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The problem
We consider Hamiltonian problems with
H(z,1) = %xTa: + azTQQx + U(x)
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The equations of motion are

where () = ( ) , © = (x1,z2) and w > 1.

4i = —V,H(z, i) =—-Q% — V,U(z)

%az = V;H(z,2) =z,

or
i+ Q% = -V, U(2).



An example

Recall
i+ Qv = -V, U(x).

Example: Modified Fermi-Pasta-Ulam problem (FPU)



An example

Recall
i+ Or = -V,U(x).

Example: Modified Fermi-Pasta-Ulam problem (FPU)

We are interested in the almost conservation of the
osclillatory energy
2 T

. 1.7. W
[z, 1) = S T + 1 T



The result
Assumptions

« Bounded initial energy? (z(0),2(0)) < E (indep. of
w > 1).
* The potentiall is analytic and bounded.



The result
Assumptions

« Bounded initial energy? (z(0),2(0)) < E (indep. of
w > 1).

* The potentiall is analytic and bounded.
Result
[1(x(t),@(t) — I(2(0),4(0))| < Congt-w™

for exponentially long timeg < e“~.

Benettin, Galgani, Giorgilli987 (Hamiltonian perturbation
theory).

C, Halrer, Lubicr2003 (modulated Fourier expansion).



The modulated Fourier expansion (1)

Motivation:
~or a linear ODE:(t)

Particular sol. :zp(t)

The solution of the |i

x(t) = xp(t)

w?z(t) = g(t).
= co(t) +w™!

near ODE Is given by

rp(t) = y(t) +€<'2(t)

o (t) Fwtea(t) +
Homogeneous sol. 2y (t) = d1e“" + de ",

e‘thZ(t),

with (), z(¢) smoothfunctions, i.e. with derivatives boundec
independently ofu > 1.



The modulated Fourier expansion (l1)

For more complicated problems, the solution admits, on & she
time interval, the following expansion, for (an arbitragyde)
N > 1,

w(t) =y(t)+ Y &)+ Ow™).

0<|k|<N

with 2°(t) = y(¢), 2¥(¢) smoothfunctions satisfying
)



The modulated Fourier expansion (l1)

For more complicated problems, the solution admits, on & she
time interval, the following expansion, for (an arbitragyde)

N > 1,
w(t) =y(t)+ D &)+ 0w
0<|k|<N
with 2 ( ) = y(t), 2" (t) smoothfunctions satisfying

2K (t) = 27K (1)
We find the modulation functions’ by inserting the MFE into
our ODE

i+ Q% = g(z) == —VU(2).



The modulated Fourier expansion (l1)

o ) 1 g0m)
<w2y2> i <y2> =9(y) + (Z):o 9 ()2

—U}QZ% 2'&)2’% 1 (m) o
(2@25) +< 5 )‘ 2 9" )z

s(a)=1
_k2w2Z]f Ziszlf T Z]f L (m) o
<(1 - kQ)W Z2> i <2i/€wz’§ — Z§> - Z ﬁg (y)z
where for the multi-indicess = (aq,...,q,), with in-

tegers o;, we denotes(o) = > .o; and g™ (y)z* =
g™ () (2, 2.




The modulated Fourier expansion (1V)
We thus obtain

i = Fuoly, i, 2)
+ w  F(y1, 171, 23) + ... second order ODE
Wiy = . first order ODE
Wiz = algebraic equations.

In general, these formal series (in power.of') diverge.



MFE:Hamiltonian structure of the modulation
system

Let us note the MFE,.(t) = >, 2*(t)g*t = 5", y*(t), and
y = (v").
By construction, the coefficients’ verify

i 4+ Q% = -V, W U(y) Y,

for an extended potentié(y).
This system is Hamiltonian for

Hy. ¥) = 50" + ("% + Uly).
k



Conservation of the oscillatory energy
The system that define the modulation functions has a formal

Invariant
I(y,y) = —iw > k(y™")"".
k
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Conservation of the oscillatory energy
The system that define the modulation functions has a formal

Invariant
I(y,y) = —iw > k(y™")"".
k

We truncate all the series aftér] < /N and show that

e 7 is close to the oscillatory enerdy
Z(y(t),y(t) = L(x(t),2(t)) + O(w ) for0 <t < 1.

o I(x(t),i(t)) = I(x(0),#(0)) + O(w 1) for0 < t < .



ll. The numerical schemes




The Stormer-Verlet scheme

Recall
i = —0%r — V,U(2).

Stormer-Verlet schemd907-1967) :

Tl — 2Ty + 21 = —h*(Vx, + V. U(2))



The Stormer-Verlet scheme

gt

R

.

I5|OI II IllOOI II I15O
Stormer-Verlet, h = 0.001, w = 50
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The trigonometric methods

s 30)-(4 D ()+(8)



The trigonometric methods

oo 800 (5 )()+(1)

By the variation of constants formula, the solution satssfie

(20) = (conte) 2 e ()

 hRE=) (géis») “



The trigonometric methods

v 504 ) () ()
By the variation of constants formu_l?, .the solution satssfie
() = (s, ™) (2
R (géis») -

Trigonometric methods (Gautschi, Hairer, Hochbruck, lctbi
Sanz-Serna, ...):

Tpi1 = cos(hQ)z, + Q 1sin(hQ)z, + h;\IJgn
iy = —Qsin(hQ)z, + cos(hQ)in + 5 (Vogn + Uigas1)

whereg, = g(¢(h2)x,,) ande, v, ... are some filter functions.



The trigonometric methods

50 100 150

Hochbruck, Lubich, h = 0.03



The results
Assumptions

e Bounded initial energyd (xy, ©9) < E (indep. ofw > 1).

e Conditions on the filter functions (not symplectic).

e hw > ¢y > 0.

« Non-resonance conditiomsin(%hkw)] > ¢/ h for
k=1,...,N.



The results
Assumptions

e Bounded initial energyd (xy, ©9) < E (indep. ofw > 1).

e Conditions on the filter functions (not symplectic).

e hw > ¢y > 0.

« Non-resonance conditiomsin(%hkw)] > ¢/ h for
k=1,...,N.

Results
Near-conservation of the total energlyand of the oscillatory

energy! for long time interval$) < t < B~ V+1,
Hairer & Lubich2000.

Proof
We adapt the technigues of the first part !



Ill. Several high frequencies
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where(2 = diag(w;I), withw; = \;/e, Ao =0, A; > 1 for
7=1,...,0,ande < 1.



Several frequencies

We consider

i+ Q*r = —VU(x)
where(2 = diag(w;I), withw; = \;/e, Ao =0, A; > 1 for
7=1,...,0,ande < 1.

We are interested in the near-conservation of the osaitato
energy of thej’” frequency

Ij(x, ) = Yl P + 23] P

And, for = (p1, ..., pe) In I, (z,2) = S B Ti(x, ). In
particular,.u = A\ —> total oscillatory energy.



Several frequencies

MMWMMWHWM»—MMM—«WMMMW»

e e
QOOMMWWWQO@ ki “.‘” My |.|4|o 104 N N

0 1000 2000 0 10000 20000 30000

A= (1,1,/2,2),e = 707"




Several frequencies: results
Assumptions
e Bounded initial energy (x(0), 2(0)) < E (indep. of
e < 1),
« Weak non-resonance conditiofi: - | > c¢y/e for
k€ Z'\M, |k| < N where
./\/l:{kézgllﬁ)q—l—...—l—kg)\g:()}.




Several frequencies: results
Assumptions

« Bounded initial energy? (z(0), 2(0)) < E (indep. of

e K 1).
« Weak non-resonance conditiofi: - | > c¢y/e for
k€ Z9\M, k| <
./\/l:{kézgikl)\l—l—...—l—kg)\g:()}.
Results
Li(x(t), 2(t)) = ( (0),2(0)) + O(e) for t < e~ +1 with
K min(N, M + 1) whereM = min{|k| : 0 # k € M}.

L(x(t),2(t)) = L.(x(0),2(0)) + O(e) fort < e~ and
MLMN—{kEM k| < N}
 Also for the numerical solution (cond. on the filters and

some num. non-resonance condition).
C., Hairer, Lubich2005. Benettin, Galgani, Giorgill1989.



V. Systems with non-constant mass matri




The problem

2
H(p,q) = T(p.q) + =-q" Aq+ U(q), with w > 1.

0 0
WhereA = <() A

) , with- A__ symmetric positive definite

1 - 1
T(p,q) = 5p1 Mi(q) 'p1+ 5pap2 + 50" R(a)p,
M;(q) symmetric positive definite matrix,
R(q) symmetric with R(q;,0) = 0.

Examples: Triatomic molecule Elastic dumbbell spacecraft



The results

1 - 1 1 :
H(p,q) = 301 Mi(q)"'p1+5p" R(Q)p+5p2 2+ 502 2+ U (9)

1 2
I(p,q) = ;P2 p2 + 52 2
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The results

1 - 1 1 :
H(p,q) = 5p1 Mi(q)"'p1+35p" R(@)p+ 50202+ 502 2+ U (q)
_ 17 w? T
I(p,q) = 5pap2 + 562 ¢

e exact sol.: near cons. dfover long time intervals.

e new numerical methods based on the trigonometric
methods.

e num. sol.: near cons. df and/ over long time intervals.
C. 2004 — 2005.
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Some ideas

Problem: :
H(p,q) = 5p1 Mi(q) ™' pr+ 50" R(@)p+ 503 po+ 243 62+ U (9).
Approach:
e Adapt the trigonometric methods (splitting+mix, explcit
e Find a modulated Fourier expansion (short time interval).

e Find two formal invariantgqh andfh for the modulated
functions.

e Near conservation ot/ and/ for the numerical methods
over long time intervals.



V. Infinitely many frequencies




The nonlinear wave equation

A pseudo-spectral discretisation in space of the nonlinear
equation
utt(ta ﬁlj) o u:r;ac(ta lE) + pU(t, $) o g(U(t, CE)) =0
leads to
G(t) + Q%q(t) = Fg(F q(t)),

whereq Is the vector of Fourier coefficientg, is the Fourier
series and

O = diag(w;I) with w; = \/p + 52



Conservation properties

We are interested in the near-conservation, over long time
Intervals, of the actions

Jg(t) = [g(t) -+ [_g(t) >,

where

Ii(t) = o |d; () + Llg; (1))

2wj



Conservation properties

1073

10°°

10°°

1022

0 250 500 750 1000

Ofu(t, z) — O%u(t, x) + u(t, z) — u(t,x)* = 0



The results
Assumptions

« Small initial valuesu(-,0) andd,u(-,0) in an appropriate
Sobolev space.

 Non-resonance condition (of the type of the one used by
Bambusi) on the frequencias = +/p + /2.




The results

Assumptions

« Small initial valuesu(-,0) andd,u(-,0) in an appropriate
Sobolev space.

 Non-resonance condition (of the type of the one used by
Bambusi) on the frequencias = +/p + /2.

Resu

o T
a

s
ne actions/, are nearly-preserved over long time interva

ong the exact solution of the problem.

* |In the same norm that specifies the smallness condition c
the Initial data, the solution remains nearly constant for
long time intervals.

C., Hairer, Lubich2006. Bambusi2003. Bourgain1996.
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