
Summary: Chapter 6

• In this 
hapter, we 
onsider highly os
illatory di�erential equations of the form

ẍ + Ω2x = g(x) := −∇U(x)

x(0) = x̃0, ẋ(0) = ˙̃x0,
(1)

where Ω =

(

0 0
0 ωI
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with ω ≫ 1. We partition the ve
tor x = (x0, x1) a

ording to the

blo
ks of the matrix Ω. Moreover, we assume that the initial values are bounded
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where the 
onstant E does not depend on ω. We also assume that the potential is smooth,

i.e. with derivatives bounded independently of ω.

This problem is Hamiltonian with Hamiltonian fun
tion given by
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and has another quantity of interest, the os
illatory energy

I(x, ẋ) =
1

2
ẋT
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Below, we will show that this quantity is almost preserved for very long time intervals

along the exa
t solution of (1).

Example: Modi�ed Fermi-Pasta-Ulam problem.

• A proper numeri
al treatment of the above problem is done by the trigonometri
 methods

xn+1 = cos(hΩ)xn + Ω−1 sin(hΩ)ẋn +
1

2
h2Ψgn

ẋn+1 = −Ω sin(hΩ)xn + cos(hΩ)ẋn +
1

2
h
(

Ψ0gn +Ψ1gn+1

)

,

where gn := g(Φxn) and Φ = Φ(hΩ),Ψ = Ψ(hΩ),Ψ0 = Ψ0(hΩ),Ψ1 = Ψ1(hΩ) are 
alled
�lter fun
tions, see the yellow book for pre
ise assumptions and examples. One thus

obtain a numeri
al approximation xn ≈ x(nh) of the exa
t solution of (1).

These numeri
al methods redu
e to the Störmer-Verlet method if Ω = 0; are exa
t if

g(x) = 0; are expli
it; work well for large step sizes hω ≥ c1 > 0; and almost preserve

the energy H(x, ẋ) and the os
illatory energy I(x, ẋ) for very long times, see below.



• The main ingredient to prove the near-preservation of the os
illatory energy along the

exa
t solution of (1) is the modulated Fourier expansion. This 
onsists in writing the

exa
t solution as

x(t) = y(t) +
∑

|k|<N

e

ikωtzk(t) +RN (t), 0 ≤ t ≤ T,

with smooth fun
tions y(t), zk(t) and with a very small defe
tRN (t) = O(ω−N). Analysing
the system that determines the modulated 
oe�
ients y(t) and zk(t), one �nds two for-

mal invariants that are 
lose to the original energy H(x, ẋ) and os
illatory energy I(x, ẋ).
This is then used to prove the near-
onservation of the os
illatory energy for the exa
t

solution:

I(x(t), ẋ(t)) = I(x̃0, ˙̃x0) +O(ω−1) +O(tω−N), 0 ≤ t ≤ ωN .

• To explain the good long-time behaviour of the numeri
al solution by the trigonometri


methods, we pro
eed as for the exa
t solution and write the numeri
al solution as a

modulated Fourier expansion. Following the same program as above and using additional

assumptions, one 
an show that

H(xn, ẋn) = H(x̃0, ˙̃x0) +O(h)

I(xn, ẋn) = I(x̃0, ˙̃x0) +O(h)

along the numeri
al solution given by the trigonometri
 methods for 0 ≤ nh ≤ h−N+1
.


