Serie 11

mit Musterlösungen

Aufgabe 1: $(P)^*$

Schreiben Sie eine Matlab-Funktion

function [x, iter] = NewtonIter_System(f1, f2, x0, max_iter, tol),

die eine numerische Lösung des nichtlinearen Gleichungssystems

$$f_1(x_1, x_2) = 0,$$

 $f_2(x_1, x_2) = 0,$

mit der Newton-Iteration für den Startwert $\boldsymbol{x}^{(0)} = (x_1^{(0)}, x_2^{(0)})^T$ und der Genauigkeit tol bestimmt, wobei höchstens max_iter Iterationsschritte durchgeführt werden. Approximieren Sie die partiellen Ableitungen von $\boldsymbol{f} = (f_1, f_2)^T$ in der Jacobi-Matrix durch Differenzenquotienten, z. B.

$$\frac{\partial f_1}{\partial x_2}(x_1, x_2) \simeq \frac{f_1(x_1, x_2 + h) - f_1(x_1, x_2)}{h}, \quad h = 10^{-8}.$$

Schreiben Sie eine Matlab-Routine Test_NewtonIter_System, die die numerische Lösung des Gleichungssystems

$$\sinh(x_1 x_2) + x_1^2 + x_2^2 + x_1 = 1$$
$$x_1^3 - x_2^2 + x_2 = -1$$

mit $\boldsymbol{x}^{(0)} = (-1, 1)$ und tol= 10^{-12} berechnet.

<u>Hinweis:</u> Die Skelette der Codes kann man von der Webseite herunterladen.

Aufgabe 2: $(P)^*$

Schreiben Sie eine Matlab-Funktion

function
$$[x, y] = Euler(f, y0, h, x_0, x_max),$$

die eine numerische Lösung des Anfangswertproblems

$$y'(x) = f(x, y), \quad x_0 \le x \le x_{max}$$

 $y(x_0) = y_0$

mit dem Euler-Verfahren mit konstanter Schrittweite h bestimmt.

Schreiben Sie eine Matlab-Routine Test_Euler zur numerischen Lösung des Anfangswertproblems

$$y'(x) = \frac{x+2}{x+1}y$$
, $0 \le x \le 5$
 $y(x_0) = e$

mit dem Euler-Verfahren mit konstanter Schrittweite h = 0.01. Zeichnen Sie die numerische Lösung und die exakte Lösung $y(x) = (1+x)e^{(1+x)}$ zusammen.

<u>Hinweis:</u> Die Skelette der Codes kann man von der Webseite herunterladen.

Aufgabe 3: (P)

Schreiben Sie Matlab-Routinen

function [x, y1, y2] = Euler_System(f1, f2, y0, h, x_0, x_max) und function [x, y1, y2] = ModEuler_System(f1, f2, y0, h, x_0, x_max) zur numerischen Lösung eines Systems gewöhnlicher Differentialgleichungen

$$y'_1 = f_1(x, y_1, y_2), \quad x_0 \le x \le x_{max}$$

 $y'_2 = f_2(x, y_1, y_2), \quad x_0 \le x \le x_{max}$
 $y_1(x_0) = y_1^0, \quad y_2(x_0) = y_2^0$

mit dem Euler-Verfahren bzw. mit dem modifizierten Euler-Verfahren.

Schreiben Sie Matlab-Routinen Test_Euler_System und Test_ModEuler_System zur numerischen Lösung der van der Pol'sche Differentialgleichung

$$\begin{cases} y'' - \lambda(1 - y^2)y' + y = 0, & 0 \le x \le 5 \\ y(0) = 0, \ y'(0) = 1. \end{cases}$$

Berechnen Sie die Lösung für $\lambda=0$ mit Schrittweite h=0.025, 0.0025 und plotten Sie die mit der exakten Lösung zusammen. Für $\lambda=12$ berechnen Sie die Lösung und plotten Sie jede ihrer Komponente.

<u>Hinweis:</u> Setzen Sie $y_1 := y$ und $y_2 := y'$ und schreiben Sie zuerst die Differentialgleichung 2. Ordnung als ein System von Differentialgleichungen. Benutzen Sie die Verfahren auf dieses System. Für $\lambda = 0$ lautet die exakte Lösung $(y_1, y_2)^T = (\sin x, \cos x)^T$.

Die Skelette der Codes kann man von der Webseite herunterladen.

Aufgabe 4: (A+B)

Beweisen Sie die folgende Aussage (Banachscher Fixpunktsatz im \mathbb{R}^n):

Sei $\Omega \subset \mathbb{R}^n$ ein abgeschlossenes, beschränktes Gebiet und $\Phi : \Omega \to \Omega$ eine Kontraktion. Dann existiert ein eindeutiger Fixpunkt $\boldsymbol{x}^* \in \Omega$ mit $\boldsymbol{x}^* = \Phi(\boldsymbol{x}^*)$. Zudem konvergiert die Folge $\boldsymbol{x}_{n+1} = \Phi(\boldsymbol{x}_n), n = 0, 1, \ldots$ für jedes $\boldsymbol{x}_0 \in \Omega$ gegen \boldsymbol{x}^* .

<u>Hinweis:</u> Um die Existenz eines Fixpunktes $\mathbf{x}^* \in \Omega$ von Φ zu zeigen, zeigen Sie, dass $\{\mathbf{x}_n\}_{n\geq 0}$ eine Cauchy-Folge ist. Dazu zeigen Sie, dass

$$\|x_m - x_n\| \le \frac{L^n}{1 - L} \|x_1 - x_0\|.$$

Um die Eindeutigkeit zu zeigen, betrachten Sie einen weiteren Fixpunkt $\mathbf{x}' \in \Omega$ von Φ . Zeigen Sie dann, dass $\|\mathbf{x}^* - \mathbf{x}'\| = 0$.

Aufgabe 5: (A+B)

Beweisen Sie die folgende Aussage:

Sei $\Omega \subset \mathbb{R}^n$ offen und $\Phi : \Omega \to \mathbb{R}^n$ stetig differenzierbar. Sei $\boldsymbol{x}^* \in \Omega$ ein Fixpunkt von Φ und $\|\cdot\|$ eine Norm auf \mathbb{R}^n , in deren induzierten Matrixnorm $\|\Phi'(\boldsymbol{x}^*)\| < 1$ gilt. Dann gibt es eine (kompakte) Umgebung

$$B_{\varepsilon}(\boldsymbol{x}^*) = \{ \boldsymbol{x} \in \mathbb{R}^n : \|\boldsymbol{x} - \boldsymbol{x}^*\| \le \varepsilon \},$$

so dass $\Phi: B_{\varepsilon} \to B_{\varepsilon}$ eine Kontraktion ist, die B_{ε} in sich abbildet.

<u>Hinweis:</u> Überlegen Sie, dass ein $\varepsilon > 0$ existiert, so dass $\|\Phi'(x)\| < 1$, $x \in B_{\varepsilon}(x^*)$. Unter Verwendung von

$$\|\boldsymbol{\Phi}(\boldsymbol{x}) - \boldsymbol{\Phi}(\boldsymbol{y})\| = \left\| \int_{0}^{1} \boldsymbol{\Phi}'(t\boldsymbol{x} + (1-t)\boldsymbol{y}) dt (\boldsymbol{x} - \boldsymbol{y}) \right\| \leq \max_{\boldsymbol{\xi} \in \{t\boldsymbol{x} + (1-t)\boldsymbol{y}: t \in [0,1]\}} \|\boldsymbol{\Phi}'(\boldsymbol{\xi})\| \cdot \|\boldsymbol{x} - \boldsymbol{y}\|$$

 $f\ddot{u}r \ \boldsymbol{x}, \boldsymbol{y} \in B_{\varepsilon}, \ zeigen \ Sie, \ dass \ \|\boldsymbol{\Phi}(\boldsymbol{x}) - \boldsymbol{\Phi}(\boldsymbol{y})\| \le L\|\boldsymbol{x} - \boldsymbol{y}\| \ mit \ L < 1.$

Um zu zeigen, dass B_{ε} in sich abgebildet wird, nehmen Sie ein $\mathbf{x} \in B_{\varepsilon}$ und zeigen Sie, dass $\|\mathbf{\Phi}(\mathbf{x}) - \mathbf{x}^*\| \leq \varepsilon$.

Abgabe: ohne Abgabe; Falls man zusätzlichen Programmieraufgaben abgeben möchte, sollte man die Programmieraufgaben zur Serie 11 bis 22. Mai abgeben.

Allgemeine Informationen zur Vorlesung und Übungsblätter befinden sich auf der Webseite http://www.math.unibas.ch/~cohen