Summary: Chapter 1

• Let $D \subset \mathbb{R}^n$ be an open set and $f: D \to \mathbb{R}^n$ sufficiently differentiable. For $t_0 \in \mathbb{R}$ and $y_0 \in D$, we consider the ordinary differential equation (ODE)

$$\dot{y} = f(y),
y(t_0) = y_0,$$

where y := y(t) and $\dot{y}(t) := \frac{d}{dt}y(t)$.

The flow $\varphi_t: y_0 \mapsto y(t, 0, y_0)$ of this ODE is a 1-parameter group.

• Let $h = t_{n+1} - t_n$ be the step size, we consider the numerical flow $\Phi_h : y_n \mapsto y_{n+1}$ given by, for example, a one-step numerical scheme.

Expl: Explicit Euler method; Implicit Euler method; Midpoint rule; Symplectic Euler method for partitioned system; Störmer-Verlet scheme.

• A Hamiltonian problem reads

$$\dot{p} = -\nabla_q H(p,q),
\dot{q} = \nabla_p H(p,q),$$

where the given function $H: D \subset \mathbb{R}^{2d} \to \mathbb{R}$ is called *Hamiltonian function* or *energy*, and $\nabla_p H(p,q) := \left(\frac{\partial H}{\partial p}(p,q)\right)^T$. We have *energy conservation*: H(p(t),q(t)) = H(p(0),q(0)) along the exact solution (p(t),q(t)) of our problem for all times t>0.

Expl: Kepler problem; Outer solar system; Molecular dynamics; etc.

• We have seen that the Störmer-Verlet scheme and the symplectic Euler scheme have good geometric properties. The "classical" numerical schemes not.

Goal of this lecture: try to find an explanation ...