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Abstract.

The long-time near-conservation of the total and oscillatory energies of numerical
integrators for Hamiltonian systems with highly oscillatory solutions is studied in this
paper. The numerical methods considered are second-order symmetric trigonometric
integrators and the Stormer Verlet method. Previously obtained results for systems
with a single high frequency are extended to the multi-frequency case, and new insight
into the long-time behaviour of numerical solutions is gained for resonant frequencies.
The results are obtained using modulated multi-frequency Fourier expansions and the
Hamiltonian-like structure of the modulation system. A brief discussion of conservation
properties in the continuous problem is also included.
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1 Introduction

This article studies the conservation of invariants and almost-invariants along
numerical approximations of solutions that are highly oscillatory. We consider
Hamiltonian systems with Hamiltonian function

L 2
1 . Aj
(1.1) H(w,&) = 5 3 (I41% + 5 |l2;1%) + U2),
j=0
where © = (zg,21,...,7¢) with ; € R%, A\g = 0 and \; > 1 are distinct

real numbers, € is a small positive parameter, and U(z) is a smooth potential
function. Our aim is to extend the results of [5] (see also Chapter XIII of [6]) to
the multi-frequency case £ > 1.

Following [1] we consider the resonance module

(1.2) M={ke€Z k) + ...+ kede =0}
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and we denote the oscillatory energy of the jth frequency by

- 1 =12 )\3 2
(1:3) 1w, @) = 5 (1112 + 2 s 12)-

In [1] it is shown that under a diophantine non-resonance condition outside M
the quantities

V4
(1.4) (2, @) = Z ‘;\—j I;(x, %)

are approximately preserved along every bounded solution of the Hamiltonian
system that has a total energy bounded independently of £, on exponentially
long time intervals of size O(e®/¢) if the potential U (z) is analytic and

(1.5) = (u1,...,pe) is orthogonal to M.

Since pu = A is always orthogonal to M, the total oscillatory energy Z§:1 Li(x, &)
of the system is approximately preserved independently of the resonance mod-
ule M. Subtracting this expression from the total energy (1.1), we see that also
the smooth energy

(1.6) K(2,) = ¢ [lao] + U ()

is approximately preserved. With an e-independent bound of the total energy
H(z,%) we have z; = O(e) for j = 1,...,¢, so that K(z,&) is close to the
Hamiltonian of the reduced system in which all oscillatory degrees of freedom
are taken out, Ho(zo, o) = 3[20|* + U(zo,0,...,0).

ExaMPLE 1.1. To illustrate the conservation of the various energies, we con-
sider a Hamiltonian (1.1) with £ = 3, X = (1,v/2,2) and we assume that the
dimensions of x; are all 1 with the exception of that of x1 = (x11,212) which
is 2. We take e ' = w = 70, the potential

(].7) U(CL‘) = (0.001.’1:0 + 211 + 212 + 22 + x3)47

and z(0) = (1,0.3,0.8¢, —1.1¢,0.7¢), 2(0) = (—=0.75,0.6, 0.7, —0.9, 0.8) as initial
values. For A = (1,v/2,2) we can take = (1,0,2) and pu = (0,/2,0) with (1.5).
In Fig. 1.1 we plot the oscillatory energies for the individual components of the
system. The corresponding frequencies are attached to the curves. We also plot
the sum I + I3 of the three oscillatory emergies corresponding to the resonant
frequencies 1/¢ and 2/e. We see that I + I3 as well as Iy (which are I,, for the
above two vectors i satisfying (1.5)) are well conserved over long times up to
small oscillations of size O(g). Already from the very beginning there is an energy
exchange between the two components corresponding to the same frequency 1/e,
and on a larger scale an energy exchange between I; and I3 can be seen.

If we replace the factor 0.001 in the potential U(x) of (1.7) by 1, then no vis-
ible exchange takes place between oscillatory energies corresponding to different
frequencies, and all I; are approzimately preserved. This is probably due to the
fact that quadratic terms in U(x) can no longer be neglected and perturb the
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Figure 1.1: Oscillatory energies of the individual components (the frequencies
Ajw = \;/e are indicated) and the sum I; + I3 of the oscillatory energies corre-
sponding to the resonant frequencies w and 2w.

resonant frequencies in Q. The same observation can be made if U(x) is kept
unchanged but \y = 1 is replaced by A\ = 1 + 2.

In this article we study the long-time preservation of H(z,4) and I,(z,)
along numerical solutions obtained by integrators that solve the linear part of
the differential equation exactly and reduce to the Stormer—Verlet method if only
the term for £ = 0 is present in the sum (1.1). We begin with presenting the
main results and we illustrate them with numerical experiments (Section 2). The
proof of the main theorem is based on an extension of the technique of modulated
Fourier expansions to the multi-frequency case (Section 3) and on the existence
of formal invariants for the coefficient functions of this expansion (Section 4). In
Section 5 we describe the extension of the long-time energy conservation results
to the Stormer-Verlet method. We finally apply, in Section 6, the approach of
modulated Fourier expansions to the analytical problem. We show that under
the weak non-resonance condition

(1.8) k- Al >cyve for keZ\ M with [k| <N

(where k- X = k1A +...+ kA and |k| = k1| + ...+ |k¢|) the expression I, (z, &)
with g L My = {k € M :|k| < N} is approximately preserved over intervals of
length O(e~N+1). Condition (1.8) is the analogue of a non-resonance condition
that will be required for the numerical discretization.

2 Main result and numerical experiments

The equations of motion for the Hamiltonian system (1.1) can be written as
the system of second-order differential equations

(2.1) =% +g(x),

where Q = diag(w;I) with w; = A;/e and g(z) = —VU(x). We consider the
class of numerical methods studied in [5] and [6, Chapter XIII]. With the step
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size h, these methods can be given in the two-step form (with subscripts now
refering to the time step, not to components)

(2.2) Tpi1 — 2co8(hQ)xy, + xn 1 = h2Wg(Dy,).

Here ¥ = ¢(hQ)) and ® = ¢(hQQ), where the filter functions ¢ and ¢ are real-
valued bounded functions with ¥(0) = ¢(0) = 1. This is complemented by a
velocity approximation given by

(2.3) 2h sinc(hQ)iy = Tpi41 — Tn—1

provided that sinc(h€) is invertible. Here sinc(§) = sin(§)/€. This class of meth-
ods gives the exact solution for ¢ = 0 and reduces to the Stérmer Verlet method
for Q = 0. It includes as special cases various methods proposed and studied
by Gautschi [4] (2(€) = sine®(€/2), 6(¢) = 1), Deuflhard [2] ((€) = sinc(€),
¢(&) = 1), Garcia-Archilla, Sanz-Serna and Skeel [3] (¥(£) = sinc(€)¢(€)), and
Hochbruck and Lubich [7] (¢(¢) = sinc?(£/2)). The interest in such methods
comes from the fact that they can be used with long time steps for which hw;
need not be small.

We note that the method can be rewritten as a symmetric one-step method
(Tny &) — (Tpt1, Eng1) on substituting z,_; from (2.3) into (2.2). We always
assume that the second starting value z; for (2.2) is obtained in this way.

We are interested in the long-time near-conservation of the total energy H (z, @)
and the oscillatory energies I, (z, &) for u L M along numerical solutions (zy,, &)
obtained with step sizes that are not small compared to e. We make the following
assumptions, cf. [6, p.447]:

e The energy of the initial values is bounded independently of ¢,

1. 1
(2.4) Lol + 2@zl < B

The numerical solution values ®x,, stay in a compact subset of a domain
on which the potential U is smooth.

e We impose a lower bound on the step size: h/e > ¢y > 0.

e We assume the numerical non-resonance condition
h
(2.5) ’sin(2— k- A)‘ > ¢vh for all k € Z'\ M with [k] < N,
5

for some N > 2 and ¢ > 0.

The filter function ¥ (&) satisfies, with &§; = hw; = h); /e,

(2.6) ()| < C"Sinc(%fjﬂ for j=1,...,L
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Notice that these conditions guarantee first order convergence on finite time
intervals (cf. Theorem XIII.4.1 of [6], page 427).

We then have the following main result of this paper which we split into two
theorems. They extend Theorem 7.1 of [5] (or Theorem XIII.7.1 of [6]) to multi-
frequency systems. In the first theorem we consider in addition the conditions

(2.7) ()] < Osine® (5 ),
(2.8) [ (&) < Clo(E;)] for j=1,....¢

THEOREM 2.1. Under the above conditions (2.4)—(2.6) and additionally (2.7)
and (2.8), the numerical solution obtained by the method (2.2)-(2.3) satisfies

H(zyp,2n) = H(zo,%0)+ O(h) for 0 <nh < ogh-min(e= M+ =)
Lij(zn, &n) = Ij(xo,d0) +O(h) for 0 <nh <ojh-min(e" M+ =)

for j =1,...,¢. Here, M = min{|k| : 0 # k € M}, 0; = |0(§)], and oo =
min{1,01,...,00}, where o(§) = sinc(§)P(&) /¥ (§). Without the condition (2.7)
the statement is still true with the error term O(h) replaced by O(v/'h). The
constants symbolized by O are independent of n, h, €, \; satisfying the above
conditions, but depend on N and the constants in the conditions.

Note, og > ¢1 ¢/v/h with ¢; > 0 by (2.5) and (2.8). For the non-resonant case
M = {0} we have M = oo and hence the length of the interval with energy
conservation is only restricted by (2.5). Notice that always M > 3, and that
M = 3 only in the case of a 1:2 resonance among the \;. For a 1:3 resonance we
have M = 4 and in all other cases M > 5.

Considering the modified energies

l
(2.9) H*(z,i) = H(z,@)+» (0(&)— 1) Lj(x,2)
j=1
(2.10) Ii(x,d) = Za(gj)%fj(x,j;)
j=1 J

with & = h\;/e and o(§) = sinc(§)o(£)/¥(§), we can prove their conservation
over even longer time intervals. Here we consider the additional condition

(2.11) [6(¢5)] < Clsine(j&)| for j=1,....¢

THEOREM 2.2. Under the conditions (2.4)—-(2.6) and additionally (2.11), the
numerical solution obtained by the method (2.2)-(2.3) satisfies

H*(xna‘rn) H*(IO,:'C()) +O(h)

Lz, &) = I;(w0,%0) + O(h)

for 0<nh< BN+

for p € R with uy L My = {k € M : |k| < N}. Without the condition (2.11)
the statement is still true with the error term O(h) replaced by O(v/h). The
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constants symbolized by O are independent of n, h, €, \; satisfying the above
conditions, but depend on N and the constants in the conditions.
Since p = A is always orthogonal to M and to My, the relation

K(I,SL‘) = H*(:E, 1‘) o I;(I,SL‘)
for the smooth energy (1.6) implies
(2.12) K(xp,in) = K(xo,40) +O(h)  for 0<nh<h N

The analysis of Sections 3 and 4 below shows that this estimate is true without
the assumptions (2.7), (2.8), and (2.11).

Notice that for o(§) = 1 (or equivalently ¥(§) = sinc(€)¢(£)) the modified
energies (2.9) and (2.10) are identical to the original energies (1.1) and (1.4).
The condition ¥(§) = sinc(£)@(§) is known to be equivalent to the symplecticity
of the one-step method (xy,, ) — (Tp41,4n+1), but its appearance in the above
theorem is caused by a different mechanism which is not in any obvious way
related to symplecticity.

NUMERICAT, EXPERIMENT. We consider the initial value problem described
in the introduction, we apply several numerical methods, and we compare the
oscillatory energies along the numerical solution with those of the exact solution.

As a first method we take (2.2) with ¢(§) = 1 and ¥(§) = sinc(£), and we
apply it to the differential equation with large step sizes so that hw = h/e
takes the values 1, 2, 4, and 8. Figure 2.1 shows the various oscillatory energies
which can be compared to the exact values in Fig.1.1. For all step sizes, the
oscillatory energy corresponding to the frequency v2w and the sum I; + I3 are
well conserved on long time intervals. Oscillations in these expressions increase
with h. The energy exchange between resonant frequencies is close to that of the
exact solution for h = 1/w. Tt changes for larger step sizes. We have not plotted
the total energy H(z,, &,) nor the expression K(z,, &, ) of (1.6). Both are well
conserved over long times. The total energy shows oscillations of a size similar
to that of I or I; + Is. The size of the oscillations in K (zy,, Z,) is smaller and
independent of the chosen values for the step size.

We repeat this experiment with the method where ¢(¢) = 1 and (&) =
sinc?(¢/2) (Fig.2.2). Only the oscillatory energy corresponding to /2w is ap-
proximately conserved over long times. It is not surprising that neither the
expression I; + I3 nor the total energy (not shown) are conserved, because the
defining functions of the method do not satisfy o(§) = 1. In fact, if we plot-
ted the modified energy (2.10), good conservation would be observed. Also the
smooth Hamiltonian K (z,,Z,) is well conserved.

Figure 2.3 shows the corresponding result for the method with ¢(§) = sinc(¢)
and (&) = sinc(€)¢(€). Since o(€) = 1, the oscillatory energy for v/2w and also
I, + I3 are well conserved. However, the energy exchange between the resonant
frequencies is not correctly reproduced.
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Figure 2.1: Oscillatory energies as in Fig. 1.1 along the numerical solution of
(2.2) with ¢(£) = 1 and 9(&) = sinc(€). Notice that for this method (&) = 1.
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Figure 2.2: Oscillatory energies as in Fig. 1.1 along the numerical solution of

(2.2) with ¢(&) = 1 and 9(€) = sinc?(£/2).
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Figure 2.3: Oscillatory energies as in Fig. 1.1 along the numerical solution of

(2.2) with (¢) = sine(¢) and ¥(€) = sinc(€)$(©).
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3 Modulated Fourier expansions

For a given vector A = (\1,...,\;) and for the resonance module M defined
by (1.2), we let K be a set of representatives of the equivalence classes in Z‘/ M
which are chosen such that for each k € K the sum |k| = |k1|+...+]|ke| is minimal
in the equivalence class [k] = k + M, and that with k € K, also —k € K. We
denote, for N of (2.5),

(3.1) N={keKk:|kl<N}, N*"=N\{,...,0)}.

The following result establishes a modulated Fourier expansion for the numerical
solution. It is the multi-frequency version of Theorem XIII.5.2 of [6]. Its proof
follows the lines of the proof of that theorem, with rather obvious adaptations.

THEOREM 3.1. Consider the numerical solution of the system (2.1) by the
method (2.2) with step size h. Under the conditions (2.4)-(2.6), the numerical
solution admits an expansion

(3.2) zn = y(t)+ > FUF () + - O@FRY)

keN™
with w = N/e, uniformly for 0 <t = nh < T and € and h satisfying h/e >
¢o > 0. The modulation functions together with all their derivatives (up to some
arbitrarily fixed order) are bounded by

v = O0M), g = O(#%)
3.3 5 EG) _ o (EV(E) ,
(3.3) 0 2 0@), 20 = o(m) (j #0)

2 = O(he™p(&;))  for k # +(j)

for j=0,...,¢. Here, () =(0,...,1,...,0) is the jth unit vector.

Moreover, the function y is real-valued and z=% = z* for all k € N*. The
constants symbolized by the O-notation are independent of h, € and X\; with
(2.5), but they depend on E, N, ¢, and T.

In terms of the difference operator of the method (2.2),

L(hD) := eh? —2coshQ)+ e "P = 2(cos(ihD) — cos h2)
(3.4) 1 1. 1 1.
=4 sm(EhQ + ElhD) sm(EhQ - ElhD)

(with D denoting the differentiation operator), the functions y(t) and z*(t) are
constructed such that, up to terms of size ¥ - O(hVN+2),

1 m «
L(hD)y:hQ\If(g(@y)ﬂL > mg( ) (@y)(®2) )
(3.5) s(a)~0
L(hD + ihk - w)zF = h>W Z g™ (Dy)(P2)".
s(a)~k mi
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Here, the sums on the right-hand side are over all m > 1 and over multi-indices
a = (a1,..., ) with a; € N*, for which the sum s(a) = 377" | a; satisfies the
relation s(a) ~ k, which means s(a) — k € M. The notation ($z)* is short for
the m-tuple (®z1,..., Pz*m). We remark that the equations (3.5) arise from
the fact that for y*(t) = e*“2¥(t) we have

(3.6) L(hD)y*(t) = e*“'L(hD + ihk - w)2*(t),

and from collecting all terms with the same factor €*“t on the right-hand side
after a Taylor expansion of the nonlinearity around ®y.

A similar expansion to that for z,, exists also for the velocity approximation &,,,
cf. [6, Theorem XIII.5.3].

THEOREM 3.2. Under the conditions of Theorem 3.1, the velocity approrima-
tion admits an expansion

(3.7) i = v(t)+ Y et () + OERN Y
keEN™

uniformly for 0 <t =nh <T. The modulation functions together with all their
derivatives up to arbitrary order satisfy

. 2 - 62"/}(5‘])
VYo = Yo +O(h )7 Y= O(sincz(gj/Q) Sinc(gj)>
. ) 2 .
(38)  wp? = et “9(%)
o heMyge ~

Moreover, w* = wk for allk € N*. The constants symbolized by the O-notation
are independent of h, € and \j with (2.5), but they depend on E, N, ¢, and T'.
As a consequence of Theorems 3.1 and 3.2, the oscillatory energy (1.3) along
the numerical solution takes the form
ev(§;)

(s ) = 202 1297 ()12 kA Y ;
39 anin) =27 17 O + O( g ) + O(hi(s)
for t = nh < T. The assumptions (2.5) and (2.6) thus yield the estimate

Li(wn, i) = 202 |28 (£)]1 + O(v/h) and, together with (2.7), we get the sharper

formula [ (2, i) = 202 [|287 (£)[|2 + O(h).

4 Almost-invariants

The coefficients of the modulated Fourier expansion of the numerical solution
have almost-invariants that are related to the Hamiltonian H and the oscillatory
energies I, with y L M. This comes as a consequence of the fact that the system
(3.5) still has a close-to-Hamiltonian structure. To see this, we introduce

y = ken, 2= (z")ren
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with y0(t) = 2°(t) = y(t) and y*(t) = e*“t2k(t) for k € N, where y and z* are
the modulation functions of Theorem 3.1. We introduce the extended potential

1 m «@
(4.1) Uly) = U@ + » — U™ (@) (@y)" .
s(a)~0
where the sum is again taken over all m > 1 and all multi-indices @ = (aq, ..., am)

with a; € N* for which s(a) =37, a; € M. It then follows from (3.5) that the
functions 4" (t) satisfy

(4.2) U 1oh2L(hD)y* = —V_ U(y) + @ - O(LY),

where V_j, denotes the gradient with respect to the variable y~*. This system
has various almost-invariants, as we show next.

4.1 The energy-type almost-invariant of the modulation system

We multiply (4.2) by (§~%)7 and sum over k € N to obtain

Z (5 *)Tw~t® h2L(RD)y"* + %U(y) = oM.
keEN

Since we know bounds of the modulation functions z* and of their derivatives
from Theorem 3.1, we switch to the quantities z* and we get the equivalent
relation

(4.3) Z (7% —ik-wze TOLOR2L(MD + ihk - w)2* + %Z/I(z) = O(hM).
kEN

As in [6, p. 444] we obtain that the left-hand side of (4.3) can be written as the
time derivative of a function H*[z](#) which depends on the values at t of the
modulation-function vector z and its first IV time derivatives. The relation (4.3)
thus becomes

d, . B
Tk = oM.

Together with the estimates (3.3) and the decomposition (3.4), this construction
of H* yields the following multi-frequency extension of Lemma XIII1.6.4 of [6].

LEMMA 4.1. Under the assumptions of Theorem 8.1, the modulation func-
tions z = (2¥)en of the numerical solution satisfy

(4.4) H*[z)(t) = H*[z](0) + O(th™)
for 0 <t <T. Moreover, with o(§) = sinc(£)¢(&)/¥(§) we have

L

H () = 5 loo(t)? + Y o(hw;) 207 |2 @)1 + U (Dy(®))

(4.5) =

+O(h?) + O(eVh).
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By (3.9) and condition (2.11), which gives |a(§j)w(§j)/sin02(%£j)| < C for
& = hwj, the relation (4.5) yields

(4.6) He[z)(t) = H* (0, in) + O(h)

at t =nh < T, with H*(x, %) of (2.9). Without the condition (2.11) the error is
of size O(Vh).
4.2 The momentum-type almost-invariants of the modulation system

The equations (4.2) have further almost-invariants that result from invariance
properties of the extended potential I/, similarly as the conservation of angular
momentum results from an invariance of the potential U in a mechanical system
by Noether’s theorem. For ;1 € R® and y = (y*)ren we set

Su(r)y = (CRarTa TRV TE€R
so that, by the multi-linearity of the derivative, the definition (4.1) yields
eis(a)-pfr

(A7) USr)y) = U@y + > ——— U (@y")(y)"
s(a)~0 ’

If o L M, then the relation s(a) ~ 0 implies s(a) - p = 0, and hence the
expression (4.7) is independent of 7. It therefore follows that

_ a4
_dT 7=0

(Sulr)y) = Y ik - ) (4*) " Vild(y)

keN

for all vectors y = (y*)renr. If 11 is not orthogonal to M, some terms in the sum
of (4.7) depend on 7. The same argument as before and the bounds (3.3) then
yield

@8) D ik-p) (1) Vild(y) =

{ O(M)  for arbitrary p
keN

O(eN ) for p L My
for the vector y = y(t) as given by Theorem 3.1. Multiplying the relation (4.2)
by é(*k i) (y*k)T and summing over k € A/, we obtain with (4.8) that
N é > (k- M TR L(WD)Y = O(WN) + O ).
keN

The O(eM~1) term can be removed for y L My. Written in the z variables,
this becomes

(4.9) — é S (e i) (=) TU B ARL(AD + ihk - w)2F = O(hY) + O(MY),
keN
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As in (4.3), the left-hand expression can be written as the time derivative of a
function Z};[z](t) which depends on the values at ¢ of the function z and its first

N derivatives: J
* _ N M—1
EI#[ZKt) = OMh™Y)+0(e ).
Together with the estimates of Theorem 3.1 this yields the following result.
LEMMA 4.2. Under the assumptions of Theorem 3.1, the modulation func-

tions z satisfy

(4.10) I:[2)(t) = Z;]2](0) + O(th™) + O(te")
for all i € RY and for 0 <t < T. They satisfy

(4.11) I:[2)(t) = I;[2](0) + O(th™)

foru L My and 0 <t <T. Moreover,
14
(4.12) i) = Y o(hwy) 5203 127" DI + O(=Vh),
=1 ’

where again o(€) = sinc(£)p(€) /1(8).
By (3.9) and (2.11), the relation (4.12) implies

(4.13) T:2)(t) = I(n, i) + O(h)

at t = nh < T, with I};(x, %) of (2.10). Without the assumption (2.11) we have
an error of size O(v/h).

4.8  Proof of Theorems 2.1 and 2.2

With the proof of Theorem XIIL.7.1 of [6, p.447], which patches many short
time intervals together, the estimates (4.4) and (4.6) yield directly the result for
H*(xp,&y,) in Theorem 2.2. In the same way, (4.11) and (4.13) yield the result
for I (xy, &) in Theorem 2.2. For the choice i = (j), the relations (4.10), (4.12)

together with |o(hw;)| > ¢1 ¢/v/h (which follows from (2.5) and (2.8)), and (3.9)
with (2.7) yield the estimate for I;(x,, &, ) of Theorem 2.1. Combined with the
estimate already shown for H*(z,,, &, ), this finally gives the result for H(zy,, &)
in Theorem 2.1.

5 Energy conservation of the Stérmer—Verlet method

The Stormer—Verlet method applied to (2.1) reads
(5.1) Tpy1 — 20y + Tp1 = —h %2, + hPg(xy).

For linear stability it needs the step size restriction hwpa.x < 2, where wipax =
max(w;) with w; = X\;/e. For such step sizes the method can be rewritten as a
trigonometric method (2.2) with modified frequencies,

(5.2) Tni1 — 2¢08(h )y + 2n_1 = h2g(xy),
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where _ ) )
(5.3) Q = diag(w;) with  sin(Jhi;) = S hw;.

This interpretation makes the Stormer—Verlet method accessible to the analysis
of the preceding sections. Of course, the relevant resonance module is then that
for the modified frequencies w;,

(5.4) M = {k€Z': ky®y + ...+ kg =0},

which is in general entirely different from the resonance module M of the original
system, unless both are 0. Moreover, the usual velocity approximation given by

(55) 2h ln = Tnp+1 — ITp—1

does not correspond to (2.3) with Q instead of . As a consequence, the total and
oscillatory energies H(zyp,&y) and I;(xy, &,) are not preserved up to O(h), but
have O(hwmax) deviations even over short time intervals. Nevertheless, combin-
ing the results of Sections 3 and 4 with the arguments of [6, Theorem XIII.8.1],
we obtain the long-time near-conservation of the modified energies

L

(5.6) H(x.8) = H(z,#)+ 353 1(&) |4
(5.7) L@ d) = Li(e,@) + 57(&) I

with & = hw; = hA;/e and y(§) = (1 — 1£2)7! — 1. In particular, this yields the
near-conservation of the smooth energy (1.6),

‘
K(x,2) = H"(z,&) — le(x,x)

Moreover, by the arguments of [6, Theorem XIII.8.2], the Stormer—Verlet method
also approximately preserves the time averages over intervals of a fixed length
T of the total and oscillatory energies,

_ h ,

Hn = ? ' Z H(l‘n+i, $n+i)
\in|<T/2

_ h .

Ijn = = Z Li(Zpti, Tryi)-

lih|<T/2
Here we need the following assumptions in analogy to (2.4)—(2.6):
e The energy of the initial values has a bound independent of ¢.

e The numerical solution values z,, stay in a compact subset of a domain on
which the potential U is smooth.
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e We impose lower and upper bounds on the step size:

0<cop<hwj<ec <2 for 7=1,...,¢

e We assume the numerical non-resonance condition
(5.8) ’sin(%hk : a)‘ > eVh forall k € Z¢\ M with [k| < N,

for some N > 2 and ¢ > 0.

THEOREM 5.1. Under the above conditions, the smooth energy along the nu-
merical solution (xy,,&,) of the Stérmer—Verlet method satisfies

K(xp, @n) = K(zo,20) + O(h) for 0<nh<h N+l

and the time averages of the total and oscillatory energies satisfy, for j =
1,...,¢,

H, =Hy+ O(h M
T T " for 0<nh<hmin(e M pN),
J.m

= ijo —|— O(h)

where M = min{|k| : 0 # k € M}. The constants symbolized by O are indepen-
dent of n, h, € with the above conditions.

NUMERICAL EXPERIMENT. We apply the Stormer Verlet method (5.1) to the
problem of Example 1.1. The oscillatory energies along the numerical solution

h = 0.6/wmax

i L O
0 10000 20000 30000 O 10000 20000 30000
h = 0.6/@max

OO VRS VR VISR OV VO Y U VWU VU VUGS W N
Attt st

10000 20000

Figure 5.1: Oscillatory energies as in the figures of Section 2 for the
Stormer Verlet method; the two upper pictures correspond to w; = Aj/e
with ¢ = 1/70 and A = (1,v/2,2); the two lower pictures correspond to
w; = sin(hw;/2) - 2/h with @w; = \;/e and the same \; and ¢ as before.
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are shown in the upper two pictures of Fig. 5.1 for two different step sizes. Since
for our choice of step sizes v(§;) is not larger than 0.1, the perturbation terms
of (5.7) can hardly be observed. In contrast to the exact solution (see Fig.1.1),
there is no energy exchange between the energies corresponding to resonant
frequencies. If we perturb the frequencies w; in such a way that the modi-
fied frequencies w; of (5.3) take the values (1, V/2,2)/e, we recover the energy
exchange in the numerical solution, though now there is no exchange in the con-
tinuous problem. This example demonstrates that in the presence of resonance
the energy exchange is not correctly reproduced for step sizes with relatively
large hwmax-

6 Oscillatory energies along the exact solution

The techniques of Sections 3 and 4 can also be applied to the exact solution
of the Hamiltonian system (1.1). This then yields the following result.

THEOREM 6.1. Assume the energy bound (2.4) and let N be such that the
non-resonance condition (1.8) is satisfied. As long as the exact solution of the
system stays in a compact subset of a domain on which the potential U(x) is
smooth, we have

(6.1) I;(z(t),#(t)) = L;(2(0),#(0))+O(e)  for 0 <t < emin(e M e V)

for j =1,...,L. The integer M = min{|k|: 0 # k € M} is as in Theorem 2.1.
We further have

(6.2) L(z(t),2(t)) = Li(2(0),%(0)) + O(e) for 0 <t <e Nt

for p € R with p 1L My = {k € M :|k| < N}. The constants symbolized by O
are independent of t, €, A\ satisfying the above conditions, but depend on N and
the constants in the conditions.

The statement (6.2) is in complete agreement with the results of [1] where
estimates on exponentially long time intervals are provided for 4 L M. The
formula (6.1) gives information about the energy exchange in the presence of
resonance.

The idea of the proof is to write the exact solution z(t) of the problem as

(6.3) a(t) = y(t)+ Y eF(t) + OFeM).
keN™

In complete analogy to Theorem 3.1 the modulation functions z*(t) together
with their derivatives are bounded on finite time intervals by

(64) yo=0(1), y; =02, 27V =0(), 579 =0(e?), 2k = 0.

They are determined such that y*(¢) = e*w!2k(t) satisfy

(6.5) i*+Q%F = —V_U(y) + OEY),
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which is the analogue of (4.2). Here, U(y) is defined as in (4.1) without the fac-
tors ®. With (6.4) and (6.5) instead of (3.3) and (4.2), the analysis of Sections 3
and 4 proves the theorem.
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