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Abstract

For classes of symplectic and symmetric time-stepping methods —

trigonometric integrators and the Störmer–Verlet or leapfrog method —

applied to spectral semi-discretizations of semilinear wave equations in

a weakly nonlinear setting, it is shown that energy, momentum, and all

harmonic actions are approximately preserved over long times. For the

case of interest where the CFL number is not a small parameter, such

results are outside the reach of standard backward error analysis. Here,

they are instead obtained via a modulated Fourier expansion in time.

1 Introduction
sect:intro

This paper is concerned with the long-time behaviour of symplectic integra-
tors applied to Hamiltonian nonlinear partial differential equations, such as
semilinear wave equations. For symplectic methods applied to Hamiltonian
systems of ordinary differential equations, the numerically observed long-time
near-conservation of the total energy, and of actions in near-integrable systems,
can be rigorously explained with the help of backward error analysis. This
interprets a step of a symplectic method as the exact flow of a modified Hamil-
tonian system, up to an error which in the case of an analytic Hamiltonian
is exponentially small in 1/(hω), where h is the small step size and ω repre-
sents the largest frequency in a local linearization of the system; see Benettin &
Giorgilli [?], Hairer & Lubich [?], Reich [?], and Chapter IX in Hairer, Lubich
& Wanner [?]. When the symplectic method is applied to a semi-discretization
of a partial differential equation, however, then the product hω corresponds to
the CFL number, which in typical computations is not small but of size 1. In
this situation, the “exponentially small” remainder terms become of magnitude
O(1), and no conclusions on the long-time behaviour of the method can then be
drawn from the familiar backward error analysis. Nevertheless, long-time con-
servation of energy, and of momentum and actions when appropriate, is observed
in numerical computations with symplectic methods used with reasonable CFL
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numbers. The present paper gives a theoretical explanation of such conserva-
tion properties in the case of semilinear wave equations in the weakly nonlinear
regime, over time scales that go far beyond linear perturbation arguments. To
our knowledge, the results of this paper are the first results that rigorously ex-
plain the remarkable long-time conservation properties of symplectic integrators
on a class of nonlinear partial differential equations.

We consider the one-dimensional nonlinear wave equation

utt − uxx + ρu+ g(u) = 0 (1) nlw

for t > 0 and −π ≤ x ≤ π subject to periodic boundary conditions. We assume
ρ > 0 and a nonlinearity g that is a smooth real function with g(0) = g′(0) = 0.
We consider small initial data: in appropriate Sobolev norms, the initial values
u(·, 0) and ut(·, 0) are bounded by a small parameter ε.

In Section 2 we recall the exact conservation of energy and momentum and,
less obvious, the near-conservation of actions over long times t ≤ ε−N , where
N only depends on a non-resonance condition on the frequencies, as shown
by Bambusi [?] and Bourgain [?]. With the technique of modulated Fourier
expansions that is central also to the present paper, the near-conservation of
actions along solutions of (1) has been studied in our paper [?], and for spatial
semi-discretizations of (1) by spectral methods in [?]. After discussing the semi-
discretization in Section 3, we turn to the time discretization in Section 4.

We consider a class of symplectic and symmetric trigonometric integrators
discussed in [?, Chap.XIII], and the familiar Störmer–Verlet or leapfrog method.
In Section 4 we describe the trigonometric methods and present numerical ex-
periments illustrating their conservation properties, which appear particularly
remarkable when confronted with the behaviour of a standard explicit Runge-
Kutta method.

In Section 5 we state the main result of this paper, concerning the long-time
near-conservation of energy, momentum and actions along numerical solutions
in the full discretization. The result is proved in Sections 6 and 7, using the
technique of modulated Fourier expansions. This approach was first used for
studying long-time conservation properties of numerical methods for highly os-
cillatory ordinary differential equations with a single high frequency in [?], and
later extended to several frequencies in [?]; see also [?, Chap.XIII] and further
references given there. The extension of this technique to infinitely many fre-
quencies, as occur in equation (1), was studied for the analytical problem in [?],
and our treatment here essentially follows the lines of this previous work, with
additional technical complications arising from the discretization.

In Section 8 we give similar long-time conservation results for the Störmer–
Verlet/leapfrog method used with step sizes in the linear stability interval.
These results follow from the previous ones by interpreting the leapfrog method
as a trigonometric method with modified frequencies.

We are aware of two other papers that deal with long-time energy conser-
vation of symplectic integrators for partial differential equations. Cano [?] also
considers the nonlinear wave equation and aims at extending the classical back-
ward error analysis to this situation. Long-time conservation properties are
obtained under a list of unverified conditions formulated as conjectures. For
symplectic splitting methods applied to the linear Schrödinger equation with a
small potential, results on long-time energy conservation are given by Dujardin
& Faou [?].
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2 The nonlinear wave equation with small data
sect:waveeq

The semilinear wave equation (1) conserves several quantities along every solu-
tion

(
(u(x, t), v(x, t)

)
, with v = ∂tu. The total energy or Hamiltonian, defined

for 2π-periodic functions u, v as

H(u, v) =
1

2π

∫ π

−π

(
1

2

(
v2 + (∂xu)

2 + ρ u2
)
(x) + U

(
u(x)

))
dx, (2) hamilanalyt

where the potential U(u) is such that U ′(u) = g(u), and the momentum

K(u, v) =
1

2π

∫ π

−π

∂xu(x) v(x) dx = −

∞∑

j=−∞

i j u−j vj (3) momentumalyt

are exactly conserved along every solution
(
u(·, t), v(·, t)

)
of (1). Here, uj = Fju

and vj = Fjv are the Fourier coefficients in the series u(x) =
∑∞

j=−∞ uje
ijx

and correspondingly v(x). Since we consider only real solutions, we note that
u−j = uj and v−j = vj . In terms of the Fourier coefficients, equation (1) reads

∂2
t uj + ω2

juj + Fjg(u) = 0, j ∈ Z, (4) nlwj

with the frequencies

ωj =
√
ρ+ j2.

The harmonic actions

Ij(u, v) =
ωj

2
|uj |

2 +
1

2ωj
|vj |

2 , (5) actions

for which we note I−j = Ij , are conserved for the linear wave equation, that is,
for g(u) ≡ 0. In the semilinear equation (1), they turn out to remain constant
up to small deviations over long times for almost all values of ρ > 0, when
the initial data are small. Such a result is proved in Bambusi [?], Bourgain
[?], and Cohen, Hairer, and Lubich [?]. We now give a precise statement of
this result, because this will help to understand related assumptions for the
numerical discretizations.

We consider the Sobolev space, for s ≥ 0,

Hs = {v ∈ L2(T) : ‖v‖s <∞}, ‖v‖s =
( ∞∑

j=−∞

ω2s
j |vj |

2
)1/2

,

where vj denote the Fourier coefficients of a 2π-periodic function v. We assume
that the initial position and velocity have small norms in Hs+1 and Hs for
suitably large s: (

‖u(·, 0)‖2
s+1 + ‖v(·, 0)‖2

s

)1/2

≤ ε. (6) small-init

Since the analysis of the near-conservation of actions encounters problems
with small denominators, we prepare for the formulation of a non-resonance
condition. Consider sequences of integers k = (kℓ)

∞
ℓ=0 with only finitely many

kℓ 6= 0. We denote |k| = (|kℓ|)
∞
ℓ=0 and let

‖k‖ =
∞∑

ℓ=0

|kℓ|, k · ω =
∞∑

ℓ=0

kℓ ωℓ, ωσ|k| =
∞∏

ℓ=0

ω
σ|kℓ|
ℓ (7) prod-omegas
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for real σ, where we use the notation ω = (ωℓ)
∞
ℓ=0. For j ∈ Z, we write

〈j〉 = (0, . . . , 0, 1, 0, . . .) with the only entry at the |j|-th position.
For an arbitrary fixed integer N and for small ε > 0, we consider the set of

near-resonant indices

Rε = {(j,k) : j ∈ Z and k 6= ±〈j〉, ‖k‖ ≤ 2N with |ωj ± k · ω| < ε1/2} . (8) res-seta

We impose the following non-resonance condition: there are σ > 0 and a con-
stant C0 such that

sup
(j,k)∈Rε

ωσ
j

ωσ|k|
ε‖k‖/2 ≤ C0 ε

N . (9) nonresanal

As is shown in [?], condition (9) is implied, for sufficiently large σ, by the non-
resonance condition of Bambusi [?], which reads as follows: for every positive
integer r, there exist α = α(r) > 0 and c > 0 such that for all combinations of
signs,

|ωj ± ωk ±ωℓ1 ± . . .±ωℓr
| ≥ c L−α for j ≥ k ≥ L = ℓ1 ≥ . . . ≥ ℓr ≥ 0, (10) bam-nr

provided that the sum does not vanish unless the terms cancel pairwise. In [?]
it is shown that for almost all (w.r.t. Lebesgue measure) ρ in a fixed interval of
positive numbers there is a c > 0 such that condition (10) holds with α = 16 r5.

Theorem 2.1 [?, Theorem 2.2] Under the non-resonance condition (9) andthm:conserve
assumption (6) on the initial data with s ≥ σ + 1, the estimate

∞∑

ℓ=0

ω2s+1
ℓ

|Iℓ(t) − Iℓ(0)|

ε2
≤ Cε for 0 ≤ t ≤ ε−N+1

with Iℓ(t) = Iℓ
(
u(·, t), v(·, t)

)
holds with a constant C which depends on s, N ,

and C0, but is independent of ε and t.

3 Spectral semi-discretization in space
sect:semi-disc

For the numerical solution of (1) we consider the method of lines approach.
Pseudo-spectral semi-discretization in space with equidistant collocation points
xk = kπ/M (for k = −M, . . . ,M−1) yields an approximation by the real-valued
trigonometric polynomials

uM (x, t) =
∑

|j|≤M

′
qj(t)e

ijx, vM (x, t) =
∑

|j|≤M

′
pj(t)e

ijx (11) uMvM

where the prime indicates that the first and last terms in the sum are taken
with the factor 1/2. We have pj(t) = d

dtqj(t), and the 2M -periodic coefficient
vector q(t) = (qj(t)) is a solution of the 2M -dimensional system of ordinary
differential equations

d2q

dt2
+ Ω2q = f(q) with f(q) = −F2Mg(F−1

2Mq). (12) nlw-semidisc
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Here, Ω is the diagonal matrix with entries ωj for |j| ≤ M , and F2M denotes

the discrete Fourier transform:
(
F2Mw

)
j

=
1

2M

∑M−1
k=−M wk e−ijxk . Since the

nonlinearity in (12) has the components

fj(q) = −
∂

∂q−j
V (q) with V (q) =

1

2M

M−1∑

k=−M

U
(
(F−1

2Mq)k

)
,

equation (12) is a finite-dimensional complex Hamiltonian system with the dis-
crete energy

HM (q, p) =
1

2

∑

|j|≤M

′(
|pj |

2 + ω2
j |qj |

2
)

+ V (q), (13) hamil-semi

which is conserved along the solution
(
q(t), p(t)

)
with p(t) = dq(t)/dt. We

consider the actions (for |j| ≤M) and the momentum

Ij(q, p) =
ωj

2
|qj |

2 +
1

2ωj
|pj |

2, K(q, p) = −
∑

|j|≤M

′′
i j q−jpj , (14) momentum-semi

where the double prime indicates that the first and last terms in the sum are
taken with the factor 1/4. These quantities are defined such that with the
trigonometric polynomials uM , vM of (11),

Ij(q, p) = Ij(u
M , vM ) and K(q, p) = K(uM , vM )

with the definitions of Section 2 used on the right-hand sides. The equality for Ij
hold for |j| < M , whereas I±M (q, p) = 4I±M (uM , vM ). Since we are concerned
with real approximations (11), the Fourier coefficients satisfy q−j = qj and
p−j = pj , so that I−j = Ij .

For a 2M -periodic sequence q = (qj), we introduce the weighted norm

‖q‖s =
( ∑

|j|≤M

′′
ω2s

j |qj |
2
)1/2

, (15) normdisc

which is defined such that it equals the Hs norm of the trigonometric polynomial
with coefficients qj .

We assume that the initial data q(0) and p(0) satisfy a condition correspond-
ing to (6): (

‖q(0)‖2
s+1 + ‖p(0)‖2

s

)1/2

≤ ε. (16) initial

thm:conserve-semiI Theorem 3.1 [?, Theorem 3.1] Under the non-resonance condition (9) with
exponent σ and the assumption (16) of small initial data with s ≥ σ + 1, the
estimate

M∑

ℓ=0

ω2s+1
ℓ

|Iℓ(t) − Iℓ(0)|

ε2
≤ Cε for 0 ≤ t ≤ ε−N+1

with Iℓ(t) = Iℓ
(
q(t), p(t)

)
holds with a constant C which depends on s, N , and

C0, but is independent of ε, M , and t.

We note that Theorem 3.1 implies long-time spatial regularity:

(
‖q(t)‖2

s+1 + ‖p(t)‖2
s

)1/2

≤ ε(1 + Cε) for t ≤ ε−N+1. (17) regularity
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thm:conserve-semiK Theorem 3.2 [?, Theorem 3.2] Under the assumptions of Theorem 3.1, the
estimate

|K(t) −K(0)|

ε2
≤ C t εM−s−1 for 0 ≤ t ≤ ε−N+1

with K(t) = K
(
q(t), p(t)

)
holds with a constant C which depends on s, N , and

C0, but is independent of ε, M , and t.

We remark that Theorems 2.1, 3.1 and 3.2 have been included as a motivation
of our results, but will not be used in the following.

4 Full discretization and numerical phenomena
sect:numer

We consider the class of time discretization methods studied in [?, Chapter
XIII], which gives the exact solution for linear problems (12) with f(u) = 0,
and reduces to the Störmer–Verlet/leapfrog method for (12) with Ω = 0:

qn+1 − 2 cos(hΩ) qn + qn−1 = h2Ψ f(Φqn), (18) gautschi

where Ψ = ψ(hΩ) and Φ = φ(hΩ) with filter functions ψ and φ that are real-
valued, bounded, even, and satisfy ψ(0) = φ(0) = 1. A velocity approximation
pn is obtained from

2h sinc (hΩ) pn = qn+1 − qn−1 (19) gautschi-velocity

provided that sinc (hΩ) is invertible. Here we use the notation sinc ξ = sin ξ/ξ.
For an implementation it is more convenient to work with an equivalent

one-step mapping (qn, pn) 7→ (qn+1, pn+1), which is obtained from adding and
subtracting the formulas (18) and (19) and which reads

qn+1 = cos(hΩ)qn + h sinc (hΩ)pn +
1

2
h2 Ψf(Φqn)

pn+1 = −Ω sin(hΩ)qn + cos(hΩ)pn +
1

2
h

(
Ψ0f(Φqn) + Ψ1f(Φqn+1)

)
.

(20) one-step

Here, Ψ0 = ψ0(hΩ) and Ψ1 = ψ1(hΩ), where the functions ψi(ξ) are defined by
the relations ψ(ξ) = sinc (ξ)ψ1(ξ) and ψ0(ξ) = cos(ξ)ψ1(ξ). These methods are
symmetric for all choices of ψ and φ; they are symplectic if

ψ(ξ) = sinc (ξ)φ(ξ) for all real ξ. (21) symplectic

The methods (20) with this property are precisely the mollified impulse methods
introduced in [?].

Condition (21) will be assumed in the following. We note, however, that for
non-symplectic methods, the transformation of variables

q̂n = χ(hΩ)qn, p̂n = χ(hΩ)pn, (22) transf

turns the method (20) into a symplectic method if χ can be chosen as a positive
solution of χ(ξ)2 = φ(ξ) sinc (ξ)/ψ(ξ).

In our numerical experiments we consider the nonlinear wave equation (1)
with the following data: ρ = 0.5, g(u) = −u2, and initial data

u(x, 0) = 0.1 ·
(x
π
− 1

)3(x
π

+ 1
)2

, ∂tu(x, 0) = 0.01 ·
x

π

(x
π
− 1

)(x
π

+ 1
)2
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Figure 1: Actions, total energy (upper bold line), and momentum (lower bold
line) along the numerical solution of DOPRI5, average CFL number 1.075. fig:sine_dopri5
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Figure 2: Actions, total energy (upper bold line), and momentum (lower bold
line) along the numerical solution of the trigonometric integrator (20) with ψ =
sinc and φ = 1 for the CFL number hωM ≈ 6.4. fig:driver_sine

for −π ≤ x ≤ π. The spatial discretization is (12) with dimension 2M = 27.
We first apply a standard explicit Runge–Kutta method in the variable step-

size implementation DOPRI5 of [?], with local error tolerances Atol = 10−5 and
Rtol = 10−4. The program chose 32 735 accepted steps for the integration over
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Figure 3: Illustration of numerical resonance. fig:impulse_wave_reson

the interval 0 ≤ t ≤ 550, which corresponds to an average stepsize h = 0.0168
and average CFL number hωM = 1.075. In both pictures of Figure 1 we plot
the actions Ij of (5), the total energy HM of (13), and the momentum K of
(14) along the numerical solution. The left-hand picture illustrates that even
on the short interval 0 ≤ t ≤ 1, the actions with values below the tolerance are
not at all conserved. The right-hand picture shows substantial drifts in all the
quantities over a longer time interval.

We now consider method (20) with ψ = sinc and φ = 1, which was originally
proposed in [?]. The method can also be viewed as a special case of the impulse
method used in molecular dynamics [?, ?]. We apply the method with stepsize
h = 0.1 to the above problem. The CFL number then is hωM ≈ 6.4. Figure 2
illustrates that energy, momentum and actions are very well conserved.

In a further experiment with the same problem, we choose stepsizes such
that hω4 is close to π. In this situation of a numerical resonance, the action I4
is no longer preserved, which on longer time scales also affects the conservation
of energy. The resonance behaviour depends strongly on the choice of the filter
functions, cf. [?, Section XIII.2]. For example, with φ = sinc and ψ = sinc 2,
no numerical resonance is visible.

We now turn to a theoretical explanation of the observed numerical conser-
vation properties.

5 Main results
sect:main

To explain the good long-time behaviour illustrated in Section 4, we combine
the techniques of [?], where the long-time preservation of the harmonic actions
along exact solutions of the semilinear wave equation (1) is shown, with those
of [?], where the long-time behaviour of the numerical method (18) is studied
for oscillatory Hamiltonian systems with a fixed number of large frequencies.
Here, we are interested in results that are valid uniformly in M , where 2M is
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the dimension of the spatially discretized system (12).
The analytical tool for understanding the long-time behaviour of the numer-

ical solution of (12) is given by a modulated Fourier expansion in time (see [?,
Chapter XIII] and [?]),

q̃(t) =
∑

‖k‖≤2N

zk(εt)ei(k·ω)t, (23) mfe

approximating the numerical solution qn at t = nh. We use the notation intro-
duced in (7), where now kℓ = 0 for ℓ > M , since only the frequencies ωℓ for
0 ≤ ℓ ≤M appear in the spatial discretization (12).

In our analysis, we must deal with small denominators (see Section 6). To
control these terms, we will use non-resonance conditions. As soon as, for a
given step size h, the inequality

∣∣∣ sin
(h

2
(ωj − k · ω)

)
· sin

(h
2
(ωj + k · ω)

)∣∣∣ ≥ ε1/2h2
(
ωj + |k · ω|

)
(24) res-cond

is violated, we have to make an assumption on the pair of indices (j,k). For a
fixed integer N ≥ 1, subsequently used in the truncation of the expansion (23),
the set of near-resonant indices becomes, instead of (8),

Rε,h =
{
(j,k) : |j| ≤M, ‖k‖ ≤ 2N, k 6= ±〈j〉, not satisfying (24)

}
. (25) res-set

Similar to (9), we require the following non-resonance condition: there are σ > 0
and a constant C0 such that

sup
(j,k)∈Rε,h

ωσ
j

ωσ|k|
ε‖k‖/2 ≤ C0 ε

N . (26) nonres

Notice that, in the limit h → 0, condition (24) becomes equivalent (up to a
non-zero constant factor) to

∣∣ω2
j − (k · ω)2

∣∣ ≥ ε1/2 ·
∣∣ωj + |k · ω|

∣∣, so that (26)
corresponds precisely to the non-resonance condition (9) for the semilinear wave
equation.

We assume the further numerical non-resonance condition

| sin(hωj)| ≥ hε1/2 for |j| ≤M. (27) nores2

Yet another non-resonance condition, which leads to improved conservation es-
timates, reads as follows:

∣∣∣ sin
(h

2
(ωj − k · ω)

)
· sin

(h
2
(ωj + k · ω)

)∣∣∣ ≥ c h2 |ψ(hωj)| (28) nores3

with a constant c > 0 for all (j,k) of the form j = j1 + j2 and k = ±〈j1〉 ± 〈j2〉.
We are now in the position to state the main result of this paper.

thm:conserve-full Theorem 5.1 Under the symplecticity condition (21), under the non-resonance
conditions (26) with exponent σ and (27)-(28), and under the assumption (16)
of small initial data with s ≥ σ + 1 for (q0, p0) =

(
q(0), p(0)

)
, the estimates

|HM (qn, pn) −HM (q0, p0)|

ε2
≤ Cε

|K(qn, pn) −K(q0, p0)|

ε2
≤ C

(
ε+M−s + εtM−s+1

)

M∑

ℓ=0

ω2s+1
ℓ

|Iℓ(q
n, pn) − Iℓ(q

0, p0)|

ε2
≤ Cε

9



hold for long times
0 ≤ t = nh ≤ ε−N+1

with a constant C which depends on s, N , and C0, but is independent of the
small parameter ε, the dimension 2M of the spatial discretization, the time
stepsize h, and the time t = nh. If condition (28) fails to be satisfied, then the
above bounds hold with ε1/2 instead of ε.

In addition we obtain, by the argument of Section 6.2 in [?], that the orig-
inal Hamiltonian H of (2) along the trigonometric interpolation polynomials(
un(x), vn(x)

)
with Fourier coefficients (qn

j , p
n
j ) satisfies the long-time near-

conservation estimate

|H(un, vn) −H(u0, v0)|

ε2
≤ Cε for 0 ≤ nh ≤ ε−N+1 .

For a non-symplectic symmetric method (20) the result remains valid in the
transformed variables (22). The proof of Theorem 5.1 is given in the subsequent
Sections 6 and 7.

6 Modulated Fourier expansion
sect:modFourier

Our principal tool for the long-time analysis of the nonlinearly perturbed wave
equation is a short-time modulation expansion constructed in this section. To
construct this expansion, we combine the tools and techniques developed in [?]
and [?].

6.1 Statement of the result

In this section we consider, instead of the symplecticity condition (21), the
weaker condition

|ψ(hωj)| ≤ C | sinc (hωj)| for |j| ≤M. (29) psi-cond

In the following result we use the abbreviations (7) and set

[[k]] =






1

2
(‖k‖ + 1), k 6= 0

3

2
, k = 0.

thm:mfe Theorem 6.1 Under the assumptions of Theorem 5.1 (with the symplecticity
assumption (21) relaxed to (29)), there exist truncated asymptotic expansions
(with N from (26))

q̃(t) =
∑

‖k‖≤2N

zk(εt) ei(k·ω)t, p̃(t) = sinc (hΩ)−1 q̃(t+ h) − q̃(t− h)

2h
, (30) uhvh

such that the numerical solution qn, pn given by method (20), satisfies

‖qn − q̃(t)‖s+1 + ‖pn − p̃(t)‖s ≤ CεN for 0 ≤ t = nh ≤ ε−1. (31) mfe-err
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The truncated modulated Fourier expansion is bounded by

‖q̃(t)‖s+1 + ‖p̃(t)‖s ≤ Cε for 0 ≤ t ≤ ε−1. (32) mfe-bound-qp

On this time interval, we further have, for |j| ≤M ,

q̃j(t) = z
〈j〉
j (εt) eiωjt + z

−〈j〉
j (εt) e−iωjt + rj , with ‖r‖s+1 ≤ Cε2. (33) mfe-r

(If condition (28) fails to be satisfied, then the bound is ‖r‖s+1 ≤ Cε3/2.) The
modulation functions zk are bounded by

∑

‖k‖≤2N

(
ω|k|

ε[[k]]
‖zk(εt)‖s

)2

≤ C . (34) zk-bound

Bounds of the same type hold for any fixed number of derivatives of zk with
respect to the slow time τ = εt. Moreover, the modulation functions satisfy

z−k

−j = zkj . The constants C are independent of ε, M , h, and of t ≤ ε−1.

The proof of this result will cover the remainder of this section. It is orga-
nized in the same way as the proof of the analogous result for the analytical
solution in [?].

6.2 Formal modulation equations

We are looking for a truncated series (30) such that, up to a small defect,

q̃(t+ h) − 2 cos(hΩ) q̃(t) + q̃(t− h) = h2Ψ f(Φq̃(t))

with q̃(0) = q0, p̃(0) = p0, see (18) and (30). We insert the ansatz (30) into
this equation, expand the right-hand side into a Taylor series around zero and
compare the coefficients of ei(k·ω)t. We then get

Lk

j z
k

j = −h2ψ(hωj)
∑

m≥2

g(m)(0)

m!
×

∑

k1+...+km=k

∑

j1+...+jm≡j mod2M

′
φ(hωj1)z

k
1

j1 · . . . · φ(hωjm
)zk

m

jm
,

(35) diff-l2

where the right-hand side is obtained as in [?]. The prime on the sum over

j1, . . . , jm indicates that with every appearance of zk
i

ji
with ji = ±M a factor

1/2 is included. The operator Lk

j is given as

(
Lk

j z
k

j

)
(τ) = eih(k·ω)zkj (τ + εh) − 2 cos(hωj)z

k

j (τ) + e−ih(k·ω)zkj (τ − εh)

= 4s〈j〉+ks〈j〉−kz
k

j (τ) + 2is2khεż
k

j (τ) + c2kh
2ε2z̈kj (τ) + . . . .

(36) LhD

Here, sk = sin(
h

2
k · ω) and ck = cos(

h

2
k · ω), and the dots on zkj represent

derivatives with respect to the slow time τ = εt. The higher order terms are
linear combinations of the rth derivative of zkj (for r ≥ 3) multiplied by hrεr

and containing one of the factors s2k or c2k.
The first term in (36) vanishes for k = ±〈j〉, so that in this case the dominat-

ing term becomes ±2ih sin(hωj)εż
±〈j〉
j due to condition (27). For k 6= ±〈j〉 the

11



first term becomes dominant, if the inequality (24) holds. Else, it is not clear
which term is dominant, but then the non-resonance condition (26) will ensure
that the defect in simply setting zkj ≡ 0 is of size O(εN+1) in an appropriate
Sobolev-type norm.

In addition, the initial conditions q̃(0) = q0 and p̃(0) = p0 need to be taken
care of. The condition q̃(0) = q0 reads

∑

‖k‖≤2N

zkj (0) = q0j , (37) mod-init

and for p̃(0) = p0, we obtain from (30)

1

2h sinc (hωj)

∑

‖k‖≤2N

(
zkj (εh)ei(k·ω)h − zkj (−εh)e−i(k·ω)h

)
= p0

j . (38) mod-init2

6.3 Reverse Picard iteration
subsec:iter

We now turn to an iterative construction of the functions zkj such that after 4N

iteration steps, the defect in equations (35), (37), and (38) is of size O(εN+1)
in the Hs norm. The iteration procedure we employ can be viewed as a reverse
Picard iteration on (35) to (38), where we keep only the dominant terms on the
left-hand side. Indicating by [·]n the nth iterate of all appearing variables zkj
taken within the bracket, we set for k = ±〈j〉

±2ihεs2j

[
ż
±〈j〉
j

]n+1

=
[
− h2ψ(hωj)

∑

m≥2

g(m)(0)

m!
× (39)

∑

k1+...+km=k

∑

j1+...+jm≡j mod2M

′
φ(hωj1)z

k
1

j1 · . . . · φ(hωjm
)zk

m

jm

−
(
c2jh

2ε2z̈
±〈j〉
j + . . .

)]n

(40) revpic1

with the sines and cosines s2j and c2j defined after formula (36). For k 6= ±〈j〉
and j that are non-resonant with (24), we set

4s〈j〉+ks〈j〉−k

[
zkj

]n+1

=
[
− h2ψ(hωj)

∑

m≥2

g(m)(0)

m!
× (41)

∑

k1+...+km=k

∑

j1+...+jm≡j mod 2M

′
φ(hωj1)z

k
1

j1 · . . . · φ(hωjm
)zk

m

jm

−
(
2is2khεż

k

j + c2kh
2ε2z̈kj + . . .

)]n

, (42) revpic2

whereas we let zkj = 0 for k 6= ±〈j〉 in the near-resonant set Rε,h. The dots

indicate the remainder in (36), truncated after the εN term.
On the initial conditions we iterate by

[
z
〈j〉
j (0) + z

−〈j〉
j (0)

]n+1

=
[
q0j −

∑

k 6=±〈j〉

zkj (0)
]n

(43) inival1

12



and on (38) by

iωj

[
z
〈j〉
j (0) − z

−〈j〉
j (0)

]n+1

= p0
j

−
1

2h sinc (hωj)

[ ∑

k 6=±〈j〉

zkj (0)
(
ei(k·ω)h − e−i(k·ω)h

)
(44) inival2

−
∑

‖k‖≤K

((
zkj (εh) − zkj (0)

)
ei(k·ω)h −

(
zkj (−εh) − zkj (0)

)
e−i(k·ω)h

)]n

.

In all the above formulas, it is tacitly assumed that ‖k‖ ≤ K := 2N and
‖ki‖ ≤ K for i = 1, . . . ,m. In each iteration step, we thus have an initial value

problem of first-order differential equations for z
±〈j〉
j (for |j| ≤M) and algebraic

equations for zkj with k 6= ±〈j〉.

The starting iterates (n = 0) are chosen as zkj (τ) = 0 for k 6= ±〈j〉, and

z
±〈j〉
j (τ) = z

±〈j〉
j (0) with z

±〈j〉
j (0) determined from the above formula.

For real initial data we have q0−j = q0j and p0
−j = p0

j , and we observe that the

above iteration yields
[
z−k

−j

]n
=

[
zkj

]n
for all iterates n and all j,k and hence

gives real approximations (30).

6.4 Rescaling and estimation of the nonlinear terms
subsec:rescaling

As in [?], we will work with the more convenient rescaling

ckj =
ω|k|

ε[[k]]
zkj , ck =

(
ckj )|j|≤M =

ω|k|

ε[[k]]
zk

considered in the space Hs = (Hs)K = {c = (ck)k∈K : ck ∈ Hs} with norm

‖|c‖|
2
s =

∑
k∈K ‖ck‖2

s and where the superscripts k are in the set

K = {k = (kℓ)
M
ℓ=0 with integers kℓ : ‖k‖ ≤ K}

with K = 2N . The nonlinear function f = (fk

j ) defined as

fk
j (c) =

ω|k|

ε[[k]]

N∑

m=2

g(m)(0)

m!

∑

k1+...+km=k

ε[[k
1]]+···+[[km]]

ω|k1|+···+|km|
×

∑

j1+...+jm≡j mod2M

′
φ(hωj1)c

k
1

j1 · . . . · φ(hωjm
)ck

m

jm

expresses the nonlinearity in (35) in the rescaled variables. With the fact that
Hs is a normed algebra, the following bounds are obtained as in [?, Section 3.5]:

∑

‖k‖≤K

‖fk(c)‖2
s ≤ εP (‖|c‖|2s) (45) f1

∑

|j|≤M

‖f±〈j〉(c)‖2
s ≤ ε3 P1(‖|c‖|

2
s), (46) fj1

where P and P1 are polynomials with coefficients bounded independently of
ε, h, and M . Notice that the function φ is bounded.
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With the different rescaling

ĉkj =
ωs|k|

ε[[k]]
zkj , ĉk =

(
ĉkj

)
|j|≤M

=
ωs|k|

ε[[k]]
zk (47) rescale-1

considered in the space H1 = (H1)K with norm ‖|ĉ‖|
2
1 =

∑
‖k‖≤K ‖ĉk‖2

1, for f̂k

j

defined as fk

j but with ω|k| replaced by ωs|k|, we have similar bounds

∑

‖k‖≤K

‖f̂k(ĉ)‖2
1 ≤ εP̂ (‖|ĉ‖|

2
1)

∑

|j|≤M

‖f̂±〈j〉(ĉ)‖2
1 ≤ ε3 P̂1(‖|ĉ‖|

2
1)

(48) fs

with other polynomials P̂ and P̂1.

6.5 Abstract reformulation of the iteration
subsec:ab-iter

For c = (ckj ) ∈ Hs with ckj = 0 for all k 6= ±〈j〉 with (j,k) ∈ Rε,h, we split the
components of c corresponding to k = ±〈j〉 and k 6= ±〈j〉 and collect them in
a = (akj ) ∈ Hs and b = (bkj ) ∈ Hs, respectively:

akj = ckj if k = ±〈j〉, and 0 else

bkj = ckj if (24) is satisfied, and 0 else.
(49) abc

We then have a+b = c and ‖|a‖|
2
s+‖|b‖|

2
s = ‖|c‖|

2
s. We now introduce differential

operators A,B acting on functions a(τ) and b(τ), respectively:

(Aa)
±〈j〉
j (τ) =

1

±2ihεs2j

(
c2jh

2ε2ä
±〈j〉
j (τ) + . . .

)

(Bb)kj (τ) =
1

4s〈j〉+ks〈j〉−k

(
2is2khεḃ

k

j (τ) + c2kh
2ε2b̈kj (τ) + . . .

)

for (j,k) satisfying (24). These definitions are motivated by formulas (40) and
(42), and as in these formulas, the dots represent a truncation after the εN

terms. In terms of the nonlinear function f of the preceding subsection, we
introduce the functions F = (Fk

j ) and G = (Gk

j ) with non-vanishing entries

F
±〈j〉
j (a,b) =

1

±iε

ψ(hωj)

sinc (hωj)
f
±〈j〉
j (a + b) ,

Gk

j (a,b) =
h2(ωj + |k · ω|)

4s〈j〉+ks〈j〉−k

fk

j (a + b)

for (j,k) satisfying (24). Further we write

(
Ωc

)k
j

= (ωj + |k · ω|) ckj ,
(
Ψc

)k
j

= ψ(hωj) c
k

j .

In terms of a and b, the iterations (40) and (42) then become of the form

ȧ(n+1) = Ω−1F(a(n),b(n)) −Aa(n)

b(n+1) = Ω−1ΨG(a(n),b(n)) −Bb(n).
(50) ab-iter
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By (46), condition (29) gives the bound ‖|F‖|s ≤ Cε1/2, whereas condition (27)
yields ‖|Ψ−1Ω−1F‖|s ≤ C. By (45) and (24), we have the bound ‖|G‖|s ≤ C.
These bounds hold uniformly in ε, h,M on bounded subsets of Hs. Analogous
bounds are obtained for the derivatives of F and G. The operators A and B
are estimated as

‖|(Aa)(τ)‖|s ≤ C

N∑

l=2

hl−2εl−3/2
∥∥∥
∣∣∣
dl

dτ l
a(τ)

∥∥∥
∣∣∣
s

‖|(Bb)(τ)‖|s ≤ Cε1/2‖|ḃ(τ)‖|s + C

N∑

l=2

hl−2εl−1/2
∥∥∥
∣∣∣
dl

dτ l
b(τ)

∥∥∥
∣∣∣
s
.

(51) ABest

The bound for A is obtained with (27), that for B uses (24) and the trivial
estimate |s2k| = | sin(hk · ω)| ≤ h|k · ω|.

The initial value conditions (43) and (44) translate into an equation for
a(n+1) of the form

a(n+1)(0) = v + Pb(n)(0) +Q(a + b)(n)(εh) (52) ab-init

where v has the components

v
±〈j〉
j =

ωj

ε

( 1

2
q0j ∓

i

2ωj
p0

j

)
.

By assumption (16), v is bounded in Hs. The operators P and Q are given by

(Pb)
±〈j〉
j (0) = −

ωj

2εs2j

∑

k 6=±〈j〉

(
sin(ωjh) ± sin

(
(k · ω)h

)) ε[[k]]

ω|k|
bkj (0)

(Qc)
±〈j〉
j (τ) = ∓

ωj

4iεs2j

∑

‖k‖≤K

(
ei(k·ω)h ε

[[k]]

ω|k|

(
ckj (τ) − ckj (0)

)

− e−i(k·ω)h ε
[[k]]

ω|k|

(
ckj (−τ) − ckj (0)

))
.

For these expressions we have the bounds

‖|(Pb)(0)‖|s ≤ C ‖|Ψ−1Ωb(0)‖|s

‖|(Qc)(εh)‖|s ≤ C ε sup
−εh<τ<εh

‖|Ψ−1ċ(τ)‖|s

with a constant C that is independent of ε, h, and M , but depends on K = 2N .
For the first estimate we use | sin(ωjh)±sin((k·ω)h)| ≤ h(ωj+|k·ω|) , condition
(29), and the Cauchy–Schwarz inequality together with the bound

∑

‖k‖≤K

ω−2|k| ≤ C <∞ . (53) omega-ineq0

Similarly, applying the mean value theorem to c(τ) yields the second estimate.
The starting iterates are a(0)(τ) = v and b(0)(τ) = 0.
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6.6 Bounds of the modulation functions
subsec:bounds-mod

In view of the non-resonance conditions (24) and (27), and using the assumption
on the filter function (29), we can show by induction that the iterates a(n) and
b(n) and their derivatives with respect to the slow time τ = εt are bounded in
Hs for 0 ≤ τ ≤ 1 and n ≤ 4N : more precisely, the (4N)-th iterates a = a(4N)

and b = b(4N) satisfy

‖|a(0)‖|s ≤ C , ‖|Ωȧ(τ)‖|s ≤ Cε1/2 , ‖|Ψ−1ȧ(τ)‖|s ≤ C ,

‖|Ψ−1Ωb(τ)‖|s ≤ C ,
(54) ab-bounds

with a constant C independent of ε, h,M , but dependent on N . We also obtain
analogous bounds for higher derivatives of a and b with respect to τ = εt. For
zkj = ε[[k]]ω−|k| ckj with (ckj ) = c(4N) = a(4N) + b(4N), the bounds for a and b

together yield the bound (34).
These bounds imply ‖|c(τ) − a(0)‖|s+1 ≤ C and as in [?, Section 3.7] give,

using (53), the bound (32) of the expansion (23).
Using (46) and (50) we also obtain the bound, for b = b(4N),

( ∑

‖k‖=1

‖(Ψ−1Ωb)k‖2
s

)1/2

≤ Cε .

Moreover, condition (28) ensures that

∑

|j|≤M

∑

j1+j2=j

∑

k=±〈j1〉±〈j2〉

ω
2(s+1)
j |bkj |

2 ≤ Cε.

These bounds together with (54) yield (33).
With the alternative scaling (47) we obtain the same bounds (for τ = εt ≤ 1),

‖|â(0)‖|1 ≤ C , ‖|Ω ˙̂a(τ)‖|1 ≤ Cε1/2 , ‖|Ψ−1Ωb̂(τ)‖|1 ≤ C . (55) ab-bounds-2

and again ( ∑

‖k‖=1

‖(Ψ−1Ωb̂)
k

‖2
1

)1/2

≤ Cε . (56) b1-1

For the function â(τ) these statements follow at once from the fact that ‖âk‖1 =

‖ak‖s. For the function b̂(τ) one has to repeat the argumentation from before,
but one needs no longer take care of initial values.

In addition to these bounds, we also obtain that the map

Bε ⊂ Hs+1 ×Hs → H1 :
(
u(0), v(0)

)
7→ ĉ(0)

(with Bε the ball of radius ε centered at 0) is Lipschitz continuous with a
Lipschitz constant proportional to ε−1: at t = 0,

‖|â2 − â1‖|
2
1 + ‖|Ω(b̂2 − b̂1)‖|

2
1 ≤

C

ε2

(
‖u2 − u1‖

2
s+1 + ‖v2 − v1‖

2
s

)
. (57) lipschitz
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6.7 Defects
subsect:defects

We consider the defect δ(t) =
(
δj(t)

)
|j|≤M

in (18) divided by h2ψ(hωj):

δj(t) =
q̃j(t+ h) − 2 cos(hωj)q̃j(t) + q̃j(t− h)

h2ψ(hωj)
− fj(Φq̃(t))

where f = (fj) is given in (12) and the approximation q̃(t) =
(
qj(t)

)
is given by

(30) with zkj = (zkj )(4N) obtained after 4N iterations of the procedure in Section
6.3. We write this defect as

δ(t) =
∑

‖k‖≤NK

dk(εt) ei(k·ω)t +RN+1(q̃)(t).

Here we have set

dkj =
1

h2ψ(hωj)
L̃k

j z
k

j (58) defdef

−
N∑

m=2

g(m)(0)

m!

∑

k1+...+km=k

∑

j1+...+jm≡j mod2M

′
φ(hωj1 )z

k
1

j1 · . . . · φ(hωjm
)zk

m

jm
,

which is to be considered for ‖k‖ ≤ NK, and where we set zkj = 0 for ‖k‖ >

K = 2N . The operator L̃k

j denotes the truncation of the expansion (36) after

the εN term. The function RN+1 collects the remainder term of the Taylor
expansion of f after N terms, and that due to the truncation of the series in
(36) after the εN term. Using the bound (32) for the remainder in the Taylor
expansion of f and the estimates (54) for the (N + 1)-th derivative for zkj (τ),

we have ‖RN+1(q̃)‖s+1 ≤ CεN+1.
We now use the bound of [?, Section 3.8] to obtain

∥∥∥
∑

‖k‖≤NK

dk(εt) ei(k·ω)t
∥∥∥

2

s
≤ C

∑

‖k‖≤NK

∥∥∥ω|k| dk(εt)
∥∥∥

2

s
. (59) sum-square-d

In the next three subsections we estimate the right-hand side of (59) by Cε2(N+1),
separately for truncated modes ‖k‖ > K and near-resonant modes (j,k) ∈ Rε,h,
where zkj = 0 in both cases, and for non-resonant modes with zkj constructed
above.

6.8 Defect in the truncated modes
subsect:deftm

For ‖k‖ > K = 2N we have zkj = 0, and the defect reads

dkj = −

N∑

m=2

g(m)(0)

m!
×

∑

k1+...+km=k

∑

j1+...+jm≡j mod2M

′
φ(hωj1)z

k
1

j1 · . . . · φ(hωjm
)zk

m

jm

= − ε[[k]] ω−|k| fk
j
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with ‖|f‖|2s ≤ Cε by (54) and (45), used with NK in place of K. We then have

∑

‖k‖>K

∑

|j|≤M

′
ω2s

j

∣∣ω|k| dkj
∣∣2 =

∑

‖k‖>K

∑

|j|≤M

′
ω2s

j

∣∣fk

j

∣∣2 ε2[[k]]

and hence, since 2[[k]] = ‖k‖ + 1 ≥ K + 2 = 2(N + 1),

∑

‖k‖>K

∑

|j|≤M

′
ω2s

j

∣∣ω|k| dkj
∣∣2 ≤ Cε2(N+1).

6.9 Defect in the near-resonant modes
subsect:defnrm

For (j,k) in the set Rε,h of near-resonances defined by (25) we have set zkj = 0.
The defect corresponding to the near-resonant modes is thus

dkj = −

N∑

m=2

g(m)(0)

m!
×

∑

k1+...+km=k

∑

j1+...+jm≡j mod2M

′
φ(hωj1)z

k
1

j1 · . . . · φ(hωjm
)zk

m

jm

= − ε[[k]] ω−s|k| f̂k

j

with ‖|̂f‖|
2
1 ≤ Cε by (55) and (48). We then have

∑

(j,k)∈Rε,h

ω2s
j

∣∣ω|k| dkj
∣∣2 =

∑

(j,k)∈Rε,h

ω
2(s−1)
j

ω2(s−1)|k|
ε2[[k]] ω2

j |f̂
k

j |
2

≤ C sup
(j,k)∈Rε,h

ω
2(s−1)
j ε2[[k]]+1

ω2(s−1)|k|
.

The non-resonance condition (26) is formulated such that the supremum is
bounded by C2

0 ε
2(N+1), and hence

∑

(j,k)∈Rε,h

ω2s
j

∣∣ω|k| dkj
∣∣2 ≤ C ε2(N+1). (60) res-bound

6.10 Defect in the non-resonant modes

We now assume that ‖k‖ ≤ K and that (j,k) satisfies the non-resonance con-
dition (24), so that in the scaled variables ckj of Section 6.4 the defect satisfies

ω|k|dkj = ε[[k]]
( 1

h2ψ(hωj)
L̃k

j c
k

j − fk

j (c)
)
.

Written in terms of the components a and b of (49) we have

ωjd
±〈j〉
j = ε

(
±2iεωj

sinc (hωj)

ψ(hωj)

(
ȧ
±〈j〉
j + (Aa)

±〈j〉
j

)
− f

±〈j〉
j (a + b)

)

ω|k|dkj = ε[[k]]
( 4 s〈j〉+ks〈j〉−k

h2ψ(hωj)

(
bkj + (Bb)kj

)
− fk

j (a + b)
)
.
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It should be noted that the functions in this defect are actually the 2N -th

iterates a(4N) and b(4N) of the iteration in Section 6.3. Expressing f
±〈j〉
j (a+b)

and fk
j (a+b) in terms of F(a,b) and G(a,b) and inserting F and G from (50)

into this defect, relates it to the increment of the iteration in the following way:

ωjd
±〈j〉
j = 2ωjα

±〈j〉
j

([
ȧ
±〈j〉
j

](4N)
−

[
ȧ
±〈j〉
j

](4N+1)
)
, α

±〈j〉
j := ±iε2

sinc (hωj)

ψ(hωj)

ω|k|dkj = βk

j

([
bkj

](4N)
−

[
bkj

](4N+1)
)
, βk

j := ε[[k]] 4 s〈j〉+ks〈j〉−k

h2ψ(hωj)
.

Motivated by these relations we introduce new variables

ã
±〈j〉
j := α

±〈j〉
j a

±〈j〉
j , b̃kj := βk

j b
k

j . (61) var-xy

Collecting these variables into vectors and using the transformed functions

F̃
±〈j〉
j (ã, b̃) := α

±〈j〉
j F

±〈j〉
j (α−1ã,β−1b̃) = ε f

±〈j〉
j (α−1ã + β−1b̃)

G̃k

j (ã, b̃) :=
βk

j ψ(hωj)

ωj + |k · ω|
Gk

j (α−1ã,β−1b̃) = ε[[k]] fk

j (α−1ã + β−1b̃)

the iteration (50)-(52) becomes

˙̃a
(n+1)

= Ω−1F̃(ã, b̃) −Aã(n)

b̃(n+1) = G̃(ã, b̃) −Bb̃(n)

ã(n+1)(0) = αv + P̃ b̃(n)(0) +Qã(n)(εh) + Q̃b̃(n)(εh).

(62) xy-iter

In the iteration for the initial values we abbreviate P̃ = αPβ−1, Q̃ = αQβ−1,
which are bounded by

‖|(P̃ b̃)(0)‖|s ≤ C ε1/2 ‖|b̃(0)‖|s

‖|(Q̃ã)(εh)‖|s ≤ C ε1/2 sup
−εh<τ<εh

‖| ˙̃a(τ)‖|s

‖|(Qb̃)(εh)‖|s ≤ C ε3/2 sup
−εh<τ<εh

‖|Ω−1 ˙̃
b(τ)‖|s.

In an Hs neighbourhood of 0 where the bounds (54) hold, the partial derivatives

of F̃ with respect to ã and b̃ and those of G̃ with respect to b̃ are bounded by
O(ε1/2), whereas the derivatives of G̃ with respect to ã is only O(1). This is
the same situation as we had for the exact solution in [?]. As in that paper one
proves

‖|Ω( ˙̃a
(4N+1)

(τ) − ˙̃a
(4N)

(τ))‖|s ≤ C εN+2

‖|b̃(4N+1)(τ) − b̃(4N)(τ)‖|s ≤ C εN+2

‖|ã(4N+1)(0) − ã(4N)(0)‖|s ≤ C εN+2.

These estimates yield the desired bound of the defect in the non-resonant modes
(j,k) 6∈ Rε,h. Combined with the corresponding estimates of Subsections 6.8
and 6.9 we obtain

( ∑

‖k‖≤K

‖ω|k|dk(τ)‖2
s

)1/2

≤ CεN+1 for τ ≤ 1. (63) d1
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For the alternative scaling ĉkj = ωs|k|zkj , we obtain

( ∑

‖k‖≤K

‖ωs|k|dk(τ)‖2
1

)1/2

≤ CεN+1 for τ ≤ 1. (64) ds

Consequently, the defect δ(t) (see Subsection 6.7) satisfies

‖Ω−1δ(t)‖s+1 = ‖δ(t)‖s ≤ CεN+1 for t ≤ ε−1. (65) defect-bound

For the defect in the initial conditions (37) and (38) we obtain

‖q̃(0) − q0)‖s+1 + ‖p̃(0) − p0)‖s ≤ CεN+1.

6.11 Remainder term of the modulated Fourier expansion

We write the method (20) in the form

(
qn+1

Ω−1pn+1

)
=

(
cos(hΩ) sin(hΩ)
− sin(hΩ) cos(hΩ)

) (
qn

Ω−1pn

)
+
h

2
Ψ1

(
sin(hΩ)fn

cos(hΩ)fn + fn+1

)

where fn = Ω−1f(Φqn), and we notice that Ψ1 is a matrix, bounded inde-
pendently of h and the dimension M . The differences ∆qn := q̃(tn) − qn and
∆pn := p̃(tn) − pn, where tn := nh, satisfy the same relation with fn replaced
by Ω−1

(
f(Φq̃(tn))−f(Φqn)

)
+δ(tn). Using the Lipschitz bound (cf. Section 4.2

in [?] on the relation between f(q) and g(u) of (1))

∥∥Ω−1
(
f(q1) − f(q2)

)∥∥
s+1

= ‖f(q1) − f(q2)‖s ≤ Cε‖q1 − q2‖s ≤ Cε‖q1 − q2‖s+1

for q1, q2 ∈ Hs satisfying ‖qi‖s ≤Mε, and the estimate (65) for the defect yields

∥∥∥∥
(

∆qn+1

Ω−1∆pn+1

) ∥∥∥∥
s+1

≤

∥∥∥∥
(

∆qn

Ω−1∆pn

) ∥∥∥∥
s+1

+
h

2

(
Cε‖∆qn‖s+1 + Cε‖∆qn+1‖s+1 + CεN+1

)
.

Solving this inequality gives the estimate

‖∆qn‖s+1 + ‖Ω−1∆pn‖s+1 ≤ C(1 + tn)εN+1 for tn ≤ ε−1

and thus completes the proof of Theorem 6.1.

7 Conservation properties
sect:conservation

We now show that the system of equations determining the modulation func-
tions has almost-invariants close to the actions, the total energy, and the mo-
mentum along numerical solutions given by the full discretization (18)–(19).
The proof takes up arguments of [?] for the conservation of actions, of [?] for
the conservation of momentum and aspects of the space discretization, and of
[?, Ch. XIII] for the conservation of energy and for the aspects arising from the
time discretization.
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7.1 The extended potential

The defect formula (58) can be rewritten as

1

h2ψ(hωj)
L̃k

j z
k

j + ∇−k

−j U(Φz) = dkj , (66) y-def-U

where ∇−k

−j U(y) is the partial derivative with respect to y−k

−j of the extended
potential (see [?])

U(y) =

N∑

l=−N

Ul(y) (67) U

Ul(y) =
N∑

m=2

U (m+1)(0)

(m+ 1)!

∑

k1+···+km+1=0

∑

j1+···+jm+1=2Ml

′
yk

1

j1 . . . y
k

m+1

jm+1
,

where again ‖ki‖ ≤ 2N and |ji| ≤M , and U(u) is the potential in (2).

7.2 Invariance under group actions

The existence of almost-invariants for the system (66) turns out to be a con-
sequence, in the spirit of Noether’s theorem, of the invariance of the extended
potential under continuous group actions: for an arbitrary real sequence µ =
(µℓ)ℓ≥0 and for θ ∈ R, let

Sµ(θ)y =
(
ei(k·µ)θykj

)

|j|≤M,‖k‖≤K
, T (θ)y =

(
eijθykj

)

|j|≤M,‖k‖≤K
. (68) U-inv

Since the sum in the definition of U is over k1 + · · ·+ km+1 = 0 and that in U0

over j1 + · · · + jm+1 = 0, we have

U(Sµ(θ)y) = U(y) , U0(T (θ)y) = U0(y) for θ ∈ R.

Differentiating these relations with respect to θ yields

0 =
d

dθ

∣∣∣
θ=0

U(Sµ(θ)y) =
∑

‖k‖≤K

∑

|j|≤M

′
i(k · µ) ykj ∇

k

j U(y)

0 =
d

dθ

∣∣∣
θ=0

U0(T (θ)y) =
∑

‖k‖≤K

∑

|j|≤M

′
ij ykj ∇

k

j U0(y).
(69) U-inv-diff
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7.3 Almost-invariants of the modulation system

We now multiply (66) once with i(k ·µ)φ(hωj)z
−k

−j and once with ijφ(hωj)z
−k

−j ,
and sum over j and k with |j| ≤M and ‖k‖ ≤ K. Thanks to (69), we obtain

∑

‖k‖≤K

∑

|j|≤M

′
i(k · µ)

φ(hωj)

h2ψ(hωj)
z−k

−j L̃
k

j z
k

j (70) Jmueq

=
∑

‖k‖≤K

∑

|j|≤M

′
i(k · µ)φ(hωj) z

−k

−j d
k

j ,

∑

‖k‖≤K

∑

|j|≤M

′
ij

φ(hωj)

h2ψ(hωj)
z−k

−j L̃
k

j z
k

j (71) Meq

=
∑

‖k‖≤K

∑

|j|≤M

′
ijφ(hωj) z

−k

−j

(
dkj −

∑

l 6=0

∇−k

−j Ul(Φz)
)
.

By the expansion (36) of the operator L̃k
j , only expressions of the following type

appear for z(τ) = zkj (τ) and z(τ) = z−k

−j (τ) on the left-hand side of the above
equations:

Re zT z(2l+1) = Re
d

dτ

(
zT z(2l) − . . .± (z(l−1))T z(l+1) ∓

1

2
(z(l))T z(l)

)

Im zT z(2l+2) = Im
d

dτ

(
zT z(2l+1) − ż

T
z(2l) + . . .± (z(l))T z(l+1)

)
.

(72) zbzp

Therefore, the left-hand sides can be written as total derivatives of functions
εJµ[z](τ) and εK[z](τ) which depend on z(τ) and its derivatives εℓz(ℓ)(τ) for
ℓ = 1, . . . , N − 1. In this way, (70) and (71) become

−ε
d

dτ
Jµ[z] =

∑

‖k‖≤K

∑

|j|≤M

′
i(k · µ)φ(hωj) z

−k

−j d
k

j (73) Jmuder

−ε
d

dτ
K[z] =

∑

‖k‖≤K

∑

|j|≤M

′
ijφ(hωj) z

−k

−j

(
dkj −

∑

l 6=0

∇−k

−j Ul(Φz)
)
. (74) Mder

In the following we consider the special case of µ = 〈ℓ〉 = (0, . . . , 0, 1, 0, . . .) with
the only entry at the ℓth position and write

Jℓ[z] = J〈ℓ〉[z].

From the smallness of the right-hand sides in (73) and (74) we infer the following.

thm:almost-inv Theorem 7.1 Under the conditions of Theorem 6.1 we have, for τ ≤ 1,

∑

ℓ≥0

ω2s+1
ℓ

∣∣∣
d

dτ
Jℓ[z](τ)

∣∣∣ ≤ C εN+1,

∣∣∣
d

dτ
K[z](τ)

∣∣∣ ≤ C
(
εN+1 + ε2M−s+1

)
.

Proof. The result is obtained from (73) and (74) with the arguments of [?, ?]
as follows. With the bounds (55) and (64), the estimate for the functions Jℓ[z]
follows with the proof of Theorem 4.1 in [?]. With the bound (34) and with the
bounds ‖|z‖|1 ≤ Cε and ‖|d‖|0 ≤ CεN+1, which follow from (34) and (63), the
estimate for K[z] is obtained as in Theorem 5.2 of [?]. �
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A further almost-invariant is obtained by multiplying (66) with the expres-
sion φ(hωj)

(
i(k · ω)z−k

−j + εż−k

−j

)
, summing over j and k, and using (69):

∑

‖k‖≤K

∑

|j|≤M

′ φ(hωj)

h2ψ(hωj)

(
i(k · ω)z−k

−j + εż−k

−j

)
L̃k

j z
k

j (75) Heq

+ ε
d

dτ
U(Φz) =

∑

‖k‖≤K

∑

|j|≤M

′
φ(hωj)

(
i(k · ω)z−k

−j + εż−k

−j

)
dkj .

In addition to the identities (72) we also use

Re ż
T
z(2l) = Re

d

dt

(
ż

T
z(2l−1) − . . .∓ (z(l−1))T z(l+1) ±

1

2
(z(l))T z(l)

)

Im ż
T
z(2l+1) = Im

d

dt

(
ż

T
z(2l) − z̈

T
z(2l−1) + . . .∓ (z(l))T z(l+1)

)
.

Therefore, the left-hand side of (75) can be written as the total derivative of a
function εH[z](τ), so that (75) becomes

ε
d

dτ
H[z] =

∑

‖k‖≤K

∑

|j|≤M

′
φ(hωj)

(
i(k · ω)z−k

−j + εż−k

−j

)
dkj . (76) Hder

As in Theorem 7.1, the Cauchy-Schwarz inequality and the estimates for zkj and

dkj then yield the following estimate.

thm:almost-invH Theorem 7.2 Under the conditions of Theorem 6.1 we have, for τ ≤ 1,

∣∣∣
d

dτ
H[z](τ)

∣∣∣ ≤ C εN+1.

7.4 Relationship with actions, momentum, and energy

We now show that the almost-invariant Jℓ of the modulated Fourier expansion
is close to the corresponding harmonic action (14) of the numerical solution,

Jℓ = Iℓ + I−ℓ = 2Iℓ for ℓ ≥ 1, J0 = I0,

and that H and K are close to the Hamiltonian HM and the momentum K of
(13) and (14), respectively.

thm:action Theorem 7.3 Under the conditions of Theorem 5.1, along the numerical so-
lution (qn, pn) of (20) and the associated modulation sequence z(εt), it holds
that

H[z](εtn) = HM

(
qn, pn

)
+ O(ε3)

K[z](εtn) = K
(
qn, pn

)
+ O(ε3) + O(ε2M−s)

Jℓ[z](εtn) = Jℓ

(
qn, pn

)
+ γℓ(tn) ε3

with
∑

ℓ≥0 ω
2s+1
ℓ γℓ(tn) ≤ C for tn ≤ ε−1. All appearing constants are indepen-

dent of ε, M , h, and n.

Proof. With the identities (72) we obtain from (71) that

K[z] =
∑

‖k‖≤K

∑

|j|≤M

′
j
φ(hωj)

ψ(hωj)

(
(k ·ω) sinc (hk ·ω)|zkj |

2 +2εc2k Im
(
z−k

−j ż
k

j

)
+ . . .

)
.
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Separating the terms with k = ±〈j〉 and using the symplecticity condition (21),
and applying the bounds (55) and (56) to the remaining terms, we find

K[z] =
∑

|j|≤M

′
j ωj

(
|z

〈j〉
j |2 − |z

−〈j〉
j |2

)
+ O(ε3).

In terms of the Fourier coefficients of the modulated Fourier expansion q̃j(t) =∑
‖k‖≤K zkj (εt) ei(k·ω)t, we have at t = tn

K[z] =
∑

|j|≤M

′
j
ωj

4

(∣∣q̃j + (iωj)
−1p̃j

∣∣2 −
∣∣q̃j − (iωj)

−1p̃j

∣∣2
)

+ O(ε3)

= K(q̃, p̃) + O(ε3) + O(ε2M−s)

= K(qn, pn) + O(ε3) + O(ε2M−s),

where we have used (33). The O(ε2M−s) terms come from the boundary terms
in the sum. The last equality is a consequence of the remainder bound of
Theorem 6.1.

Similarly, we obtain from (75) that

H[z] =
∑

‖k‖≤K

∑

|j|≤M

′
(k · ω)

φ(hωj)

ψ(hωj)

(
(k · ω) sinc (hk · ω)|zkj |

2 + . . .
)

+ U(Φz),

which yields, using in addition U(Φz) = O(ε3),

H[z] =
∑

|j|≤M

′
ω2

j

(
|z

〈j〉
j |2 + |z

−〈j〉
j |2

)
+ O(ε3),

and shows that H[z] = HM (qn, pn) + O(ε3).
The result for Jℓ is obtained in the same way, using in addition Lemma 4.2

of [?] to estimate the remainder terms. �

With an identical argument to that of [?, Section 4.5], Theorems 7.1 and
7.2 together with the estimates of Theorem 6.1 and the Lipschitz continuity
(57) yield the statement of Theorem 5.1 by patching together many intervals of
length ε−1.

8 The Störmer–Verlet/leapfrog discretization
sect:leapfrog

The leapfrog discretization of (12) reads, in the two-step formulation,

qn+1 − 2 qn + qn−1 = h2
(
−Ω2qn + f(qn)

)
, (77) verletu

with the velocity approximation pn given by

2h pn = qn+1 − qn−1. (78) verletv

The starting value is chosen as q1 = q0+hp0+ h2

2 f(q0). Conservation properties
of this method will be obtained by reinterpreting it as a trigonometric method
(18) with modified frequencies ω̂j satisfying 1 − 1

2h
2ω2

j = cos(hω̂j), that is,

sin
(

1

2
hω̂j

)
=

1

2
hωj. (79) omegatilde

This is possible as long as hωj ≤ 2.
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thm:conserve-sv Theorem 8.1 Under the stepsize restriction hωM ≤ c < 2, under the non-
resonance conditions (26) and (28) for the modified frequencies ω̂j of (79), and
under the assumption (16) of small initial data with s ≥ σ + 1 for (q0, p0) =(
q(0), p(0)

)
, the estimates

|HM (qn, pn) −HM (q0, p0)|

ε2
≤ C(ε+ h2)

|K(qn, pn) −K(q0, p0)|

ε2
≤ C

(
ε+ h2 +M−s + εtM−s+1

)

M∑

ℓ=0

ω2s−1
ℓ

|Iℓ(q
n, pn) − Iℓ(q

0, p0)|

ε2
≤ C(ε+ h2)

hold for long times
0 ≤ t = nh ≤ ε−N+1

with a constant C which depends on s, N , C0, and c, but is independent of ε,
M , h, and t.

Proof. Denoting by Ω̂ the diagonal matrix with entries ω̂j , we introduce the
transformed variables

q̂n = sinc (hΩ̂) qn, p̂n = pn,

which are solutions to the symplectic trigonometric method (18)-(19) with ψ =
sinc and φ = 1. Under the stepsize restriction hωM ≤ c < 2 the non-resonance
condition (27) is trivially satisfied for ω̂j , and we have

ωj ≤ ω̂j ≤ Cωj ,

where C depends only on c. Hence, the assumption (16) of small initial data is
satisfied with the same exponent s for the weighted norms defined with ω̂j or
ωj . We can therefore apply Theorem 5.1 in the transformed variables (q̂n, p̂n).
With the estimate | sinc (hω̂j) − 1| ≤ 1

6h
2ω̂2

j , the result stated for the original
variables (qn, pn) then follows. �

We apply the leapfrog method to the problem of Section 4 with stepsize
h = 0.3, so that the CFL number hωM ≈ 1.92 is close to the linear stability limit.
In Figure 4 we observe oscillations with large relative amplitude proportional
to h2ω2

j for the actions Ij corresponding to high frequencies, but no drift in
actions, energy, and momentum.
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Figure 4: Actions, energy, and momentum along the numerical solution of the
leapfrog method, every 5th action is plotted. fig:verlet_wave_long
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