Serie 10

zur 20. KW (11.05. - 17.05.2009)

Aufgabe 1: *

Zur Bestimmung von $\sqrt{5}$ wird die positive Nullstelle der Funktion $f(x) = x^2 - 5$ berechnet. Wir untersuchen die Fixpunktiterationen $x_{k+1} := \Phi_i(x_k), i = 1, \ldots, 4$ mit

$$\Phi_1(x) = 5 + x - x^2$$
, $\Phi_2(x) = \frac{5}{x}$, $\Phi_3(x) = 1 + x - \frac{1}{5}x^2$, $\Phi_4(x) = \frac{1}{2}\left(x + \frac{5}{x}\right)$.

(a) Zeigen Sie, dass

$$\Phi_i(x^*) = x^* \iff (x^*)^2 - 5 = 0 \text{ für alle } i = 1, \dots, 4.$$

- (b) Berechnen Sie jeweils x_1, x_2, \ldots, x_5 mit dem Startwert $x_0 = 2.5$.
- (c) Zeigen Sie, dass $|\Phi'_i(x^*)| \ge 1$ für i = 1, 2 und $|\Phi'_i(x^*)| < 1$ für i = 3, 4.
- (d) Zeigen Sie, dass die Fixpunktiteration mit Φ_3 lokal linear konvergiert und die mit Φ_4 lokal quadratisch konvergiert.

Aufgabe 2:

Wir betrachten die Fixpunktiteration

$$x_{n+1} = \Phi(x_n), \ n = 0, 1, 2, \dots$$

mit Φ eine Kontraktion $(|\Phi(x) - \Phi(y)| \le L|x - y|, L < 1)$. In der Praxis sucht man eine Approximation x_n so, dass

$$|x_n - x^*| \le Tol,$$

mit einer gegebene Toleranz Tol.

Zeigen Sie zuerst, dass $|x_n - x^*| \le \frac{L}{1 - L} |x_n - x_{n-1}|$. Zum Schluss, mit

$$L_n := \frac{|x_n - x_{n-1}|}{|x_{n-1} - x_{n-2}|}$$

finden Sie ein Kriterium um die Iteration zu stoppen.

<u>Hinweis:</u> Die geometrische Reihe $\sum_{k=0}^{\infty} L^k$ konvergiert gegen $\frac{1}{1-L}$ für L < 1.

Aufgabe 3: (P)

Schreiben Sie eine Matlab-Funktion

die mit dem Newton-Verfahren eine Nullstelle z einer Funktion $f: \mathbb{R} \to \mathbb{R}$ näherungsweise bestimmt. Der Abbruch der Iteration erfolgt entweder, wenn $|x_{k+1} - x_k| < tol$ ist, oder die maximale Anzahl Iterationen max_iter erreicht wurde. Die Ableitung f'(x) soll durch den Differenzenquotienten

$$f'(x) \simeq \frac{f(x+h) - f(x)}{h}, \quad h = 10^{-8},$$

ersetzt werden.

Schreiben Sie eine Matlab-Routine Test_Newton
Iter, die auf neun Stellen Genauigkeit alle reellen Wurzeln des Polynom
s $p(x)=x^6+x^5-3x^4-2x^3+x^2-7x-3,$ sowie

die drei kleinsten positiven Nullstellen der Funktion $f(x) = 2e^{\frac{x}{5}}\sin(x) + 1$ berechnet.

<u>Hinweis:</u> Zeichnen Sie vorher die Funktionen p(x) und f(x), um geeignete Startwerte zu finden. Die Skelette der Codes kann man von der Webseite herunterladen.

Aufgabe 4: (A+B)

Zeigen Sie, dass das Newton-Verfahren zur Bestimmung der Nullstelle von

$$f(x) = \sqrt{|x|}$$

für keinen Anfangswert $x_0 \neq 0$ konvergiert. Ist dies ein Widerspruch zum Konvergenzsatz aus der Vorlesung?

<u>Hinweis:</u> Berechnen Sie x_{n+1} mit dem Newton-Verfahren aus x_n und zeigen Sie, dass die so entstehende Folge $(x_n)_{n\geq 0}$ für kein $x_0\neq 0$ konvergiert.

Aufgabe 5: $(A+B)^*$

Sei $\Phi:[a,b]\to[a,b]$ eine Kontraktion, d. h.

$$|\Phi(x) - \Phi(y)| \le L|x - y| \quad \forall x, y \in [a, b],$$

für ein L < 1, und sei $x^* \in [a, b]$ der Fixpunkt der Iteration $x_{n+1} = \Phi(x_n)$, $n = 0, 1, 2, \ldots$, mit $x_0 \in [a, b]$. Zeigen Sie die folgenden Fehlerabschätzungen

$$|x^* - x_n| \le \frac{L^n}{1 - L} |x_1 - x_0|$$
 (a priori),
 $|x^* - x_n| \le \frac{L}{1 - L} |x_n - x_{n-1}|$ (a posteriori).

<u>Hinweis:</u> Zeigen Sie zuerst $|x_{n+1} - x_n| \le L^n |x_1 - x_0|$. Schreiben Sie nun $x_{n+k} - x_n$ als Teleskopsumme $\sum_{i=1}^{k} (x_{n+i} - x_{n+i-1})$ und wenden Sie die Dreiecksungleichung an.

Lassen Sie k gegen ∞ gehen. Nun ergibt sich mit Hilfe einer geometrischen Reihe (L < 1) die a-priori-Fehlerabschätzung.

Um die a-posteriori-Fehlerabschätzung zu zeigen kann man ähnlich vorgehen.

Aufgabe 6: (A+B)

Gesucht ist die Lösung der Fixpunktgleichung $x = \Phi(x), x \in \mathbb{R}$, mit $\Phi(x) = e^{-x}$.

- (a) Zeigen Sie, dass das Intervall $\Omega = [0.5, 0.69]$ durch Φ in sich abgebildet wird.
- (b) Zeigen Sie, dass Φ auf Ω kontrahierend ist. Folgern Sie daraus, dass es einen eindeutigen Fixpunkt x^* von Φ in Ω gibt.
- (c) Für $x_0=0.55$ berechnen Sie x_1 und schätzen Sie anhand der a-priori-Fehlerabschätzung aus der Vorlesung, wieviele Iterationen nötig sind, damit $|x^*-x_k|\leq 10^{-6}$ ist.

Abgabe: Dienstag, 12. Mai 2009, bis 17 Uhr im Fach

Allgemeine Informationen zur Vorlesung und Übungsblätter befinden sich auf der Webseite http://www.math.unibas.ch/~cohen