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1 Introduction

We consider the cubic Schrödinger equation with a potential of convolution type

i
∂

∂ t
u =−∆u+V ∗u+ |u|2u, (1.1)

where u = u(x, t) with x ∈ Td = Rd/2πZd and t ≥ 0, in dimension d ≥ 1 with peri-
odic boundary conditions. We will consider small initial data: in appropriate Sobolev
norms, the initial value u(·,0) is bounded by a small parameter ε . The potential
V =V (x) ∈ L2(Td) is assumed to be periodic with real Fourier coefficients. It acts by
convolution on the function u. Such equations have been studied for example in [1,2,
12].
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It is known that this Hamiltonian partial differential equation possesses the fol-
lowing invariants, that follow from invariances of the equation under certain transfor-
mations, see for example the monograph [25, Sect. I.2.3]. For H1-solutions, one has
conservation of the total energy or Hamiltonian

H(u, ū) =
1

2(2π)d

∫
Td

(
|∇u|2 +(V ∗u)ū+ 1

2
|u|4
)

dx, (1.2)

where |·| denotes the Euclidean norm. The L2-norm, density, or mass

m(u, ū) =
1

(2π)d

∫
Td
|u|2 dx (1.3)

is also a conserved quantity. Finally, the momentum

K(u, ū) = i
1

(2π)d

∫
Td
(u∇ū− ū∇u)dx (1.4)

is exactly conserved along the solution of our partial differential equation (1.1). But
this is not all, this equation offers also another interesting geometric property which
will turn out to be useful for our numerical analysis: It is reversible with respect to
the complex conjugation ρ of the Fourier coefficients,

i
∂

∂ t
ρ(u) =−

(
−∆ρ(u)+V ∗ρ(u)+ |ρ(u)|2ρ(u)

)
for a solution u = u(x, t) of (1.1), if ρ(u) = ∑ j∈Zd u jei( j·x) for u = ∑ j∈Zd u jei( j·x). The
Fourier coefficients of a function u = u(x) are denoted throughout the paper by u j,
j ∈ Zd .

For the numerical solution of (1.1) we first discretize in space (method of lines)
and then in time. In practice, in the periodic case, the use of a discrete Fourier trans-
form is a favorable choice. We then discretize the resulting system of ordinary dif-
ferential equations with an exponential integrator (Sect. 2). Exponential integrators
are widely used and studied nowadays as witnessed by the recent review [22]. Here
we use the exponential integrators for nonlinear Schrödinger equations introduced
in [7]. An error analysis for exponential integrators of collocation type applied to
Schrödinger equations was given in [10].

In this paper, we study the long-time behaviour of the conserved quantities energy
(1.2), mass (1.3) and momentum (1.4) along such a numerical solution of (1.1) by an
exponential integrator. In recent years, there is a growing interest and an ongoing
effort in explaining the long-time behaviour of numerical schemes for Hamiltonian
partial differential equations, see [3,6,8,9,11,13–17,19]. In the present article, we
show for a class of one-stage exponential integrators that energy, mass and momen-
tum of (1.1) are approximately conserved along the numerical solutions over long
times, see Sect. 3 for a precise statement of the results and numerical experiments.
A property closely related to the reversibility of the numerical scheme turns out to
be crucial to prove this result. We present numerical experiments that suggest that
this property of the one-stage exponential integrator is not only sufficient but also
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necessary to have a good long-time behaviour. This property requires a one-stage
exponential integrator to be implicit.

Similar results have been shown in [16,19] for splitting integrators, which are
widely applied in the numerical integration of Schrödinger equations. This paper is
neither aimed at comparing the (implicit) exponential integrators studied here with
these splitting integrators nor at promoting their use at the expense of splitting in-
tegrators. The present paper contributes to the numerical analysis of exponential in-
tegrators, and, in a broader sense, tries to identify mechanisms that lead to a good
long-time behaviour of numerical integrators for partial differential equations (re-
versibility, for instance). Nonetheless we mention that, although implicit exponential
integrators are slightly less efficient in comparison with splitting integrators, cf. [7,
Introduction and Subsect 5.1], they are indeed used for the numerical integration of
Schrödinger equations, see [4,7,10].

Similarly as in the aforementioned paper [19] on splitting integrators we start in
Sect. 4 by showing, using a modulated Fourier expansion of the numerical solution,
that the actions

Il(u, ū) := 1
2
|ul |2 (l ∈ Zd) (1.5)

of the linear Schrödinger equation i ∂

∂ t u =−∆u+V ∗u are approximately conserved
along the numerical solution of (1.1) over long times. Note that the actions (1.5)
are also nearly conserved along the exact solution of the nonlinear equation (1.1)
over long times, see [1,18]. The long-time near-conservation of actions implies the
regularity of the numerical solution over long times and is the key for the proof of the
above mentioned conservation properties in Sect. 4.

2 Discretization of the Nonlinear Schrödinger Equation

In this section, we discretize equation (1.1) in space with a spectral collocation sche-
me and in time with a one-stage exponential integrator.

2.1 Spectral Collocation Method for the Discretization in Space

We start by denoting, for j ∈ Zd , the frequencies in the nonlinear Schrödinger equa-
tion (1.1) by

ω j := | j|2 +Vj = j2
1 + · · ·+ j2

d +Vj (2.1)

with the j-th Fourier coefficient Vj ∈ R of the potential V .
A spectral collocation discretization in space with collocation points

xk := k
π

M
for k ∈M = {−M, . . . ,M−1}d

yields an approximation

uM(x, t) := ∑
k∈M

qk(t)ei(k·x).
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Requiring this ansatz to fulfill equation (1.1) at our collocation points, one obtains,
using uM(xk, t)k∈M = F2M(qk(t))k∈M with the d-dimensional discrete Fourier trans-
form F2M , the following system of ordinary differential equations

i
d
dt

uM(xk, t)k∈M = F2MΩF−1
2M uM(xk, t)k∈M +

(
|uM(xk, t)|2uM(xk, t)

)
k∈M ,

where Ω = diag((ωk)k∈M ) is a diagonal matrix with frequencies ωk, k ∈M . Or in
terms of the approximation uM(x, t) one gets

∂

∂ t
uM = LuM + f (uM) (2.2)

with
L = i∆ − iV ∗ and f (u) =−iQ(|u|2u). (2.3)

Here Q denotes the trigonometric interpolation

Q
(

∑
j∈Zd

u jei( j·x)
)

:= ∑
j∈M

(
∑

`∈Zd :`≡ j mod 2M

u`
)

ei( j·x),

and this is defined in such a way that Q(u)(xk) = u(xk) for all k ∈M . The initial
value is then given by

uM(·,0) = Q(u(·,0)).

We note that the above semi-discretized system is a finite dimensional complex Ha-
miltonian system with Hamiltonian

HM(uM,uM) =
1

2(2π)d

∫
Td

(
|∇uM|2 +(V ∗uM)uM +

1
2
Q(|uM|4)

)
dx.

We now discretize (2.2) with the above initial value in time.

2.2 Exponential Integrators for the Discretization in Time

Exponential integrators, as their name suggests, use the exponential function of the
Jacobian (or an approximation to it) inside the numerical scheme. They are particu-
larly efficient for problems of the form, see (2.2)–(2.3),

d
dt

u = Lu+ f (u),

where u = u(t), L is typically a linear unbounded differential operator, alternatively
one can think of L as a matrix arising from a space discretization of such an operator
and thus bounded for a fixed spatial resolution, but with a large norm. The map f is
nonlinear but we assume that the size of f (u) is small compared to L. For a survey
of these methods see for instance [21,24] and more recently the review [22] and
references therein.
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The schemes we consider here can all be cast in the form

Fr = f (ecrhL u0 +h
s

∑
j=1

ar j(hL)Fj), r = 1, . . . ,s

u1 = ehL u0 +h
s

∑
r=1

br(hL)Fr.

(2.4)

We use upper indices for denoting time steps with step-size h. The involved functions
ar j(z) and br(z) are complex functions that are used to define and to compute ar j(hL)
and br(hL) in terms of the spectral decomposition of the matrix describing L, i.e.,
ar j(hL) = F2Ma(−ihΩ)F−1

2M and accordingly for br. They are often real entire or at
least real analytic in a domain of the complex plane which includes the spectrum
of hL for all h of interest. Such schemes have been applied to nonlinear Schröding-
er equations in [7] and [5] for example. In applying them to this equation, it is of
importance to choose functions ar j(z) and br(z) which are bounded on the imaginary
axis, a property which is rather common among popular exponential integrators.

In our numerical analysis, we will only consider one-stage exponential integrators
(s = 1) for (2.2)-(2.3)

U = echLu0 +ha(hL) f (U),

u1 = ehLu0 +hb(hL) f (U).
(2.5)

We will focus on two important geometric properties: symmetry and reversibility
which we recall now.

Definition 2.1 (Symmetry, [20, Chap. V]) A numerical one-step method y1 =Φh(y0)
is called symmetric if it satisfies

Φh ◦Φ−h = id or equivalently Φh = Φ
−1
−h .

Definition 2.2 (Reversibility, [20, Chap. V]) Let ρ be an invertible linear trans-
formation in the phase space of d

dt y = g(y). This differential equation is called ρ-
reversible if ρ ◦ g = −g ◦ρ , implying ρ ◦ϕt = ϕ

−1
t ◦ρ for the exact flow ϕt . A nu-

merical one-step method y1 = Φh(y0) is called ρ-reversible if

ρ ◦Φh = Φ
−1
h ◦ρ.

Our nonlinear Schrödinger equation (1.1) and also its semi-discretization in space
(2.2) are ρ-reversible for the complex conjugation of Fourier coefficients, ρ(u) =
∑ j u jei jx for u = ∑ j u jei jx (note that (1.1) is in general not reversible for the complex
conjugation of a function itself because of the convolution with V ). In the following
we will always study reversibility with respect to this complex conjugation.

For the one-stage numerical schemes (2.5) considered here, we obtain the follow-
ing results.

Lemma 2.1 (Symmetry of exponential integrators, [7]) A consistent one-stage ex-
ponential integrator (2.5) is symmetric if and only if

c = a(0) = 1
2

and b(z) = ez/2(a(z)+a(−z)) for all z ∈ iR. (2.6)
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This shows in particular that symmetric exponential integrators as considered here
are implicit.

Lemma 2.2 (Reversibility of exponential integrators) A consistent one-stage ex-
ponential integrator (2.5) is reversible if and only if

c = Re(a(0)) = 1
2

and b(z) = 2ez/2 Re(a(z)) for all z ∈ iR. (2.7)

Proof Let us first compute v = ρ ◦Φh(u0). From the definition of the exponential
integrator, we have

v = e−hL
ρ(u0)−hb(hL)∗ f (ρ(U)),

U = echLu0 +ha(hL) f (U)

with the adjoint matrix b(hL)∗. For the second term w = Φ
−1
h ◦ρ(u0) in the definition

of reversibility, we get ρ(u0) = ehLw+ hb(hL) f (U) with U = echLw+ ha(hL) f (U).
We thus obtain

w = e−hL(
ρ(u0)−hb(hL) f (U)

)
,

U = e(c−1)hL(
ρ(u0)−hb(hL) f (U)

)
+ha(hL) f (U).

Comparing the two equations for v and w, the result follows. ut

We also note, that the conditions of symmetry (2.6) and reversibility (2.7) are
equivalent if a(z) = a(z) for all z ∈ iR. Let us now illustrate these properties with
some examples.

Example 2.1 (Symmetric Lawson method, [7,23]) The symmetric one-stage Lawson
method is an exponential integrator (2.5) with coefficients

a(z) = 1
2
, b(z) = ez/2, c = 1

2
.

It is symmetric and reversible.

Example 2.2 The method with coefficients

a(z) = 1
2

b(z/2), b(z) =
ez−1

z
, c = 1

2

is also symmetric and reversible.

Example 2.3 The exponential method (2.5) with coefficients

a(z) = 1
2
, b(z) =

ez−1
z

, c = 1
2

is neither symmetric nor reversible.

However, if a(z) 6= a(z) for some z∈ iR, then reversible methods are not symmet-
ric and symmetric methods are not reversible.
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Example 2.4 The method with coefficients

a(z) =
1
2
+ i

ez/2−1− z
2

z
, b(z) = 2ez/2 Re(a(z)), c = 1

2

is reversible but not symmetric.

Example 2.5 The method with coefficients

a(z) =
1
2
+ i

ez/2−1− z
2

z
, b(z) = ez/2(a(z)+a(−z)), c = 1

2

is symmetric but not reversible.

3 Main Result and Numerical Experiments

We now formulate our main result on the long-time behaviour of exponential integra-
tors.

3.1 Assumptions on the Exponential Integrator (2.5)

We start this section by collecting the assumptions on the exponential integrator (2.5)
we need to prove long-time near-conservation properties of the numerical solution.
Our main assumption on the exponential integrator is that its coefficient functions
a(z) and b(z) are linked in the following way:

b(z) = 2e(1−c)z Re(a(z)) for all z ∈ iR. (3.1a)

If in addition c = Re(a(0)) = 1
2 , this is equivalent to the condition of reversibility

(2.7). In particular, all reversible methods (2.7) satisfy this condition. Also many
symmetric methods (2.6) satisfy (3.1a), namely those that are reversible, i.e., those
with a(z) = a(z) for all z ∈ iR. But there are methods that satisfy (3.1a) which are
neither symmetric nor reversible.

Example 3.1 The exponential method (2.5) with coefficients

a(z) = 1
2
, b(z) = ez/3, c = 2

3

satisfies (3.1a) but is neither symmetric nor reversible.

Besides condition (3.1a) we need, as mentioned in Sect. 2, that the function a is
bounded on the imaginary axis,

|a(z)| ≤C1 for z ∈ iR. (3.1b)

Moreover, we assume that

b(hL) is invertible. (3.1c)



8 David Cohen, Ludwig Gauckler

We do not hesitate to impose this assumption because it is typically less restrictive
than the non-resonance condition on the frequencies ω j that we will introduce in
the following section. For the methods of Examples 2.1 and 3.1 the condition (3.1c)
is trivially satisfied, and for the methods of Example 2.4 and 2.5 it is not difficult
to verify this condition for positive frequencies ω j, the eigenvalues of L. For the
methods of Examples 2.2 and 2.3 condition (3.1c) amounts to a restriction on the
time step-size h: One has to avoid time step-sizes that are integer multiples of 2π/ω j
for some frequency ω j. For comparison the non-resonance condition, that we will
impose, requires that the time step-size h is not close to an integer multiple of 2π

divided by many linear combinations of frequencies. We mention, however, that the
method of Example 2.2 behaves in numerical experiments very well also for resonant
time step-sizes that are not small and for time step-sizes that do not satisfy (3.1c).
This may be due to the fact that the functions a and b decay for large frequencies and
therefore act as filter functions.

The invertibility condition (3.1c) can be used to rewrite the exponential integrator
(2.5). We solve the first equation of (2.5) for f (U) and then plug it in the second one
to obtain

U = echLu0 +a(hL)b(hL)−1(u1− ehLu0).

This yields

u1 = ehLu0 +hb(hL) f
(
echLu0 +a(hL)b(hL)−1(u1− ehLu0)

)
. (3.2)

In the following we will work with one-stage exponential integrators in this compact
form.

3.2 Long-Time Near-Conservation of Actions, Energy, Mass and Momentum

Let N ≥ 1 be an arbitrary fixed integer. Our main result states near-conservation prop-
erties over long times 0≤ t ≤ ε−N of the numerical solutions of the cubic Schrödinger
equation (1.1) with small initial data:

‖u0‖s ≤ ε � 1 (3.3)

with the Sobolev norm
‖u‖2

s := ∑
j∈Zd

|ω j|s|u j|2,

where we recall that u j denotes the j-th Fourier coefficient of a function u on Td

and that ω j denotes the j-th frequency (2.1). In this definition, a zero frequency is
replaced by 1. This is also tacitly assumed in the following whenever the absolute
value of a frequency appears.

Moreover, we need a non-resonance condition on the frequencies that we intro-
duce now. Recall that M = {−M, . . . ,M−1}d denotes the set of indices whose corre-
sponding Fourier coefficients are used for the discretization in space, see Subsect. 2.1.
We denote by k = (kl)l∈M a finite sequence of integers, by ω = (ωl)l∈M the finite
sequence of frequencies and by mod2M the entry-wise reduction modulo 2M with
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representative chosen in M . The non-resonance condition controls near-resonances
among the frequencies, where the difference of a linear combination of frequencies

k ·ω := ∑
l∈M

klωl with small ‖k‖ := ∑
l∈M
|kl |

and the frequency

ω j(k) with j(k) := ∑
l∈M

kl l mod 2M ∈M , (3.4)

is close to an integer multiple of 2π/h. We recall that h is the step size of our nu-
merical integrator. More precisely, we require for near-resonant indices ( j,k) in the
set

Rε,M,h =
{
( j,k) : j = j(k),k 6= 〈 j〉, |ei(ω j−k·ω)h−1|< ε

1
2 h,‖k‖ ≤ 2N +2

}
,

where 〈 j〉= (δ jl)l∈Zd with Kronecker’s delta, that

sup
( j,k)∈Rε,M,h

|ω j|s−
d+1

2

|ω(s− d+1
2 )|k||

ε
‖k‖+1 ≤C0ε

2N+4 (3.5)

with a constant C0 independent of ε . Here,

ω
σ |k| = ∏

l∈M
|ωl |σ |kl | for σ ∈ R.

This non-resonance condition is very similar to the one used for splitting integrators
[19, Sect. 4]. As discussed in [19, Appendix] it reduces in the limit h→ 0 to a con-
dition that is satisfied for almost all choices of the potential V and a time step-size
restriction allows to exclude numerical resonances. Moreover, it is fulfilled for all
step-sizes in a dense set under a restriction on the parameter M of the discretization
in space in terms of ε , see [19, Appendix].

We are now able to state the main result of this paper, whose proof will be given
in Sect. 4.

Theorem 3.1 For given N ≥ 1 and s ≥ d + 1 there exists ε0 > 0 such that the fol-
lowing holds: Under the conditions (3.1) on the exponential integrator, the condition
of small initial data (3.3) with ε ≤ ε0 and the non-resonance condition (3.5), the
estimates

∑
l∈M
|ωl |s
|Il(un,un)− Il(u0,u0)|

ε2 ≤Cε
3
2 ,

|H(un,un)−H(u0,u0)|
ε2 ≤Cε

3
2 ,

|HM(un,un)−HM(u0,u0)|
ε2 ≤Cε

3
2 ,

|m(un,un)−m(u0,u0)|
ε2 ≤Cε

3
2 ,

d

∑
r=1

|Kr(un,un)−Kr(u0,u0)|
ε2 ≤Cε

3
2
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hold for the numerical solution un described in Sect. 2 with time step-size h≤ 1 over
long times

0≤ tn = nh≤ ε
−N

with a constant C which depends on C0 from the non-resonance condition (3.5), C1
from assumption (3.1b), the dimension d, N, s and the norm of the potential V but is
independent of n, the size of the initial value ε and the discretization parameters M
and h.

3.3 Numerical Experiments

We conclude this section with some numerical experiments in order to illustrate The-
orem 3.1. We use data as in the experiments of [19]. The initial value u(·,0) is chosen
as (d = 1)

u(x,0) = 0.1 ·
( x

π
−1
)3( x

π
+1
)2

+ i ·0.1 ·
( x

π
−1
)3( x

π
+1
)3

,

and the potential V is chosen such that

ω j =
√
| j|4 + r j,

where r j = 0.5 for j ≥ 0 and r j = 0.8 for j < 0. We use 2M = 28 collocation points
for the discretization in space, and we use a time step h = 0.1 with different expo-
nential integrators. For the solution of the nonlinear equations defining U in (2.5)
we apply the standard fixed point iteration to the nonlinear equation as described in
[7, Subsect. 5.1]. To be on the safe side, we use 15 iterations although the conver-
gence is much faster, in particular due to the small nonlinearity (cf. the analysis of

10−18
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10−12

10−9

10−6

10−3

0 500000 1000000

Fig. 3.1 Actions (black lines), discrete energy (middle bold grey line), mass (upper bold grey line) and
momentum (lower bold grey line) for the method from Example 2.1. The methods from Example 2.2,
Example 2.4 and Example 3.1 show the same behaviour.
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the nonlinear equation in Subsect. 4.7). For the role of rounding errors in a long-time
integration and a possible way to reduce them we refer to [20, VIII.5].

In Figure 3.1 we plot some of the actions, the discrete energy HM , the mass m
and the momentum K for the symmetric and reversible Lawson method from Exam-
ple 2.1. This method satisfies the main assumption (3.1a) on the exponential integra-
tor. As explained by Theorem 3.1, the plotted quantities are nearly conserved on a
long time interval of length 106. We observe the same behaviour for the other meth-
ods that satisfy the main assumption (3.1a), the symmetric and reversible method
from Example 2.2, the reversible but non-symmetric method from Example 2.4 and
the non-reversible and non-symmetric method from Example 3.1.

We repeat the experiment in Figure 3.2 using methods that do not satisfy the main
assumption (3.1a): The non-symmetric and non-reversible method from Example 2.3
and the symmetric but non-reversible method from Example 2.5. For these methods,
the actions are no longer nearly conserved on long time intervals.
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10−15

10−12

10−9

10−6

10−3

0 500000 1000000

10−18

10−15

10−12

10−9

10−6

10−3

0 500000 1000000

Fig. 3.2 Actions (black lines), discrete energy (middle bold grey line), mass (upper bold grey line) and
momentum (lower bold grey line) for the methods from Example 2.3 (first subfigure) and Example 2.5
(second subfigure).
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4 Modulated Fourier Expansions and Proof of the Main Result

In this section we prove Theorem 3.1 on the long-time near-conservation of actions
(1.5), energy (1.2), mass (1.3) and momentum (1.4) along the numerical solution.
Throughout this section we work under the assumptions of this theorem.

The proof relies on a careful study of a modulated Fourier expansion in time of
the numerical solution (3.2),

ũ(x, t) = ∑
‖k‖≤K

zk(x,εt)e−i(k·ω)t = ∑
‖k‖≤K

∑
j∈M

zk
j (εt)ei( j·x)e−i(k·ω)t . (4.1a)

We require this modulated Fourier expansion to describe at time tn = nh the numerical
solution un after n time steps. The modulation functions zk evolve on a slow time-
scale τ = εt. It turns out that we can assume these functions to be single spatial
waves,

zk(x,εt) = zk
j(k)(εt)ei( j(k)·x), (4.1b)

i.e., their Fourier coefficients zk
j vanish for j 6= j(k) with j(k) as introduced as in

(3.4). The outline of the proof is as follows.

– In Subsect. 4.1 we derive a system of equations for the modulation functions.
– In Subsect. 4.2 we show the existence of invariants for this system of equations.
– Then we construct an approximate solution of this system in Subsect. 4.3.
– We study the size of the constructed modulation functions in Subsect. 4.5 using a

rescaling of these functions introduced in Subsect. 4.4,
– and we study the defect for the approximate solution in the modulation system in

Subsect. 4.6.
– Then we control the size of the numerical solution and the difference of the nu-

merical solution and its modulated Fourier expansion in Subsects. 4.7 and 4.8.
– We study the invariants of the modulation system along the approximate solution

of this system and establish their relationship with the actions in Subsect. 4.9.
– Finally, we extend the previous results, that are valid only on a short time interval

of length ε−1, to a long time interval in Subsects. 4.10 and 4.11.

This is the standard approach to study the long-time behaviour of numerical so-
lutions of Hamiltonian partial differential equations using modulated Fourier expan-
sions [8,17]. The proof of Theorem 3.1 presented here closely follows the one given
in [19] for splitting integrators applied to (1.1). We refer the reader to that article,
whenever arguments are very similar or identical, but try to present however the main
line of arguments. A major difference compared to the corresponding proof for split-
ting integrators [19] is that the modulation system for the exponential integrators
studied here directly provides invariants. In contrast to that, one has to consider an
auxiliary modulation system in the case of splitting integrators. Differences in the
analysis of the modulation system further arise due to the implicitness of the consid-
ered exponential integrators.
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4.1 The Modulation System

We insert the modulated Fourier expansion (4.1) in the numerical scheme (3.2) and
require that the numerical solution un defined by (3.2) is described by the modulated
Fourier expansion ũ(x, tn) at time tn = nh. Comparing the coefficients of e−i(k·ω)t , this
yields the following system of equations for the modulation functions zk

j(k):

e−i(k·ω)hzk
j (ε(t +h)) = e−iω jhzk

j (εt)

− ihb(−iω jh) ∑
k1+k2−k3=k

wk1

j(k1)(εt)wk2

j(k2)(εt)wk3

j(k3)
(εt) (4.2a)

for j = j(k) (note that j(k) = j(k1)+ j(k2)− j(k3) mod 2M if k = k1 +k2−k3).
Here and in the following, we assume that ‖k‖≤K := 2N+2 unless stated otherwise.
The functions wk

j in the nonlinearity take the form

wk
j (εt) = e−iω jchzk

j (εt)+
a(−iω jh)
b(−iω jh)

(
e−i(k·ω)hzk

j (ε(t +h))− e−iω jhzk
j (εt)

)
(4.2b)

for j = j(k). The initial condition further yields

u0
j = ∑

k
zk

j (0). (4.2c)

The system of equations (4.2) for the coefficients of the modulated Fourier expansion
is called the modulation system.

4.2 Invariants of the Modulation System

A remarkable property of the modulation system (4.2) is the presence of many con-
served quantities or invariants provided that the exponential integrator satisfies con-
dition (3.1a). These invariants, that we derive next, form the cornerstone for the study
of long time intervals.

Let
U (w) = ∑

k1+k2−k3−k4=0
wk1

j(k1)w
k2

j(k2)w
k3

j(k3)
wk4

j(k4)
, (4.3)

with w = (wk)k, be the extended potential. We have for real sequences µ

0 = h
d

dθ

∣∣∣∣
θ=0

U
(
(ei(k·µ)θ wk)k

)
=−4hRe

(
∑
k

i(k ·µ)wk
j(k) ∑

k1+k2−k3=k
wk1

j(k1)w
k2

j(k2)w
k3

j(k3)

)
.

Using the modulation system (4.2) we get for w = w(εt) as defined in (4.2b)

0 = Re
(
∑
k

4(k ·µ)
b(−iω j(k)h)

wk
j(k)(εt)

(
e−i(k·ω)hzk

j(k)(ε(t +h))− e−iω j(k)hzk
j(k)(εt)

))
.

(4.4)
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Under the main condition (3.1a) on the exponential integrator we have

wk
j (εt) =

1
b(−iω jh)

(
a(−iω jh)e−i(k·ω)hzk

j (ε(t +h))+a(−iω jh)e−iω jhzk
j (εt)

)
for j = j(k), and (4.4) simplifies to

0 = ∑
k

(k ·µ)
Re(a(−iω j(k)h))

(∣∣zk
j(k)(ε(t +h))

∣∣2− ∣∣zk
j(k)(εt)

∣∣2).
Choosing µ = 1

2 Re(a(−iωlh))〈l〉 for l ∈ Z, this shows that

Il(z) =
1
2 ∑

k
kl

Re(a(−iωlh))
Re(a(−iω j(k)h))

∣∣zk
j(k)
∣∣2 (4.5)

is conserved along a solution z of the modulation system (4.2) from one time step to
another. Recalling the conditions (3.1a) and (3.1b) on the coefficients of the numer-
ical scheme, we will see in Lemma 4.1 that these quantities are well defined. These
invariants are the same as for splitting integrators derived in [19, Subsect. 6.1] except
for the fraction Re(a(−iωlh))/Re(a(−iω j(k)h)). Note, however, that our invariants
(4.5) are invariants of the modulation system itself and not of an auxiliary modulation
system as in [19, Sect. 6].

4.3 Iterative Solution of the Modulation System

In this subsection we introduce an iterative procedure that we use to compute an ap-
proximate solution of the modulation system (4.2) in the same way as in [19, Subsect.
5.3]. The modulation system here takes the form(

1− e−i(ω j−k·ω)h)zk
j (εt)+ εhżk

j (εt) = A(z(εt))k
j(k)+N(w(εt))k

j(k), (4.6a)

wk
j (εt) = e−iω jchzk

j (εt)

+
a(−iω jh)
b(−iω jh)

e−i(k·ω)h
((

1− e−i(ω j−k·ω)h)zk
j (εt)−B(z(εt))k

j(k)

)
(4.6b)

for j = j(k), where the dot on zk
j stands for the derivative with respect to the slow

time τ = εt, and where we use the differential operators

A(z)k
j(k) =−

∞

∑
l=2

ε lhl

l!
dl

dτ l zk
j(k) and B(z)k

j(k) =−
∞

∑
l=1

ε lhl

l!
dl

dτ l zk
j(k)

and the nonlinearity

N(w)k
j(k) =−ihb(−iω j(k)h)e

i(k·ω)h
∑

k1+k2−k3=k
wk1

j(k1)w
k2

j(k2)w
k3

j(k3)
.

For the iterative solution of the modulation system we distinguish modulation
functions corresponding to near-resonant indices ( j,k) ∈ Rε,M,h or large indices
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‖k‖ > K = 2N + 2, “diagonal” modulation functions with indices ( j,〈 j〉), and the
remaining modulation functions with indices in the set

Sε,M,h =
{
( j,k) : j = j(k),k 6= 〈 j〉,( j,k) 6∈Rε,M,h,‖k‖ ≤ K

}
.

We start by setting[
z〈 j〉j (τ)

]0
= u0

j and
[
zk

j(k)(τ)
]0

= 0 for k 6= 〈 j(k)〉

for 0≤ εt = τ ≤ 1. We iterate, motivated by (4.6a), by[
zk

j (τ)
]n+1

=
1

1− e−i(ω j−k·ω)h

[
B(z(τ))k

j +N(w(τ))k
j

]n

for ( j,k) ∈ Sε,M,h and 0 ≤ εt = τ ≤ 1 with w defined as in (4.6b). The notation
[·]n means that the n-th iterates of the modulation functions within the brackets are
taken. For k = 〈 j〉 the first term in (4.6a) cancels, and we define z〈 j〉j as solution of the
differential equation[

ż〈 j〉j (τ)
]n+1

= ε
−1h−1

[
A(z(τ))〈 j〉j +N(w(τ))

〈 j〉
j

]n

with initial value [
z〈 j〉j (0)

]n+1
= u0

j −
[

∑
k6=〈 j〉

zk
j (0)

]n

by (4.2c). For near-resonant indices ( j,k) ∈Rε,M,h or for large k with ‖k‖ > K we
set for 0≤ εt = τ ≤ 1 [

zk
j (τ)

]n+1
= 0.

With this iterative construction, the iterated modulation functions [zk
j ]

n are poly-
nomials in τ of degree bounded in terms of the number of iterations n.

4.4 Rescaling the Modulation Functions

In order to take into account the powers of ε that accumulate in the modulation func-
tions, we now rescale and split these functions as in [19, Subsect. 5.4]. Let

[[k]] =

{
max

( 1
2 (‖k‖+1),2

)
, k 6= 〈 j〉,

1
2 (‖k‖+1) = 1, k = 〈 j〉

and
zk

j = ε
[[k]]ak

j + ε
[[k]]bk

j

with diagonal entries ak
j and off-diagonal entries bk

j , i.e., ak
j 6= 0 only for k = 〈 j〉 and

bk
j 6= 0 only for k 6= 〈 j〉. We write

a = (ak)k = (ak
j(k)e

i( j(k)·x))k and b = (bk)k = (bk
j(k)e

i( j(k)·x))k
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and set additionally u = (uk)k with

uk = ε
−[[k]]wk = ε

−[[k]]wk
j(k)e

i j(k)x.

We further define F(u)k
j = ε−max([[k]],2)N(w) and

(Ωc)k
j =

{
(1− e−i(ω j−k·ω)h)ck

j , ( j,k) ∈Sε,M,h,

ε
1
2 hck

j , else.

In the rescaled variables the iteration from the previous Subsect. 4.3 becomes[
bk

j

]n+1
=
[
(Ω−1B(b))k

j

]n
+
[
(Ω−1F(u))k

j

]n
for ( j,k) ∈Sε,M,h,[

ȧ〈 j〉j

]n+1
= ε

−1h−1
[
A(a)〈 j〉j

]n
+h−1

[
F(u)〈 j〉j

]n
,[

a〈 j〉j (0)
]n+1

= ε
−1u0

j −
[

∑
k6=〈 j〉

ε
[[k]]−1bk

j (0)
]n

with [uk
j ]

n = ε−[[k]][wk
j ]

n defined by (4.6b).
We also use a second rescaling of the variables,

âk
j = |ω

2s−d−1
4 |k||ak

j , b̂k
j = |ω

2s−d−1
4 |k||bk

j and ûk
j = |ω

2s−d−1
4 |k||uk

j .

With F̂(û)k
j = |ω

2s−d−1
4 |k|| ·F(u)k

j the iteration for b̂ becomes[
b̂k

j

]n+1
=
[
(Ω−1B(b̂))k

j

]n
+
[
(Ω−1F̂(û))k

j

]n
for ( j,k) ∈Sε,M,h.

4.5 Size of the Iterated Modulation Functions

In order to control the size of the iterated modulation functions we use the norm

‖|z|‖s =
(
∑

j
|ω j|s

(
∑
k
|zk

j |
)2) 1

2
.

Note that we do not only need to control the modulation functions themselves but also
products of the modulation functions with a(−iω jh)/b(−iω jh), see the definition of
wk

j in (4.6b). Fortunately, this is not needed for the diagonal modulation functions
collected in a but only for their derivatives and the off-diagonal modulation functions
collected in b including all their derivatives. Since a(−iω jh) is bounded by (3.1b),
we therefore set

γ j = max
(

1,
1

|b(−iω jh)|

)
and (Γ c)k

j = γ jck
j ,

and we study Γ b and Γ ȧ instead of b and ȧ.
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Lemma 4.1 We have for 0≤ τ = εt ≤ 1

‖|[a(τ)]n|‖s ≤C, ‖|[Γ a(`)(τ)]n|‖s ≤Cε for `≥ 1,

‖|[Γ b(`)(τ)]n|‖s ≤Cε
1
2 for `≥ 0,

for all n with a constant C depending only on C0, C1, d, n, s and the norm of V . The
same estimates hold for â and b̂ instead of a and b if we replace ‖| · |‖s by ‖| · |‖ d+1

2
.

In particular, it follows that the modulated Fourier expansion of the numerical
scheme ũ is small

‖ũ(·, t)‖s ≤Cε

and that its coefficients z are also small

∑
j∈M
|ω j|s|z〈 j〉j |

2 ≤Cε
2 and ∑

j∈M
|ω j|s

(
∑

k6=〈 j〉
|zk

j |
)2
≤Cε

5.

Proof Initially, we have for 0≤ τ ≤ 1

‖|[a(τ)]0|‖s ≤ 1, ‖|[Γ a(`)(τ)]0|‖s = 0 for `≥ 1,

‖|[Γ b(`)(τ)]0|‖s = 0 for `≥ 0,

and the same estimates hold for â and b̂ if we replace ‖| · |‖s by ‖| · |‖ d+1
2

.
The bounds for the iterated modulation functions are obtained as in [19, Subsect.

5.6] by analyzing the iteration using

– the non-resonance condition (3.5) to control Ω
−1,

– the fact that A(a) contains only derivatives of a to estimate Γ A(a) in the same
way as Γ B(b) inductively,

– the factor b(−iω jh) in front of the nonlinearity to estimate Γ F(u) in ‖| · |‖s by
Cεh‖|u|‖3

s using [18, Lemma 2] and the bound (3.1b) together with the condition
(3.1a),

– the bound ‖|u|‖s ≤ ‖|a+b|‖s +C max`≥1 ‖|Γ a(`)|‖s +C max`≥0 ‖|Γ b(`)|‖s
– and the fact that the modulation functions are polynomials in τ of degree bounded

in terms of the number of iterations n.

The same arguments also yield estimates for â and b̂ in the norm ‖| · |‖ d+1
2

. ut

4.6 Defect of the Iterated Modulation Functions

The defect in the modulation system (4.6a), (4.2c) after n iterations is

[dk
j ]

n =
[(

1− e−i(ω j−k·ω)h)zk
j + εhżk

j −A(z)k
j −N(w)k

j

]n
, (4.7)

[d̃〈 j〉j (0)]n = u0
j −
[
∑
k

zk
j (0)

]n
.
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In contrast to [19, Subsect. 5.7], we have here no defect resulting from a truncation
of a Taylor expansion. We decompose the defect as

[dk
j ]

n = [ek
j + f k

j +gk
j + ḣk

j ]
n

with [ek
j ]

n = 0 for ( j,k) 6∈ Sε,M,h, [ḣk
j ]

n = 0 for k 6= 〈 j〉, [ f k
j ]

n = 0 for non-near-
resonant indices ( j,k) 6∈Rε,M,h and [gk

j ]
n = 0 for ‖k‖ ≤ K. The defect can be esti-

mated as follows.

Lemma 4.2 We have for 0≤ τ ≤ 1

‖|[Γ f(τ)]n|‖s ≤Cε
N+3h, ‖|[Γ g(τ)]n|‖s ≤Cε

N+3h,

‖|[Γ e(τ)]n|‖s ≤Cε
n+4

2 h, ‖|[Γ ḣ(τ)]n|‖s ≤Cε
n+4

2 h, ‖|[d̃(0)]n|‖s ≤Cε
n+2

2

for all n with a constant C depending only on C0, C1, d, N, n, s and the norm of the
potential V . The same estimates hold for ê and ĥ instead of e and h if we replace
‖| · |‖s by ‖| · |‖ d+1

2
.

Proof The estimate of the defect f in the near-resonant indices is obtained as in [18,
Subsection 3.7] and [19, Subsection 5.7] using the non-resonance condition (3.5) and
in addition the bound (3.1b). Also the defect g can be estimated as there using that
‖k‖> K implies [[k]]≥ 1

2 (K +2) = N +2.
The diagonal part ḣ and the off-diagonal part e of the defect take the form

[ek
j ]

n = ε
[[k]]([(Ωb)k

j ]
n− [(Ωb)k

j ]
n+1),

[hk
j ]

n = ε
3
2
(
[(Ωa)k

j ]
n− [(Ωa)k

j ]
n+1).

Using a Lipschitz estimate [18, Lemma 2] for the nonlinearity in the modulation
system, we get as in [19, Subsect. 5.7] by an analysis of the iteration

‖|[h(τ)]n|‖s ≤Cε
n+4

2 h, ‖|[Γ h(`)(τ)]n|‖s ≤Cε
n+4

2 h for `≥ 1,

‖|[Γ e(`)(τ)]n|‖s ≤Cε
n+4

2 h for `≥ 0,

for 0≤ τ ≤ 1, and the same estimates also for â and b̂ if we replace ‖| · |‖s by ‖| · |‖ d+1
2

.

Also the defect for the initial condition d̃ can be estimated as in [19, Subsect.
5.7]:

‖|[d̃(0)]n|‖s ≤ ‖|Ω
−1[e(0)]n−1|‖s ≤Cε

− 1
2 ε

n+3
2 .

This concludes the proof of the lemma. ut
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4.7 The Numerical Solution on Short Time Intervals

We study the size of the numerical solution un on a short time interval of length ε−1.
Its control uses fixed point arguments since the considered exponential integrators
(3.2) are implicit schemes.

Lemma 4.3 We have for 0≤ tn = nh≤ ε−1

‖un‖s ≤ 2ε

for ε sufficiently small compared to C1, d, s and the norm of the potential V .

Proof We show by induction on n that

‖un‖s ≤ ε +27Cnhε
3 for 0≤ nh≤ ε

−1, (4.8)

and we let ε be sufficiently small compared to C such that (4.8) implies ‖un‖s ≤ 2ε .
Here, C is a constant depending only on C1, d, s and the norm of V such that

‖a(hL)Q(UVW )‖s +‖b(hL)Q(UVW )‖s ≤C‖U‖s‖V‖s‖W‖s, (4.9)

which exists by [18, Lemmas 1 and 4]. Note that f (U) =−iQ(|U |2U) is the nonlin-
earity defined in (2.3).

For n= 0 the estimate (4.8) is trivial. For n> 0 we have by (4.9) and the definition
of the integrator

‖un‖s ≤ ‖un−1‖s +h‖b(hL) f (Un−1)‖s ≤ ‖un−1‖s +Ch‖Un−1‖3
s (4.10)

with a fixed point Un−1 of

g : U 7→ echLun−1 +ha(hL) f (U).

For 0 ≤ nh ≤ ε−1 this function g maps by (4.9) the ball {U : ‖U‖s ≤ 3ε} to itself
since ‖un−1‖s ≤ 2ε by induction. Moreover, using the fact that

|U |2U−|Ũ |2Ũ = |U |2(U−Ũ)+UŨ(U−Ũ)+ |Ũ |2(U−Ũ)

and the form of our nonlinearity, see (2.3), we obtain from (4.9) that

‖a(hL)( f (U)− f (Ũ))‖s ≤ 3C max(‖U‖s,‖Ũ‖s)
2‖U−Ũ‖s. (4.11)

This shows that the map g has for sufficiently small ε in the norm ‖·‖s on the ball {U :
‖U‖s ≤ 3ε} a Lipschitz constant smaller than one. The Banach fixed point theorem
then ensures

‖Un−1‖s ≤ 3ε

for the fixed point Un−1 of g, and finally the induction hypothesis applied to (4.10)
yields (4.8). ut
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4.8 The Modulated Fourier Expansion and the Numerical Solution

In this subsection we study the error un− ũ(·, tn) of the modulated Fourier expansion

ũ(x, t) = ∑
k
[zk

j(k)(εt)]Le−i(k·ω)tei( j(k)·x),

where the iterated modulation functions zk
j = [zk

j ]
L after L := 2N+2 iterations replace

the exact solution of the modulation system that is not available. By a slight abuse of
notation, we omit the index L in the following, keeping in mind that the modulation
system is then satisfied only up to a small defect. We show that the modulated Fourier
expansion ũ(·, tn) describes the numerical solution un up to a very small error on a
short time interval of length ε−1. Again, as in the previous subsection, we employ
fixed point arguments in contrast to the direct arguments used in [19, Subsect. 5.8].

Proposition 4.1 We have for 0≤ tn = nh≤ ε−1

‖un− ũ(·, tn)‖s ≤Cε
N+2

for ε sufficiently small compared to C0, C1, d, N, s and the norm of V with a constant
C depending only on C0, C1, d, N, s and the norm of V .

Proof Let
Ũ(x, t) = ∑

k
wk

j(k)(εt)e−i(k·ω)tei( j(k)·x).

Then, by definition of the modulation system (4.2) and with (4.7), we obtain

ũ(·, tn) = ehLũ(·, tn−1)+hb(hL) f (Ũ(·, tn−1))+δ (·, tn−1)

with the defect
δ (x, t) = ∑

k
dk

j(k)(εt)e−i(k·ω)(t+h)ei( j(k)·x).

Note that for 0≤ t ≤ ε−1 by Lemma 4.2

‖δ (·, t)‖s ≤Cε
N+3h

with a constant C depending only on C0, C1, d, N, s and the norm of the potential V .
(a) We first examine the difference Un−1− Ũ(·, tn−1) with the solution Un−1 of

the nonlinear equation in the numerical method for computing un (see the proof of
Lemma 4.3). Note that Ũ(·, tn−1) is by (4.2) and (4.7) a fixed point of

g̃ : Ũ 7→ echLũ(·, tn−1)+ha(hL) f (Ũ)+a(hL)b(hL)−1
δ (·, tn−1)

and by Lemma 4.2
‖a(hL)b(hL)−1

δ (·, t)‖s ≤Cε
N+3h.

Recall from the proof of Lemma 4.3 that the fixed point iteration [U ]l = g([U ]l−1),
[U ]0 = echLun−1 converges in the norm ‖·‖s to Un−1 and is bounded in this norm by
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3ε . We study [U ]l−Ũ with Ũ = Ũ(·, tn−1). Since ‖Ũ‖s ≤Cε by Lemma 4.1, we get
with (4.9) and the estimate of the defect

‖[U ]0−Ũ‖s = ‖echLun−1− g̃(Ũ)‖s ≤ ‖un−1− ũ(·, tn−1)‖s +Cε
3h+Cε

N+3h.

For l > 0 we use (4.11) to obtain

‖[U ]l−Ũ‖s = ‖g([U ]l−1)− g̃(Ũ)‖s

≤ ‖un−1− ũ(·, tn−1)‖s +Cε
2h‖[U ]l−1−Ũ‖s +Cε

N+3h

with a constant C independent of l. A recursion on l and the above result for l = 0
now yields

‖[U ]l−Ũ‖s ≤
(
‖un−1− ũ(·, tn−1)‖s +Cε

N+3h
) l

∑
j=0

(Cε
2h) j +Cε

3h(Cε
2h)l .

For l→ ∞ and Cε2h≤ 1
2 one then obtains

‖Un−1−Ũ(·, tn−1)‖s ≤ 2‖un−1− ũ(·, tn−1)‖s +2Cε
N+3h. (4.12)

(b) Finally, we consider un− ũ(·, tn). For n > 0 we have using (4.11) with b(hL)
instead of a(hL)

‖un− ũ(·, tn)‖s ≤ ‖un−1− ũ(·, tn−1)‖s +Cε
2h‖Un−1−Ũ(·, tn−1)‖s +Cε

N+3h.

Together with (4.12) we get by induction on n

‖un− ũ(·, tn)‖s ≤
(
1+2Cε

2h
)n(Cε

N+3nh+‖u0− ũ(·,0)‖s
)
.

This yields the desired result if ε is sufficiently small since

‖u0− ũ(·,0)‖s ≤ ‖|[d̃(0)]n|‖s ≤Cε
N+2

by Lemma 4.2 with the defect d̃ in the initial condition. ut

4.9 Almost Invariants Close to the Actions

Let zk
j = [zk

j ]
L be the iterated modulation functions after L = 2N + 2 iterations as in

the previous subsection. These modulation functions satisfy the modulation system
(4.2) only up to a defect dk

j = [dk
j ]

L studied in Lemma 4.2. Of course, the formal
invariants Il(z) of the modulation system introduced in (4.5) are then no longer
exact invariants, but they turn out to be almost invariants.

Proposition 4.2 We have for 0≤ tn = nh≤ ε−1

∑
l∈M
|ωl |s

∣∣Il(z(εtn))−Il(z(0))
∣∣≤Cε

N+3

for ε sufficiently small compared to C0, C1, d, N, s and the norm of the potential V
with a constant C depending only on C0, C1, d, N, s and the norm of V .
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Proof Repeating the calculation for the derivation of the invariants of the modulation
system in Subsect. 4.2 we get

Il(z(ε(t +h))) = Il(z(εt))+Re
(
∑
k

2kle−i(k·ω)h Re(a(−iωlh))
b(−iω j(k)h)

wk
j(k)(εt)dk

j (εt)
)
.

Lemma 3 from [18] (with the adaption to the spatially discrete setting in [18, Subsect.
6.2]) together with the bound (3.1b) for a(z) then tells us that

∑
l∈M
|ωl |s

∣∣Il(z(εtn+1))−Il(z(εtn))
∣∣≤C‖ŵ‖ d+1

2
‖Γ ê+Γ

˙̂h‖ d+1
2

with a constant C depending only on d, N, s and the norm of V . Using the estimates
from Lemma 4.1 on the size of the iterated modulation functions and from Lemma 4.2
on the defect of these functions, we get the statement of the proposition by summing
up. ut

We can show as in [18, Proposition 6] using in addition the bound (3.1b) for a(z)
that the almost invariants Il are close to the actions Il .

Proposition 4.3 We have for 0≤ tn = nh≤ ε−1

∑
l∈M
|ωl |s

∣∣Il(z(εtn))− Il(un,un)
∣∣≤Cε

7
2

for ε sufficiently small compared to C0, C1, d, N, s and the norm of V with a constant
C depending only on C0, C1, d, N, s and the norm of V . ut

4.10 Interface Between Modulated Fourier Expansions

So far, we only considered a short time interval of length ε−1. In order to get longer
time intervals as announced in Theorem 3.1 we have to patch many of these short
time intervals together. In this subsection we consider a second short time interval
ε−1 ≤ t ≤ 2ε−1 (if ε−1 is not a multiple of the time step-size h we consider instead
the time interval nε h≤ t ≤ 2nε h, where nε denotes the largest integer with nε h≤ ε−1).
On this second time interval we consider again a modulated Fourier expansion

∑
k

z̃k
j(k)(εt)e−i(k·ω)t

of the numerical solution, starting with the numerical solution unε at the end of the
first time interval (after nε time steps) as initial value. The initial condition (4.2c) of
the modulation system then becomes

unε

j = ∑
k

z̃k
j (εnε h)e−i(k·ω)nε h,

whereas the remaining part of the modulation system (4.2) remains unchanged. This
modulation system is again solved approximately with the iterative procedure de-
scribed in Subsect. 4.3, and we denote, again by an abuse of notation, by z̃k

j (and also
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zk
j ) the iterated modulation functions after L = 2N + 2 iterations. Since ‖unε‖s ≤ 2ε

by Lemma 4.1, all the results on the modulation functions z proven so far are also
valid for z̃ with constants depending on the same parameters.

It is possible to control the difference of the almost invariants Il(z) and Il(z̃) at
the interface nε h ≈ ε−1 between the modulated Fourier expansions on the first two
time intervals.

Proposition 4.4 We have

∑
l∈M
|ωl |s

∣∣Il(z(εnε h))−Il(z̃(εnε h))
∣∣≤Cε

N+3

for ε sufficiently small compared to C0, C1, d, N, s and the norm of the potential V
with a constant C depending only on C0, C1, d, N, s and the norm V .

Proof We first show that

‖|ẑ(εnε h)− ˆ̃z(εnε h)|‖ d+1
2
≤Cε

N+2 (4.13)

for the rescaled modulation functions defined in Subsect. 4.4. Together with [18,
Lemma 3] and Lemma 4.1 this yields the stated result. For the proof of (4.13) we
have to study once more the iterative procedure, this time the iteration for z̃. This is
done in the same way as in the proof of [18, Proposition 4], considering again Γ a(`)
for `≥ 1 and Γ b(`) for `≥ 0 instead of a(`) and b(`) (but not Γ a). ut

4.11 From Short to Long Time Intervals

We are now in the position to prove Theorem 3.1. We start with the long-time near-
conservation of actions, that we can control so far only on a short time interval of
length ε−1. The almost invariants Il permit to patch many of these short time inter-
vals together to a long time interval of length ε−N exactly as in [19, Subsect. 6.3]:
We consider modulated Fourier expansions on short time intervals of length ≈ ε−1

starting on the numerical solution as described in Subsect. 4.10. The almost invariants
(Propositions 4.2 and 4.4) close to the actions (Proposition 4.3) ensure that the numer-
ical solution satisfies a smallness condition ‖un‖s ≤ 2ε over long times 0≤ nh≤ ε−N

and imply the near-conservation of actions on these time intervals.
Finally, the near-conservation of energy H, discrete energy HM , mass m and mo-

mentum K is shown as in [19, Subsect. 6.4]. The main point is that all these quantities
are sums of scaled actions plus, in the case of the energies, a higher order term of
size ε4. The long-time near-conservation of actions thus implies the long-time near-
conservation of discrete and continuous energy, of mass and of momentum as stated
in Theorem 3.1.
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5 Conclusion and Open Problems

We have shown long time near-conservation of actions, energy, mass and momen-
tum for the numerical solution of a cubic Schrödinger equation given by a one-stage
exponential integrator. This has been done for a class of methods that contains all
reversible methods. We have presented a numerical experiment with a symmetric ex-
ponential integrator, that does not belong to this class, and that does not show this
good long-time behaviour.

An extension of the results to nonlinear Schrödinger equation (1.1) with more
general nonlinearities of the form g(|u(x, t)|2)u(x, t) is easy if g is real analytic in a
neighbourhood of zero and g(0) = 0. On the contrary, it is an open problem to extend
the theoretical results of the present paper to exponential integrators with more than
one stage (s > 1 in (2.4)). The technical difficulty seems to be the identification of
invariants in the corresponding modulation system. In fact, in the modulation system
for a method with more than one stage there are several nonlinear terms coming from
an extended potential U (4.3) with different arguments. This prevents the derivation
of the invariants in Subsect. 4.2 from working. We expect, however, that reversible
exponential integrators with two or more stages have a similar long-time behaviour
as the one-stage methods studied here. In order to support this conjecture, we present
in Figure 5.1 a numerical experiment with the same parameters as in the experiments
of Subsect. 3.3 but with the two stage exponential integrator

U1 = ec1hLu0 +
h
2

(1
2

f (U1)+ c1e(c1−c2)hL f (U2)
)
,

U2 = ec2hLu0 +
h
2

(
c2e(c2−c1)hL f (U1)+

1
2

f (U2)
)
,

u1 = ehLu0 +
h
2

(
e(1−c1)hL f (U1)+ e(1−c2)hL f (U2)

) (5.1)

with c1 =
1
2−

√
3

6 and c2 =
1
2 +

√
3

6 . This is a reversible and symmetric Lawson method
with the Hammer and Hollingsworth method as an underlying Runge–Kutta method,
see [7, Sect. 2]. We also perform the same experiment for the pseudo steady-state
approximation [24,26]

U1 = u0,

U2 = ehLu0 +h
ehL−1

hL
f (U1),

u1 = ehLu0 +
h
2

ehL−1
hL

(
f (U1)+ f (U2)

)
,

(5.2)

a two-stage explicit exponential integrator (neither symmetric nor reversible) that is
used in chemistry, and plot the result in Figure 5.2. A loss of energy, mass, momentum
and actions is observed for this method.

Our main result explains rigorously the good long-time behaviour of certain expo-
nential integrators in the situation where the initial values are small and the frequen-
cies in the equation as well as the time-step size satisfy a non-resonance condition.
For initial values that are not small we can not expect long-time near-conservation
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Fig. 5.1 Actions (black lines), discrete energy (middle bold grey line), mass (upper bold grey line) and
momentum (lower bold grey line) for the two-stage method (5.1).
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Fig. 5.2 Actions (black lines), discrete energy (middle bold grey line), mass (upper bold grey line) and
momentum (lower bold grey line) for the pseudo steady state approximation (5.2).

of actions (neither along the exact nor along a numerical solution). Concerning the
behaviour of energy and mass we refer to [7] for many numerical experiments when
initial values are not small and frequencies are resonant. A rigorous numerical anal-
ysis of this situation on long time intervals is still missing.

We finally mention that mass can be exactly conserved by exponential integra-
tors, whereas our main result only explains its near-conservation over long times. For
example the Lawson method from Example 2.1 conserves mass exactly. For a char-
acterization of exponential integrators, that preserve mass exactly, we refer the reader
to [7, Sect. 3].
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