT
x Kz , F̃ (z) =

1

2
zT
t Kz,

G̃(z) = S(z) −
1

2
zT
t Mz , Ĩ(z) =

1

2
zT
x Mz,whi
h immediately yield the lo
al 
onservation laws

∂tẼ(z) + ∂xF̃ (z) = 0 and ∂tĨ(z) + ∂xG̃(z) = 0,11



for any solution to (43). Thus, under the usual assumption on vanishing boundary termsfor the fun
tions F̃ (z) and G̃(z) one obtains the globally 
onserved quantities of (energyand momentum)
E(z) =

∫
Ẽ(z)dx and I(z) =

∫
Ĩ(z)dx.Sin
e the multi-symple
ti
 
onservation law (44) is a lo
al 
onservation law, the multi-symple
ti
 formulation of a partial di�erential equation may lead to numeri
al s
hemeswhi
h render well the lo
al properties of the equation. To derive multi-symple
ti
 inte-grators, we follow the approa
h given in [2℄ (see also [3℄) and write the partial di�erentialequation as a system of �rst order equations (43) and then dis
retise it. For an alternative
onstru
tion of multi-symple
ti
 integrators see for example [31℄.The main philosophy behind the use of symple
ti
 integrators for Hamiltonian di�er-ential equation is that the s
hemes are designed to preserve the symple
ti
 form of theequation at ea
h time step. For multi-symple
ti
 partial di�erential equations, the ideaof Bridges and Rei
h [3℄ was to develop integrators whi
h satisfy a dis
retised version ofthe multi-symple
ti
 
onservation law (44). For this purpose, they 
onsidered a dire
tdis
retisation of (43), repla
ing the derivatives with divided di�eren
es, and the 
ontin-uous fun
tion z(x, t) by a dis
rete version zn,i ≈ z(xn, ti) on a uniform re
tangular grid.We set ∆x = xn+1 − xn, n ∈ Z, and ∆t = ti+1 − ti, i ≥ 0 as in Se
tion 3.Following their notation, we write

M∂n,i
t zn,i + K∂n,i

x zn,i = ∇zS(zn,i), (45)where ∂n,i
t and ∂n,i

x are dis
retisations of the partial derivatives ∂t and ∂x, respe
tively.A natural way of inferring multi-symple
ti
ity on the dis
rete level is to demand that forany pairs (Un,i, V n,i) of solutions to the 
orresponding variational equation of (45), onehas
∂n,i

t ωn,i + ∂n,i
x κn,i = 0,where

ωn,i(U
n,i, V n,i) = 〈MUn,i, V n,i〉, κn,i(U

n,i, V n,i) = 〈KUn,i, V n,i〉,with the Eu
lidean s
alar produ
t 〈·, ·〉 on R
d.As for the Camassa-Holm equation, see [10℄, setting z = [u, φ,w, v, ν]T , we derive thefollowing multi-symple
ti
 formulation (43) for the generalised hyperelasti
-rod wave (1):




0 1/2 0 0 −1/2
−1/2 0 0 0 0

0 0 0 0 0
0 0 0 0 0

1/2 0 0 0 0




zt +




0 0 0 −1 0
0 0 1 0 0
0 −1 0 0 0
1 0 0 0 0
0 0 0 0 0




zx =




−w −
1

2
g(u) − γ

ν2

2
0
−u
ν

−γuν + v




,(46)12



with the s
alar fun
tion S(z) = −wu −
1

2
G(u) − γu

ν2

2
+ vν, re
alling G(u) :=

∫
g(u).We now turn to the 
al
ulation of the global invariants (energy and momentum) de�nedabove. For the hyperelasti
-rod wave, an integration of the 
onservation law ∂tĨ(z) +

∂xG̃(z) = 0 leads to:
1

4

ddt

∫ (
−uxφ + u2

x + u2 − uuxx

)dx +
[
G̃(z)

]
= 0,where the bra
kets stand for the di�eren
e of the fun
tion evaluated at the upper andlower limit of the integral. As in [10℄, after an integration by parts on the �rst and lastterm, using periodi
 (or vanishing at in�nity) boundary 
onditions of u (i.e. [u] = [ux] =

[uxx] = [φt] = 0), we obtain the following global invariant for the hyperelasti
-rod wave:
I =

1

2

∫
(u2 + u2

x)dx.Similarly, the se
ond 
onservation law ∂tẼ(z) + ∂xF̃ (z) = 0 leads to
E = −

1

2

∫
(u3 + γuu2

x)dx.We remark that these two 
onserved quantities are (up to a multipli
ative 
onstant) theHamiltonian fun
tionals given in (9)-(10).The Euler box s
heme. By taking the splitting M = M+ +M− with M+ = M− =
1

2
M(and similarly for K) we obtain the Euler-box s
heme, a multi-symple
ti
 integrator forthe generalised hyperelasti
-rod wave, expressed in terms of u (see [10℄ and [34℄):

− 4∆x2un,i+1 +
(
un+2,i+1 − 2un,i+1 + un−2,i+1

)
=

8 ∆x2∆t
{
−

1

2∆t
un,i−1 −

1

2∆x

(
−

1

2
g(un+1,i) +

1

2
g(un−1,i) −

γ

8∆x2
(un+2,i − un,i)2

+
γ

8∆x2
(un,i − un−2,i)2 +

1

4∆x∆t
(−un+2,i−1 + 2un,i−1 − un−2,i−1)

+
γ

4∆x2
(un+2,i(un+3,i − un+1,i) − 2un,i(un+1,i − un−1,i) + un−2,i(un−1,i − un−3,i))

)}
.Equation (1) 
an be rewritten in the form

ut − uxxt +
(1

2
g(u) +

γ

2
u2

x

)
x
− γ(uux)xx = 0 (47)and the 
orresponding Euler-box s
heme is given in a more 
ompa
t form by

δtu
n,i − δ2

xδtu
n,i + δx

(1

2
g(un,i) +

γ

2
(δxun,i)2

)
− γδ2

x(un,iδxun,i) = 0, (48)re
alling from Se
tion 3 the de�nitions of the 
entered di�eren
es δx =
1

2
(δ+

x + δ−x ) and,similarly in time, δt =
1

2
(δ+

t + δ−t ). Note that this s
heme is only linearly impli
it.13



5 Numeri
al experimentsIn this se
tion, we present some numeri
al experiments for the hyperelasti
-rod waveequation (3). We 
onsider two types of initials 
onditions: A smooth traveling wave anda single peakon. They are obtained in the following way (see [19, 29℄ for a derivation ofall the traveling wave of (3)). Looking at the �Hamiltonian-like� formulation of (3) with(9), we de�ne
v = u − γuxxso that m =

γ − 1

γ
u +

v

γ
and the partial di�erential equation be
omes

1

γ
((γ − 1)ut + vt) + (vu)x + vux = 0. (49)For a traveling wave with speed c, we have

u(t, x) = U(x − ct) and v(t, x) = V (x − ct)and (49) yields
−

c

γ
((γ − 1)U ′ + V ′) + V ′U + 2V U ′ = 0.Thus,

(U −
c

γ
)V ′ + 2U ′(V −

c

2γ
(γ − 1)) = 0. (50)After multiplying both sides of (50) by (u −

c

γ
), we get

(U −
c

γ
)2V ′ + 2U ′(U −

c

γ
)(V −

c

2γ
(γ − 1)) = 0whi
h 
an be integrated and gives

(V −
c

2γ
(γ − 1))(U −

c

γ
)2 = α (51)for some 
onstant α. Using the fa
t that V = U − γU ′′, we 
an rewrite (51) and obtain

U ′′ = −
c(γ − 1)

2γ2
+

1

γ
U −

αγ

(γU − c)2
(52)whi
h is a se
ond order equation for the traveling wave U . After multiplying (52) by Uxand integrating one more time we re
over the equations given in [19, 29℄. However, (52)may be easier to implement numeri
ally. We do not obtain smooth traveling waves for allthe values of the parameters α, c and γ. For c = α = 3, we solve numeri
ally (52) withinitial data U(0) = 1 and Ux(0) = 0. The results are presented in Figure 1 for di�erentvalues of γ.Taking α = 0 in (52), we obtain the peakons. Indeed, on the line, the general solutionof this se
ond order di�erential equation is given by

U(ζ) =
c(γ − 1)

2γ
+ Ae−ζ/

√
γ + Beζ/

√
γ ,14
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γ = 1γ = 0.8Figure 1: Smooth traveling waves for the hyperelasti
 rod equation for di�erent values of
γ.for some 
onstants A and B. As it is noted in [29℄, a traveling wave 
an only have apoint of dis
ontinuity ζ0 when U rea
hes the value c

γ , that is, U(ζ0) =
c

γ
. For a singlepeakon, there is only one point of dis
ontinuity ζ0 (the top of the peak) and we impose

ζ0 = 0. To obtain vanishing at in�nity boundary 
onditions, we must have A = B andthus
U(ζ) =

c

γ

(γ − 1

2
+ (1 −

γ − 1

2
)e−|ζ|/√γ

)so that, on the line, the peakon-solution of the hyperelasti
-rod wave is then given by
u(x, t) =

c

2γ

(
γ − 1 + (3 − γ)e−|x−ct|/√γ

)
.Still for α = 0, by 
hoosing the points of dis
ontinuity at −T/2 and T/2, we obtain theperiodi
 peakon. On the interval [−T/2, T/2], this gives

U(ζ) =
c

2γ

(
γ − 1 +

(3 − γ)

cosh(T/(2
√

γ))
cosh(

ζ
√

γ
)
)
,so that the periodi
 peakon is

u(x, t) =
c

2γ

(
γ − 1 +

(3 − γ)

cosh(T/(2
√

γ))
cosh

(
d(x − ct)

√
γ

))
, (53)for d(x) = x̄ − T

2 where x̄ is the unique element of [0, T ) for whi
h there exists k ∈ Zsu
h that x̄ = x + T
2 + kT .Before we pro
eed with the numeri
al experiments, let us give some remarks 
on
erningimplementation issues. For the multi-symple
ti
 s
heme (48) applied to equation (3),the �rst needed step for the iteration will be 
omputed along the exa
t solution of theproblem. The integrals in the Hamiltonians given in (9) and (10) will be dis
retised bythe trapezoidal rule and the derivatives appearing in these quantities by the symmetri
derivative δx. Thus, these dis
retisations will give us the 
onserved quantities (24), resp.(25) from the energy-preserving s
hemes (40), (41) and (42).15
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Figure 2: L1-error of the s
hemes (40), (41), (42) and (48) at time Tend = 2 for thesmooth solution (left) and for the peakon (right). The dashed lines have slopestwo, resp. one.All the numeri
al experiments will be done for the hyperelasti
-rode wave with the
onstant γ = 0.8. The smooth traveling wave 
onsidered will be the solution of (52) with
c = α = 3. In this 
ase we obtain a period T ≈ 3.8609 for the traveling wave. For thesingle peakon (53), we take T = 40 and c = 1.We �rst 
onsider the temporal rate of 
onvergen
e of our s
hemes. We vary the timestep ∆t and set the spa
e step to ∆x = 0.9 ∆x/c. One 
an see from Figure 2 that theorder of 
onvergen
e is two for the smooth solution and one for non-smooth one, and thisholds for all the s
hemes.Similar behaviours are also observed for the spatial rate of 
onvergen
e of the numeri
almethods: order one for the non-smooth solution and order two for the smooth one. Theresults are however not displayed.We next plot the dis
retisations (24) and (25) of the Hamiltonian fun
tionals of ourproblem. For the smooth solution, the grid parameters are ∆x = 0.04 and ∆t = 0.01.For the single peakon solution, they are given by ∆x = 0.27 and ∆t = 0.01. Theintegrations are done over the time interval [0, 5]. Figures 3 and 4 display the resultsfor the dis
retisation of the Hamiltonians given by (24) and (25), respe
tively. We havenoted that, when taking smaller time step size, the results given by the multi-symple
ti
s
heme tends to those of the energy-preserving s
hemes (41) and (42).Let us 
on
lude this paper by two remarks. First, from our numeri
al experiments, we
an see that all the s
hemes perform in a 
omparable manner, and in parti
ular it is not
lear if one 
an take advantage of the global or lo
al nature of the s
hemes (global for thes
hemes (40), (41), (42) as they preserve one of the Hamiltonians, or lo
al for the multi-symple
ti
 s
heme (48)). The se
ond remark is about the degree of freedom we have whenderiving the s
hemes that have been presented. We already saw that the dis
rete gradient16
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Figure 3: The Hamiltonian (24) along the numeri
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of a fun
tion is not unique and presented two ways of 
omputing it. In addition, whendis
retising the Hamiltonian fun
tionals H1 and H2 and the antisymmetri
 operators D1and D2, we used systemati
ally the symmetri
 dis
rete derivative δ. We 
ould have usedinstead left and right dis
rete derivatives and obtain s
hemes with the same preservingproperty. For example, instead of (35), we 
an take
D1(m)(v) = −((u − γδ2

xu)δ−x v) − δ+
x ((u − γδ2

xu)v). (54)By using the dis
rete summation by part rule (23), we 
an 
he
k that this operatoris antisymmetri
 and, in the same way as we derived from (35) the numeri
al s
heme(40), we 
an obtain from (54) a numeri
al s
heme that exa
tly preserves the dis
reteHamiltonian H1. We have implemented this parti
ular s
heme and observed that it maybe very unstable, for example in the 
ase of a smooth wave (traveling from left to right)as initial data. This bad behaviour is due to the dis
rete di�eren
e operator δ+
x in (54),whi
h models the transport of the momentum u− γuxx at a speed u. In the 
ase we arelooking at, the �information� is traveling in the same dire
tion as the wave, from left toright, but the right dis
rete derivative δ+

x 
ompute the di�eren
e by taking values fromthe opposite dire
tion, from the right. We 
an observe that, if we 
onsider as initial dataa wave now traveling from right to left, the same s
heme performs well. This 
on�rmsthe stabilizing e�e
t of the symmetri
 dis
rete derivative and justi�es its use. It alsoshows that the preservation of energy alone does not guarantee the well-behaviour of as
heme.6 A
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