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Abstract

Modulated Fourier expansions are developed as a tool for gain-
ing insight into the long-time behaviour of Hamiltonian systems with
highly oscillatory solutions. Particle systems of Fermi-Pasta-Ulam type
with light and heavy masses are considered as an example. It is shown
that the harmonic energy of the highly oscillatory part is nearly con-
served over times that are exponentially long in the high frequency.
Unlike previous approaches to such problems, the technique used here
does not employ nonlinear coordinate transforms and can therefore be
extended to the analysis of numerical discretizations.

1 Introduction

We study the system of differential equations

i+ Q% = g(x) with 0= ( 8 u?] ) (1.1)

where w > 1 and the nonlinearity is g(z) = —VU (), so that the problem
is Hamiltonian with

H(z,#) = 3 (1412 + [92]2) + U(2). (1.2)

An important property of such systems is the near-conservation over long
times of the oscillatory energy

I@,3) = 3 (I + w2 ol ?). (13)

Here, the vectors x = (z1,22) and & = (&1, @9) are partitioned according to
the partitioning of the matrix € in (1.1). A possible way of studying prob-
lems of the type (1.1) is via averaging techniques and Lindstedt series, see
for example Neishtadt [10], Murdock [9], Pronin and Treschev [11]. The very
problem (1.1) was thoroughly studied in Benettin, Galgani and Giorgilli [3],



Fasso [5], and Bambusi and Giorgilli [1], using coordinate transformations
of Hamiltonian perturbation theory. In the present paper we give a variant
of their result, obtained with a completely different proof. It is based on
writing the solution of (1.1) as a modulated Fourier expansion

2(t) = y(t) + ) "R (1), (1.4)

k0

where y(t) and z¥(¢) are smoothly varying functions (i.e., their derivatives
are bounded independently of w).

Such a representation of the solution has first been proposed by Miranker
and van Veldhuizen [8] !, who derived a scheme for constructing the “en-
velopes” z¥(t). They suggested to compute numerically these envelopes and
used them for approximating the solution z(¢). In [6] and [7, Chap. XI1]]
this technique of modulated Fourier expansions has been further developed
and used in the analysis of the long-time behaviour of numerical integrators
when the time step is not small compared to w—!. Standard backward er-
ror analysis (see for example [7, Chap.IX]) requires At - w to be small and
therefore cannot be applied. In this situation, modulated Fourier expansions
provide much insight into the long-time behaviour of numerical integrators.
In the present paper, they are used to obtain rigorous long-time results for
the exact solution of the differential equation.

The following result states the near-conservation of the oscillatory energy
over time intervals that are exponentially long in w. Here we assume that
the initial values satisfy

1 .
L + I2:0)]) < B, (1.5)
where F is independent of w. (We do not require E to be small.)

Theorem 1.1 Assume that g(xz) = —VU(x) is analytic and bounded by M
in the complex neighbourbood D = {x € C"; ||x—&|| < R for some & with
H(&0) < H(x(0),2(0))} of the set of energetically admissible positions.
Furthermore, let the initial values x(0), £(0) satisfy (1.5). Then there exist
positive constants v, C, é,wo depending on E, M, and R (but not on w)
such that for w > wy

| I(z(t),2(t)) — I(2(0),2(0))|| < Cw™  for 0<t<Ce™,

The proof of this theorem will be given in the final section of this paper.
We first discuss the modulated Fourier expansion in Sect. 2, and we show
that the coefficient functions of (1.4) are given by asymptotic differential and
algebraic equations. The effect of truncating the asymptotic series is studied

We thank an anonymous referee for pointing out this reference.



in Sect. 3. Whereas these two sections treat the general problem (1.1), the
final Sect.4 assumes that g(x) = —VU(z). It is shown that the coefficient
functions of the modulated Fourier expansion are then exponentially close to
the solution of a Hamiltonian system in an infinite dimensional space, which
has two invariants: one is close to the Hamiltonian (1.2) and the other is
close to the oscillatory energy (1.3).

Let us mention that the dominating fluctuation terms in the oscillatory
energy can be given explicitly. Writing down the O(w ') terms in Z of (4.4)
below we find that

J(a,i) = 3 (2] + o [lz2?) — 2 ga(21,0) (1.6)

1
2

satisfies
| (z(t),2(t)) — J(2(0),2(0))|| < Cw™?

on exponentially long time intervals. Since zo = O(w™!), this implies that
the fluctuations in I(z,2) are of size O(w ?) when ga(z1,0) = O(w™1).
The techniques of this paper can also be applied to the slightly more
general situation where the potential U(z) contains expressions of the form
p1(x1, 22) + wpa(r1/w, T2), such that the differential equation becomes

1 = g1(x1, z2)

fi‘Q + w2w2 = wgg(acl, $2)

with g(z) depending smoothly on w~!. In this case, the quantity
. 1 . 1
K(a,#) = 2 (2] + 62 |2]?) — wrga(a1,0) + Llgaan, 0 (17)

satisfies
| K (z(t),2(t)) — K (2(0),2(0)| < Cw™!

on exponentially long time intervals. Notice that the additional terms in
(1.7) are in general of size O(1), so that the oscillatory energy exhibits
fluctuations that can be large independent of the size of w.

Example. Inspired by an example of
Bambusi and Giorgilli [1] we consider a
closed chain of an even number of parti-
cles with alternate light and heavy masses.
They interact through springs which are
harmonic up to small perturbations, and
neighbouring heavy particles interact also
through arbitrary anharmonic springs (see
the picture to the right). More precisely,



we consider the Hamiltonian system with
. 2N é2 12N N
H(E =) o T3 D& -1+ wilb) — Eaja)
i=1 ¢ i=1 j=1

2N
+ > hi(Vm (& - &),
i=1

where mgj 1 = m < 1 and mg; = 1 for j = 1,...,N, and § = &n.
Applying the symplectic change of coordinates & — /m; &;, & — & /v/mi,
and using the notation w = 1/4/m, the Hamiltonian becomes

N
=1

2N
H(E,€) = % d &+ % Z((fzj — wégj—1)* + (whaj—1 — §2j—2)2)
i=1 =

= N = (& , &2
+> il —Eoja) + (zﬁzg( ¥ £2j_1) +¢2J_1(52j_1 ! ))
Jj=1 j=1

We then consider an orthogonal linear transformation £* = Q¢ that takes
the harmonic part of the Hamiltonian to diagonal form. It is given by

s = G (6 840) O,
§2j = &+ %(&j—kl +&9j-1) + O(w™2).

Omitting the stars, the Hamiltonian becomes (in the new variables)

2N N
H(E,§) = %Z&Q + w5+ 18 + a6, b/w, &3, &afw, ),
1=1 j=1

which is of the form treated above.

Numerical Experiment. For a concrete example we put N = 3, w = 50,
we let ;(s) = x(V/2 — s/w) with x(s) = s7!2 — s70 be the Lennard-Jones
potential, we take 19;(s) = s2/2 +s*/4 for j=1,...,N — 1, and ¢;(s) =0
else.

Figure 1 shows the components &9, &4, &, and 105 on the interval 0 <
t < 10. The factor 10 multiplying &5 is included to show more clearly the
oscillations of size O(w™!) in the numerical solution.
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Figure 1: Solution components, where the non-zero initial positions are
£2(0) = 0.5,£3(0) = (2w)™1,£5(0) = w™,&(0) = 0.3 and the non-zero initial
velocities are & (0) = —£3(0) = w1, £(0) = 0.8,£4(0) = —1,£5(0) = 0.2.
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Figure 2: Oscillatory energy for the solution with initial values as in Fig. 1.

In Fig. 2 we plot the energies I;(€*,£*) = %(égj_l)z—i—wz(f;j_l)Q together
with the oscillatory energy I = I; + I + I3 (cf. (1.3)) along the numerical
solution on the interval 0 < ¢t < 1200. For this example, the expression
g2(1,0) is of size w™!, so that the oscillatory energy is conserved up to
terms of size w2 (see (1.6)). Therefore, the oscillations cannot be observed
in Fig. 2.

2 The Modulated Fourier Expansion
We write the system (1.1) in the equivalent form

1 = g1(x1, x2)

. (2.1)
Fo + w?xe = g2($1,932),

where w > 1 represents the dominant frequency of the system. In this
section we do not assume that g(zx) is the gradient of a potential. Our aim
is to present a technique that allows us to separate the smooth and the
oscillating parts of the solution of (2.1) and to write it in the form

(28) ( >+Zl’“‘“t( i) (2.2)

k0



where y;(t) and z¥(¢) are smoothly varying functions (i.e., their derivatives
are bounded independently of w). The functions y;(t) are real-valued and
2F(t) are complex-valued. Since the solution z;(¢) is real-valued, we have to
require that z;k = zf. We also use the notations zo := z% and zg = Yo.

Inserting (2.2) into (1.1), expanding the nonlinearity into a Taylor series
around (y1 (t),O), and comparing the coefficients of e*** yields differential
equations for the coefficient functions y;(¢) and z¥(¢). With the exception
of y1(t) they are of singular perturbation type. We have to find smooth
solutions of these equations. As explained in [6], the functions y; and 2o are
seen to be given by differential equations of the form

41 = walFu(yl,y'l,@)? Zy = ZwilFQZ(ylaylv z2), (2.3)
1>0 1>1

and the remaining functions by algebraic relations

2k = Z Wl GE (Y1, 91, 22). (2.4)
>0

Observe that yo = 29, so that we also have an algebraic relation for ys.
Furthermore, for i = 2 and k = 1, we have the trivial identity z3 = 2 which
implies

G%o(yla.@l,@) = 29, G%l(yl,yl,zg) =0 for [>1. (2.5)

Remember that z;~ ¥ is the complex conjugate of zf, so that also Gz._lk is the
complex conjugate of GZ.

The series (2.3) and (2.4) are asymptotic expansions and do not converge
in general. Later, we shall truncate them suitably in order to get rigorous
statements.

2.1 Recurrence Relations for the Coefficient Functions

For a computation of the functions Fj; and G¥ in (2.3) and (2.4) it is conve-
nient to introduce the Lie operator £;. It can be applied to smooth functions
G(y1,71,22) and it is defined for [ > 0 by

DiG-g  if 1=0

0 it 1>1, (2:6)

L1G = DG - Fy + D3G - Foy + {
where D; denotes the partial derivative with respect to the jth argument of
G(y1,71, 22). This definition is motivated by the fact that, whenever y; (%)
and z3(t) are a solution of the differential equation (2.3), then we have

L G0, »() = S W LG (0, 31(0), (1) (2.7)

dt
1>0



Lemma 2.1 The function (z1(t),z2(t)) of (2.2) with y;(t) and zF(t) given
by (2.3) and (2.4) represents a formal solution of (2.1) if the coefficient
functions Fy and Gfl satisfy the following recurrence relations (for 1 >0):

Fy = 51(0,1)
Gk = k—g( N LalaGh 42k Y LmG’fijl(k,lf2))
m+n+j=I—2 m+j=Il—-1
Fy = (52 LI=1) = Y Lafy)
m+j=l—1
Gl = k2 (52 =Y LaLlGh -2k Y LaGh).
mA4n+j=I1—2 m+j=l—1

The sums are over m > 0,n > 0,5 > 0, and we have used the abbreviation

sk)= 3 —— 3 S DPDRgiy,0)(GE, GLp).

mln!
m,n>0 a,B ef
s(a)+s(B)=k s(e)+s(f)=l

Here, a = (a1, ..., am), 8= (B1y---,0n),e = (e1,...yem), [ = (fro-os fn)
are multi-indices with o; # 0, §; arbitrary, e; > 0, f; > 0 and ( le?Ggf) =

(GTL ... ,GY™ Gﬁ1 ngfn)' We use the abbreviation s(a) = > 1w o

le1? " Lem? 2,10
and szmzlarly for the other multi-indices.

Proof. Inserting the relation (2.2) into the first equation of the system (2.1),
and expanding the nonlinearity into a Taylor series around (y1,0), we obtain

i+ Y e (E + 2kwif — KBPw?al)

k0
1 i
= Y MO DD g, (4, 0) (),
mm,>0 a8
where (2, Z2B) = (21", .., 20 Zgl, ,zgn) and the last sum is over all multi-

indices a, § with a; # 0. We now insert our ansatz (2.3) for g and (2.4) for

f, we use the Lie derivative for expressing the derivatives of zl, and thus
obtain
SowtBy 4 YN WL, LG,
>0 k#£0 m,n,j>0
+ 2k Y WL, G - K2 WG, )
m,j=>0 720

1 iwt(s(a)+s m yn
= Z er Hs(@)+5(0) D D2 g1 (y1,0)

mnz0 " o (D wm e, > v ey,

e>0 >0



We just have to compare the coefficients of e*** and w™ (resp. w'*2) to

obtain the recurrence relations for the functions Fi; and G’fl. This implies
GF, =0, GV =0 forall k#0, (2.8)

so that the series expansions (2.4) for all 2 start with the w™2-term.
Looking at the second equation of the system (2.1), we obtain

fio + w?ys + Z et (25 4 2ikwzl + (1 — k?)w?2h)

k#0
1 i
= > g > MO DD g, (1, 0) (4, 29).
mn>0 a8

We insert the ansatz (2.3) for Zp and (2.4) for zF, and in the same way as
above we get the recurrence relations for the functions Fy and G’Q“l. They
imply

Ghk, =0, G5 =0 for k+#+1, (2.9)
so that also the expansions (2.4) for z§ (k # +1) start with the w™2-term.
O

2.2 Estimates for the functions /}; and ij

Our next aim is to get upper bounds for the coefficient functions Fj; and
ij of (2.3) and (2.4). Since they depend on the derivatives of g;(z1, z2), it
is natural to require g(z) to be analytic and bounded (by M) in a suitable
complex domain, say in {(z1,x2); |1 — y10]| < 4R, |z2|| < 3R}. Cauchy’s
estimates then imply

DT D39i(y1,0)|| < mlnt M (3R)™™"  for |ly1 —wiwoll <R (2.10)

and for all n,m > 0. This is our main assumption of this section. To obtain
the desired estimates for the coefficient functions we combine and adapt the
techniques of [2] and [7, Sect. IX.5].

We fix a value Yy = (10, 910,0), and we consider the complex ball

B,(M0) = {(y1,91,22) 5 llyr — waoll < pR, 191 — d10ll < pM, [|z2]| < pR}.
(2.11)
For a function G(y1, 91, 22) defined on B,()y) we let

1G|, = max {||G(y1, 91, 22) |5 (41,91, 22) € By(Jo)}- (2.12)

Since the coefficient functions are defined via expressions of the form £;G,
the following lemma will be useful.



Lemma 2.2 Let G be analytic and bounded on B,()y), and let Fy; and Fy
be bounded on By(Yy) with 0 < o < p. Then we have

1£0Gllo < 575 - Gl - max ([ Fiollo /M. [ln |0/ R)

1£:Glloe < 75 - 1Gllp - max (| Fulle /M, | Falle/R)  for 1> 1.
Proof. Consider a(¢) = G (y1, §1+CFu(y1, 91, 22), 22+CFo(y1. 91, 22) ), where
(y1,91,22) € Bs(Yp). This function is analytic for |(| < e with € := (p —

o)/ max(||Fylls /M, ||Fulls/R). Since o/(0) = (£,G)(y1,91,22), Cauchy’s
estimate yields

1 1
LG (Y191, 2) | = &' (0)] < Z sup a(Q)ll < Z G, ,

I¢|<e

which proves the statement for [ > 1. For [ = 0 we have to consider the

function a(¢) = G(y1 + (91,91 + (Fio(y1, 91, 22), 22), because Fpy = 0 by
Lemma 2.1. O

The use of Lemma 2.2 implies that we cannot work with only one norm
|||, for finding estimates of the coefficient functions. We therefore fix a pos-
itive integer L, we put § = 1/(2L), and we consider the norms corresponding
to balls with shrinking radius p=1-16 (0 <1< L).

Lemma 2.3 Let Yy = (Y10, 910,0) be given, and assume that (2.10) holds.
The functions Fj; and ij of Lemma 2.1 satisfy

[Fiol1 < aoM, [91l1 < aoR
| Fulli—is < aiM, | Farllizis < aiR, 1<I<L
1Gog Il + [|G3oll1 < boR

max (SO RGHIs , SN - R IGE ) < bR, 1<I<L,
k0 keZ

where ag = max(9, (||[g10]1 + M)/R), by = 2, and the generating functions
a(C) = 2121 a;Ct and b(¢) = 2121 bt are implicitly given by

a(¢) = =9+9(1+3%) (1= 0(0) " + %5 (a0 + a())a(0),
b(¢) = 24 (1 5(¢)) 7 + % (ag + a(0)) (bo + b(Q)) (2.13)
+4 (a0 +a(0))” (bo + b(C)).

Proof. (a) In this proof we shall use the shorthand notation

|Gl := |Glli—is = max {||G(y1, 01, 22) || 5 (y1, 81, 22) € Bi_i5(D0)}. (2.14)

Observe that ||G]]; is a decreasing function of [.



To obtain the desired statement, we begin with some estimations and
then we prove the result of this Lemma by induction on I.
(b) Because of (2.8), (2.9) and (2.5), the above estimates for G¥ also

imply

SIGHI < bR, D IGEI < bR for 1>0. (2.15)
k=0 keZ

Using these relations and the analyticity assumption (2.10), we are able to
majorize the S;(k, 1) as follows:

Inl
SolISitk Dl < Y T Z > MEBRTTGE - [Gog -

keZ m=0 s(e) + +5(6)
;é S

M > 3T e, . be, by, - by,

m,n>0 s(e)+s(f)=l

MY (j+1) > 37bg, ...bs; = Ma,
320 di+..+dj=l

IN

VAN

IN

where ¢; (I > 0) are the coefficients of the generating function

e — o) — 1 _ 9
;lc © (1 B2 (1-5(())*

We have used [|GT} [l; < [|GT
consequence of e <[ and f1 <.
(¢) For m 4+ n+ j =1—2 a twofold application of Lemma 2.2 yields

ey and [GEL |l < |GEL Iy, which are a

R
L LnGE Iy < 52 G311 am an  and YL LaGHlli < <5 bj am G-
k0

This implies

S> T ILmLaGhll < dz 2,

k#0 m+4n+j=I1—2

where the generating function of the d; is

¢) =" dict = (bo +b(C)) (ao + al())>.

1>0

The same estimate is obtained for >, ., >° . i o [[LmLn G% il

(d) In order to estimate |k| || £,,G¥; Sl for m 4+ =1-1, we observe that
similar to (2.15) also

Z E[IGE i < bR, Z k[ |Ghl < R for 1>0  (2.16)
keZ ke

10



holds. As in part (b) we thus obtain

R
Z k| Z 1Lm Gl < 5 @1,

kEZ m+j=Il—1

where the generating function for the ¢; is

7(¢) = _ac' = (bo +b(¢)) (a0 + a(()).

>0

(e) After these preparations the statement can be proved by induction
on [. The bounds ay and by are defined just to satisfy the estimates for
[ = 0. The form of the generating functions for a; and b; are a consequence
of the recurrence relations of Lemma 2.1 and of parts (b), (¢) and (d) of this
proof. O

To get bounds on the expressions of Lemma 2.3, we have to majorize a;
and b;. This can be done with the help of Cauchy’s inequalities, because the
generating functions a(¢) and b(¢) are analytic in a neighbourhood of the
origin. Since the equations (2.13) depend on §, R and M, we have to be
careful in determining the radius of the disc of analyticity. In the following
we assume M > R. This can be done without loss of generality, because
we can always increase M without violating (2.10) or, even better, we can
rescale time in the differential equation and thus multiply g(z) by a scalar
factor.

Theorem 2.4 We fix Yo = (Y10, Y10,0), and we assume that the nonlinear-
ity g(z) satisfies (2.10) with M > R, and that ||y10|| < M. The coefficient
functions of Lemma 2.1 then satisfy for | > 1
vIMN\! vIMN!
Fullyys < nM (227) Fallyyo < nR(22-)
| 1lH1/2 S M R | 2z||1/2 S K R
ulM)l

max (Y KGH 2 Y11= K7 [Ghillj2) < nR(Z

k40 keZ

where p and v only depend on an upper bound of M /R but not on the other
data of the differential equation. The norm is that of (2.12).

Proof. We multiply the ¢ in (2.13) either by 3 > 1 or by % > 1 so that the

relations only depend on %—%, a(¢), and b(¢). This makes the coefficients g,

and b; at worst larger, so that the estimates of Lemma 2.3 still hold. We
then introduce the new variables ¢ = (M /R, a(¢) = a(¢), and b(¢) = b(¢),
so that (2.13) becomes

a(6) = —9+9(1+§)(1—0() 7 + (a0 +a(0)a(cd).
b() = 9¢2(1=5(8)) " + 2L (ao +a(0)) (2 + 5(0)) (2.17)



Observe that ag < max(9,2M/R), which is a consequence of [g10| < M.

In the equations (2.17) we obtain @ = 0, b = 0 for ¢ =0, and the implicit
function theorem can be applied. This proves the existence of constants
p and v, such that @(¢) and b(¢) are analytic in the disc || < 2/v and
bounded by u. Cauchy’s inequalities thus prove that the Ith coefficient of
these generating functions is bounded by u(r/2)!. This yields

() <u() o(5p) <n3)
aj M S 9)° 1 M S p 92) "
Putting [ = L in the estimates of Lemma 2.3 and inserting the just obtained

upper bounds for ay and br, proves the theorem. We use the fact that
1-Lé=1/2. O

3 Exponentially Small Error Estimates

In general, the series expansions in (2.3) and (2.4) diverge, even for arbi-
trarily large w. For obtaining rigorous statements we have to truncate these
series. We thus consider

=Y, wlFuinz), L= Y wlFulizn), (1)
0<I<N 1<I<N

2k = Z w GE (y1, 91, 20). (3.2)
2<I<N

The choice of the truncation index will be made on the basis of the estimates
of Theorem 2.4. The Ith term in the expansions (2.3) and (2.4) is majorized
by Const(vIM/wR)!, which is minimal for vIM/wR = 1/e. We therefore
choose the integer truncation index N such that

wR

N < N +1. 3.3
< M< + (3.3)

ev
Using the inequality

> () 5 e v
2<I<N 2<I<N

which can be checked numerically for small IV, and the left-hand expression
of which is a decreasing function of N for large N, it immediately follows
from Theorem 2.4 that

K G < 865 R (L) < Const-R (L) (3.4)
kzﬂ 2§§:Nw 1ll1/2 u <wR) ons (wR)

The remaining bounds of Theorem 2.4 yield similar estimates also for G’;l,
Flla and le.

12



3.1 Initial Values for the Modulated Fourier Expansion

In this section we consider the function

21(t)) _ (w(t) ikt Zf@)) ‘
() = (o) + 2. (o) 3:)
where y;(t) and 2% (¢) are solutions of the truncated system (3.1)—(3.2). The
sum over k is still infinite.

In the following we consider the differential equation (2.1) with initial
values z1(0) = z19, £1(0) = Z10, x2(0) = x99, ©2(0) = 29, and we assume
that the harmonic energy of these initial values is bounded by E independent
of w, see (1.5). We first show that to these initial values there correspond
(locally) unique initial values for the system (3.1), such that z(0) = z(0)
and z(0) = #(0). We then show that the function (3.5), obtained with these
initial values for y1, 91 and 29, has an exponentially small defect when it is
inserted into (2.1).

Lemma 3.1 Consider the differential equation (2.1) with initial values
z(0) = (x10,720), £(0) = (£10, T20) satisfying (1.5). Assume that the nonlin-
earity g(z) is analytic in a ball {(z1,z2) |||z1 — z10]] < 4R, ||z2|| < 3R} and
bounded by M, with M > R. For sufficiently large w (M/wR < =y, where
does not depend on w) there exist (locally) unique initial values y1(0) = y10,
71(0) = 910, 22(0) = 290 for the system (3.1), such that

z(0) =(0),  #(0) =x(0) (3-6)
with T(t) from (3.5). These initial values satisfy

r10 = Y10 + O(Rw™?), Too = 290 + Z20 + O(Rw™2),
jle = ?)10 + O(Rw‘l), i‘QQ = inQO — iwzgo + O(Rw‘l),

where the constant symbolizing the O(-) can depend on M/R and on the
harmonic energy E, but not on w.

Proof. Using the truncated relations (3.2) and the Lie operator Ly, the

13



condition (3.6) becomes

T = y10+z Z w™ G (y10. 910, 220, Z20)

k0 2<I<N
T20 = Z20 +7Z20 + Z Z w™ G5 (y10, 9105 220, Z20)
[k|£1 2<I<N
T = Y0+ Z Z ( (ikw) Gy (110, 910 220, Z20)
k£0 2<I<N
+ Z (LG (Z/lanlOaZQOaZQO))
0<s<N
(iw)iliQO = 290 — 220 + lw Z Z ( 1kw GQZ(yIO,yIO,ZQO,ZQO)
k|21 2<I<N
+ Z 5 (LsGY) (?JlanlOaZQOaz%))
0<s<N

Collecting the unknown variables into a vector Yo = (10, Y10, 220, Z20), this
system can be readily brought to the form Yy = F(J)p). Using Cauchy’s
inequalities and (3.4), we have ||F/(Y)|| < Const- (25) < 1 if M/wR is
sufficiently small. This implies, by the Mean Value Theorem, that F is a
contraction on the closed ball

B =A{(y1,91,22) [ly1 — 210l < R/4, |91 — @10l < M/4, |22 < R/4}.

Furthermore, by (1.5), (3.4) and using the fact that M/wR is sufficiently
small, we have F(B) C B. To conclude the proof, we apply the Banach
Fixed Point Theorem to solve the nonlinear system Y = F()). O

3.2 Estimation of the Defect

After having found suitable initial values for the differential equation (3.1),
wich exist for w > wy with a sufficiently large wp, we investigate the length
of the time-interval such that the solution exists and remains in the ball

B =A{(y1.91.2) [ ly1 — vaol < R/2, [[91 — dholl < M/2, ||z[l < R/2}.

We assume that the nonlinearity g(x) satisfies (2.10) with M > R and that
|l910]] < M (this assumption is essentially a definition of M and R). Similar
o0 (3.4), the estimates of Theorem 2.4 then yield

> W Fuyi, i, 22)lhje < Const- M

0<IKN

. . M .
Z w lHFQl(yl’yl,ZQ)Hl/Q < C’onst-R(m) < Const-M -w™*
1<I<N

(3.7)

14



for (y1,91,22) € B. As long as the solution of (3.1) remains in B, we thus
have the estimates

ly1(t) — yiol < t| g0l + t2M Const
ll91(t) — 910l < t M Const (3.8)
lz2(t) — z00|| < t Mw ! Const.

This proves the existence of a 7' > 0 such that (y1(t), 1 (y), 22(¢)) € B for

0 <t <T. As the generic constant Const, also T only depends on an upper
bound of M/R.
In the following we denote

P = (10). - (30), (3.9)

Ya(t) 23 (1)

where y;(t) and 2¥(t) are the solution of the system (3.1) (3.2). The ap-
proximate solution Z(t) of (3.5) is thus equal to >, y*(t). Without any
truncation of the series in (3.1)-(3.2), the functions y*(t) are formally a
solution of

1
Pt =Y = Y g™ ), (3.10)

m>0 " s(a)=k,0; 20

because they are obtained by comparing the coefficients of et (see the
proof of Lemma 2.1). Let us study here the effect of the truncation.

Theorem 3.2 Consider the differential equation (2.1) with initial values
x(0) and (0) satisfying (1.5). Assume that the nonlinearity g(z) is analytic
in the complex ball {(xz1,z2)| ||z1 — z1(0)|| < 4R, ||z2]| < 4R} and bounded
by M with M > R and let ||y1o|| < M. Let the truncation index N in (3.1)
and (3.2) be determined by (3.3). Then, there existy > 0,7 >0 and wy > 0
such that the defect

0t = 0 + 9 - 3 — S g O0) (5 (1), (D)

m!
m>0 s(a)=k,a; #0

satisfies for 0 <t <1 and for w > wy

S IOl < O M.
keZ

The constants C,~,T,wy only depend on an upper bound of M/R but not
on w.

Proof. First we let N and w be independent variables (for the time being not
related by (3.3)), and we consider the defect as a function of ¢, N, and w™!,
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ie., 6r(t) = or(t,N,w 1). By the construction of the coefficient functions
y*, the defect d;, is an analytic function of ¢ = w™! in a neighbourhood of
the origin, and moreover, §; = O(w™N~1). Therefore, the following function
is analytic in a neighbourhood of the origin:

F(C) =Y uj6klt, N, ) ¢NVHD,

k| <m

where m is an arbitrary integer, and the u; are arbitrary vectors of unit
norm. For ¢t < T, with T sufficiently small (see (3.8)), the function F(w™!)
is well defined for |w™!| < ey, where
R
N UMN
so that the Maximum Principle can be applied on this disk. For |w™!| =
eN, Le., for |w| and N related like in (3.3) but with 2 instead of e in the
denominator, the bounds (3.4) and (3.7) are still valid (except that the
constant 8.65 increases to 12.4).
For t < T, we have ||y°(t) — z(0)|| < R and Cauchy’s estimates yield

SIS S Mo . o)

kEZ m>0 s(a)=k,0; 70

1 -
<M E o g E m!(BR)™™ |y | ... [ly*™| < Const- M.
m>0 a; #0 am#0

The last inequality is a consequence of (3.4) and (3.7), which yield
Z | < Const- M -w™"
a#£0

which is smaller than 2R for w > wy (take wqy greater if necessary). Again
by (3.4) and (3.7), we obtain

Z 15 + Q2| = Z 2% + 2ikwz® — K2w?2k + Q22K || < Const- M.
keZ keZ

Putting this together, we obtain the bound

S 16kt N.Q)Il < Const- M for |¢] = en.
kEZ

With the Maximum Principle, this gives for w1 < ey

Fw ) < max [F(Q)
[{|l=en
< max Y0t N ey ™Y < Comst MV,
|C|=r~:z\/k€Z
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Choosing now ug = 0 (t, N,w 1) /||0x(t, N,w 1)|| in the definition of F(()

and letting m — oo gives

> 10kt Nw || < Const - M - (wey )~ N,
kez

For w and N related by (3.3) we have (wey) ! < 2/e = e @ with a =
1—In2 > 0, so that in this case

Z 165 ()|l < Const- M - =N+ < Const- M - ™
keZ

holds with the exponent v = VOJ‘\I}B. O

4 The Hamiltonian Case

Sections 2 and 3 treated general second order differential equations with
rapid oscillations. Our main interest is in Hamiltonian systems, where
g(x) = =VU(z) and U(z) is an analytic potential. The Hamiltonian H (z, %)
of the system (2.1) is then given by (1.2).

4.1 Hamiltonian of the Modulated Fourier Expansion

It is interesting to note that the Hamiltonian structure passes over to the
differential equation for the coefficients of the modulated Fourier expansion.
To see this, we let

y = (7 y_27 y_17 yO’ y17 y2v )

be a two-sided infinite sequence, and we define

Uy) =UE)+ 3 S UG y). @)

m>0 s(a)=0,0;#0

This function is well-defined as long as Zk7g0 |y*|| < R. The system (3.10)
then becomes

g+ Q% = =V U(y) (4.2)
and is Hamiltonian with
. 71 - —kN\T -k kT O2, k
H(y.¥) = 2%((@/ i+ (TN U). (4.3)
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4.2 An Almost-Invariant Close to the Oscillatory Energy

It turns out that, besides the Hamiltonian H(y,y) (see [6]), the system (4.2)
also has

I(y.y) = —iw) Ky )" (4.4)
k0
as a conserved quantity. This series converges if 3, . [k| | < oo and

maxy.zo ||§*|| < co. For the functions y*(t) of (3.9), where y;(t) and zF(¢)
are the solution of the truncated system (3.1)-(3.2), this is a consequence
of (3.4).

We shall prove here that the expression Z(y(t),y(t)) is conserved up
to exponentially small terms. Moreover it turns out that this expression is
close to the oscillatory energy

. 1. ?
I(,@) = Ll + 2 o) (4.5)
of the system (2.1) with g(z) = —VU(z).

Theorem 4.1 Let y(t) be the infinite vector with components y*(t) given
by (3.9) and corresponding to initial values given by Lemma 3.1. Under the
assumption of Theorem 3.2 we then have

I(y(t),¥(t) = Z(y(0),3(0)) + O(e™)
Z(y(t),y(t)) = I(z(t),&(t)) + Ow™)

for 0 <t <T and w > wy, where the constants symbolizing the O(-) depend
on E, M, and R, but not on w.

Proof. We use the algebraic identity
D ik (") VU(y) =0, (4.6)
k#0

which holds for >7, [kl |y*|| < oc. For a proof we refer to [6] and [7,
Sect. XII1.6.2].
We then compute the time-derivative of Z (y(t),y(t)) with y(t) of (3.9):

d

ST(y(0,3(0) = —iw Y ki F T ~ 1w Y ky O ()
k0 k0
= —iw) ky "t T( (t) + Q%yF(t )+Vuy7k(y(t)))
k0
= fleky T(Sk
k0

We have used that the terms k (7 %)T9% as well as k (y*)TQ%y* cancel
with the corresponding terms for —k. Furthermore, we have added the
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expression (4.6) to make appear the defect in the right-hand expression.
The first statement now follows from Theorem 3.2, and by an integration
on the interval [0, ¢].

The second statement is obtained as in the proof of Theorem 4.3 in [6].
O

4.3 Proof of Theorem 1.1

To prove the main theorem of this article, which states that (4.5) is nearly
conserved over exponentially long time, we only have to use Theorem 4.1
and change the O(w™") remainders by O(e™7) in the proof of Corollary
4.4 in [6].

Acknowledgement

We are grateful to Francesco Fasso for interesting discussions on the long-
time conservation of the oscillatory energy.

References

[1] D.Bambusiand A. Giorgilli, Exponential stability of states close to resonance in
infinite dimensional Hamiltonian systems, J. Statist. Phys. 71 (1993) 569-606.

[2] G. Benettin and A. Giorgilli, On the Hamiltonian interpolation of near to the
identity symplectic mappings with application to symplectic integration algo-
rithms, J. Statist. Phys. 74 (1994) 1117-1143.

[3] G. Benettin, L. Galgani and A. Giorgilli, Realization of holonomic constraints
and freezing of high frequency degrees of freedom in the light of classical pertur-
bation theory. Part II, Commun. Math. Phys. 121 (1989) 557-601.

[4] D. Cohen, Développement asymptotique de la solution d’une équation différ-
entielle a grandes oscillations, Diploma Thesis, University of Geneva, Mai 2000.

[5] F. Fasso, Lie series method for vector fields and Hamiltonian perturbation the-
ory, Z. Angew. Math. Phys. 41 (1990) 843-864.

[6] E. Hairer and Ch. Lubich, Long-time energy conservation of numerical methods
for oscillatory differential equations, STAM J. Numer. Anal. 38 (2001) 414-441.

[7] E. Hairer, Ch. Lubich and G. Wanner, Geometric Numerical Integration.
Structure-Preserving Algorithms for Ordinary Differential Equations, Springer
Series in Computational Mathematics 31, Springer-Verlag, Berlin, 2002.

[8] W.L. Miranker and M. van Veldhuizen, The method of envelopes, Math. Comp.
32 (1978), no. 142, 453-496.

[9] J.A. Murdock, Perturbations. Theory and Methods, a Wiley-Interscience Pub-
lication, John Wiley & Sons, Inc., New York, 1991.

[10] A.I. Neishtadt, The separation of motions in systems with rapidly rotating
phase, J. Appl. Math. Mech. 48 (1984) 133-139.

19



[11] A.V.Pronin and D.V. Treschev, Continuous averaging in multi-frequency slow-
fast systems, Regul. Chaotic Dyn. 5 (2000) 157-170.

20



