
Summary: Chapter 3

• We 
onsider problems of the form

ẏ = f(y),
y(t0) = y0.

A non-
onstant fun
tion I(y) is 
alled an invariant or �rst integral if

I ′(y)f(y) = 0 ∀ y.

From this de�nition, it follows I(y(t)) = I(y(t0)) = Const. along solutions of our problem.

Examples: The total energyH(p, q) of a Hamiltonian system, the total mass in a 
hemi
al

rea
tion, et
.

• All Runge-Kutta methods preserve linear invariants I(y) = dTy, where d is a 
onstant

ve
tor: I(yn) = I(y0) for all n ≥ 1.

A partitioned Runge-Kutta method for

ṗ = f(p, q)
q̇ = g(p, q)

preserves linear invariants I(p, q), if bi = b̂i or, if I(p, q) only depends on p or only depends

on q.

• For matrix equations

Ẏ = B(Y )Y
Y (0) = Y0

with B(Y ) skew-symmetri
, we have that the fun
tion g(Y ) := Y TY is an invariant.

Example: Rigid body.

• Gauÿ (
ollo
ation) methods preserve quadrati
 invariants, i.e.

yTnCyn = yT0 Cy0 ∀ n,

where C is a symmetri
 matrix.

Runge-Kutta methods with 
oe�
ients satisfying

biaij + bjaji = bibj ∀ i, j = 1, . . . , s

preserve quadrati
 invariants I(y) = yTCy, where C is a symmetri
 matrix.

We have seen similar results for partitioned Runge-Kutta methods.



• Polynomial invariants: For n ≥ 3, no Runge-Kutta method 
an preserve all polynomial

invariants of degree n.

• We 
onsider di�erential equations on manifolds: Let

M := {y ∈ R
n : g(y) = 0}

a (n − m)-manifold of R
n
with g : R

n → R
m
, g′(y) has full rank, and a di�erential

equation ẏ = f(y) su
h that

y0 ∈ M =⇒ y(t) ∈ M.

We de�ne a proje
tion method as follows:

1. Let yn ∈ M.

2. We de�ne ỹn+1 := Φ̃h(yn), where Φ̃h is an arbitrary one-step numeri
al s
heme.

3. To �nd yn+1, we just proje
t ỹn+1 onto the manifold M. At this step, one has to

solve a nonlinear system (with simpli�ed Newton for example).

The proje
tion method has the same order of 
onvergen
e as the s
heme Φ̃h.

Warning: It is important to proje
t onto the 
orre
t manifold. If one is not aware of

all invariants of the system and only proje
ts onto 
ertain invariants, the method 
ould

produ
e bad results.

Example: Numeri
al solutions given by the expli
it Euler and symple
ti
 Euler methods

for the perturbed Kepler problem with invariants H(p, q) = 1

2
(p21 + p22) − 1√

q2
1
+q2

2

and

L(p, q) = q1p2 − q2p1.
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Figure 1: Proje
tion methods for the perturbed Kepler problem.

We have also seen a symmetri
 version of this proje
tion s
heme (with better longtime

properties).


