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1 Background: Ordinary differential equations and first numerical schemes

Task 1: You don’t feel well after eating in a churrascaria in downtown Rio de Janeiro . . . it seems that you
have picked up a parasite that grows exponentially fast until treated. Returning home there are 10
of them in you. To model this problem, you should use the population dynamic model from the
lecture y ′ = ay . The growth parameter for the parasites in your body is a = 0.1+10−3 A, where A is
the number corresponding to the last two digits of your year of birth.

a) Open an M-file called churrasc.m and write a code in order to plot the exact solution of the
problem for the time interval [0,20]. The following may be useful

%% Code for task churrascaria
c l e a r a l l
...
p0= ...; % initial number of parasites

5 tExact=[0:0.05:20]; % time interval
pExact= ...; % exact solution of the ODE
f i g u r e (), p l o t (tExact,pExact, ... ) % plot solution wrt time
x l a b e l (’Time’,’FontSize’,15) % x−axis with nice fonts
l e g e n d(...) % legend

10 t i t l e (...) % title
p r i n t -depsc2 -r0 taskChurrasc.eps % save the plot in .eps

b) Complete your M-file with an implementation of Euler’s method. You should plot the nu-
merical approximations given by the method with the step sizes h = 0.5,0.25 and 0.1 on the
interval [0,20]. Compare with the exact solution. The following may be useful

%% Code for task Churrasc
h=0.5;
t0=0;tend=20;
N=...; % compute the number of steps used by Euler’s method

5 ...; % initial time and initial value
f o r n=1:N
...; % compute one step of the method
tEuler1(n)= ...; % store the time for the plot, see below
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pEuler1(n)= ...; % approx of pExact(t_n) for step size h
10 ...; % update the method

end
...
h=0.25; % for the next step
...

15 % plot of the exact and numerical solutions
tExact=[0:.1:20]; % time interval
pExact= ...; % exact solution
f i g u r e (), p l o t (tExact,pExact,tEuler1,pEuler1, ... )
l e g e n d(...) % legend, etc

20 ...

Task 2: Consider Heun’s method (1900)

Y := y0 +h f (x0, y0)

y1 := y0 + h

2

(
f (x0, y0)+ f (x0 +h,Y )

)
or

yk+1 = yk + h

2

(
f (xk , yk )+ f (xk +h, yk +h f (xk , yk ))

)
︸                                             ︷︷                                             ︸

=:hϕ(xk ,yk ,h)

, k = 0,1,2, . . . .

Show that this numerical method has the following Butcher tableau

0
1 1

1/2 1/2

Show that the order of convergence of this method is p = 2.

Hint: Use the fact that f (x0 +h, y0 +h f (x0, y0)) = y ′(x0)+hy ′′(x0)+O (h2), h → 0.

2 Geometric Numerical Integration: A taste

Task 1: Show that
I (u, v) := ln(u)−u +2ln(v)− v

is an invariant for the Lotka-Volterra (or predator-prey) problem

u̇ := du

dt
= u · (v −2)

v̇ := dv

dt
= v · (1−u). (1)

This means that I (u(t ), v(t )) = I (u0, v0) for all time t along the exact solution of our problem. Here,
(u0, v0) are the initial values of the above problem.

Hint: Divide the two equations in (1) formally and use the method of separation of variables to find
the invariant I .
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Task 2: The motion of two bodies which attract each other by gravity is described by Kepler’s problem

q̈1 =− q1

(q2
1 +q2

2 )3/2

q̈2 =− q2

(q2
1 +q2

2 )3/2
, (2)

where q(t ) := (q1(t ), q2(t )) ∈R2 denotes the position of the second body relatively to the (fixed) first
body at time t . This is a Hamiltonian problem with

H(p, q) = 1

2
(p2

1 +p2
2)− 1√

q2
1 +q2

2

and pi := q̇i for i = 1,2. We consider the initial values

q1(0) = 1−e, q2(0) = 0, p1(0) := q̇1(0) = 0, p2(0) := q̇2(0) =
√

1+e

1−e
,

where e := 0.6, then the trajectory is elliptic with eccentricity e and the motion is periodic with
period 2π (no need to prove this).

Implement the following numerical schemes (with step size h = 2 · 10−3) for the Kepler problem.
Plot the numerical trajectories in the plane (q1, q2) and monitor the evolution of the Hamiltonian
H(p, q) and of the angular momentum L(p, q) := q1p2 − q2p1 on the time interval [0,40π] (both
quantities are invariant along the exact solution of (2)). Use the following numerical methods:

a) Euler’s method

qn+1 = qn +h
∂H

∂p
(pn , qn)

pn+1 = pn −h
∂H

∂q
(pn , qn).

b) The symplectic Euler method

qn+1 = qn +h
∂H

∂p
(pn+1, qn)

pn+1 = pn −h
∂H

∂q
(pn+1, qn).

c) The implicit midpoint rule.

Open an M-file called taskKepler.m in order to discretise numerically Kepler’s problem. The follow-
ing skeleton may be useful.

c l e a r a l l
% Initial values
e=0.6;
q1(1)=1-e; % first component of q

5 q2(1)=0; % second component of q
p1(1)=0;
p2(1)= s q r t ((1+e)/(1-e));

h=2*10^-3; % stepsize
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10 t=0:h:40*2* p i; % time interval
N=round(40*2* p i/h)-1;

% Explicit Euler method
f o r n = 1:N

15 % compute p_{n+1},q_{n+1} using Euler’s method
p1(n+1)= ...;
p2(n+1)= ...;
q1(n+1)= ...;
q2(n+1)= ...;

20 end

% Energy (vector containing all num. energies)
H=1/2*(p1.^2+p2.^2)- ... ;

25 % Angular momentum
L= ...

% Various plots for Euler’s methods
...

30 % Do the same with symp. Euler and midpoint
...

Since the midpoint rule is implicit for the Kepler problem, one has to solve a system of implicit
equations for the determination of qn+1 and pn+1. This system is of the form Y = G(Y ), with Y :=
(qn+1, pn+1), and one can use successive iterations in order to find Y . Basically, starting with an
initial guess for Y , denoted Y (0), one iterates Y (n+1) = G(Y (n)) until the norm of two successive
approximations is below a certain tolerance, say 10−6. The following may be useful

% midpoint scheme
f o r n = 1:N
% initial guess for p,q
p1_it=p1(n);p2_it=p2(n);

5 ...
% first iteration
p1(n+1)=p1(n)-h*((q1(n)+q1_it)/2)/ ...

(((q1(n)+q1_it)/2)^2+((q2(n)+q2_it)/2)^2)^(3/2);
...

10 % successive iterations
w h i l e norm([p1(n+1);p2(n+1);q1(n+1);q2(n+1)]- ...

[p1_it;p2_it;q1_it;q2_it])>10^-6
p1_it=p1(n+1);p2_it=p2(n+1);
...

15 % compute new values for p,q using p_it, q_it
p1(n+1)= ... ;
...

end
end

20 % Compute H and L and do the plots for implicit midpoint as above
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3 Numerical integration of Hamiltonian systems

Task 1: Consider Hamiltonian systems of the form

ẏ = f (y), where f (y) = J−1∇H(y), (3)

with y ∈ R2d and the skew-symmetric matrix J =
(

0 I
−I 0

)
, where I ∈ Rd×d is the identity matrix.

Consider the average vector field method (AVF)

yn+1 = yn +h
∫ 1

0
f (θyn+1 + (1−θ)yn)dθ.

Using the fact that

H(yn+1)−H(yn) =
∫ 1

0

d

dθ

(
H(θyn+1 + (1−θ)yn)

)
dθ,

show that the AVF method exactly conserves the energy, i. e. H(yn+1) = H(yn).

Task 2: Consider the Hamiltonian function H(y) = 1

2
p2 −cos(q), with y = (p, q) ∈R2, in (3) and implement

the AVF method using the step size h = 2−6 and initial values q0 = 1 and p0 = 0.2. Plot the position of
the pendulum q versus the time and monitor the evolution of the total energy on the time interval
[0,50]. Since the AVF method is an implicit method, you may use the same techniques as described
in Kepler’s problem. Furthermore, you may use matlab command quadl in order to numerically
evaluate the integrals present in the AVF method. The following may be useful

c l e a r a l l
% initial values, time, stepsize
Qzero=1.; Pzero=0.2;
t_0=0; t_end=50;

5 h=2^-6; N= f l o o r ((t_end-t_0)./h);
y0=[Pzero;Qzero];

% first initial guess for y
y1t=y0;

10

f o r t=1:N
err=1;
w h i l e err > 10.^(-6)
% define the functions to integrate

15 yint1=@(x)( - s i n (y0(2)+x.*(y1t(2)-y0(2))) );
yint2= ...
% definition of the AVF method
y1=y0+[quadl( ... )*h; ... ];
% error between two consecutive iterations

20 err=norm(y1-y1t,2);
% update of the iterate
y1t=y1;

end
y0=y1;y1t=y0;

25 % save the AVF approximations for the plots
Qavf(t)=y1(2);Pavf(t)=y1(1);

end
% plots
...
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4 Highly oscillatory problems

Task 1: Show that a trigonometric method (see Definition 4.1 in the lecture notes) satisfying

ψ(ζ) = sin(ζ)ψ1(ζ)

ψ0(ζ) = cos(ζ)ψ1(ζ)

is symplectic if and only if

ψ(ζ) = sinc(ζ)ϕ(ζ) for ζ= hω.

Task 2: Consider the differential equation

x ′′(t ) =−ω2x(t ) , ω≫ 1 (4)

with initial conditions x(0) = x0 and x ′(0) = x ′
0.

(a) Show, that the exact solution of the above problem is given by(
ωx(t )
x ′(t )

)
=

(
cos(ωt ) sin(ωt )
−sin(ωt ) cos(ωt )

)(
ωx0

x ′
0

)
.

(b) Consider the midpoint rule

yn+1 = yn +h f
(

yn + yn+1

2

)
for differential equations of the form y ′ = f (y) as well as the Störmer-Verlet method

x ′
n+1/2 = x ′

n + h

2
g (xn)

xn+1 = xn +hx ′
n+1/2

x ′
n+1 = x ′

n+1/2 +
h

2
g (xn+1)

for differential equations of the form x ′′ = g (x). Compute one step of each of the above nu-
merical methods applied to the problem (4). Note that for the midpoint rule, the problem
needs to be rewritten as a first order system. Analyse the stability of the numerical methods
with respect to the time step size h. That is, write the numerical solution as(

ωxn+1

x ′
n+1

)
= M(hω)

(
ωxn

x ′
n

)
and compute the eigenvalues of the matrix M(hω). If these eigenvalues have modulus ≤ 1 for
all time step sizes h, then the numerical method is stable.

5 GNI for SDEs

Task 1: Simulation of a Brownian motion.

(a) Write a Matlab code to simulate one realisation of a discretised Brownian motion W (t ) on
[0,1]. For this, one uses the fact that

W (tℓ) =W (tℓ−1)+dWℓ,

where each dWℓ is an independent random variable of the form
p

hN (0,1). Consider grid
points given by tℓ = ℓh, where h = 2−4,2−6, and 2−8. Plot your numerical results W (tℓ) for
these three different values of h.

You may use the following
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c l e a r a l l
randn(’state’,100) % set the state of randn
% discretised Brownian motion for h=2^(−4)
Tend= ... ;h=2^(-4) ;N= ...;

5 W(1)= ...; % BM starts at 0 a.s.
f o r l=...
dW= s q r t (h)*randn(1,1); % increment/normal rand. var.
W(l+1)= ... ; % iter. procedure using def. of BM

end
10 % plot W against time
...
% discretised Brownian motion for h=2^(−6)
...

(b) With the help of the above part, compute the mean of W (t ) over 200, 2000, 20000 trajectories
of W (t ) on [0,1] with h = 2−8. Plot your results.

...
dW= s q r t (h)*randn(M,N+1); % generate M samples of Wiener increments
...
Wmean=mean(...);

5 ...

(c) Finally, in the same figure, display 5 sample paths of W (t ) and the mean over 50000 trajecto-
ries of W (t ) on [0,1] for h = 2−8.

Task 2: Scalar stochastic oscillators.

Consider the system of SDEs on the time interval [0,T ]:

dX (t ) = Y (t )dt

dY (t ) =−ω2X (t )dt +αdW (t ),

where W (t ) is a scalar Wiener process, the parameters ω≫ 1 and α ∈ R, and we denote by X0 and
Y0 the initial values of the problem. You may choose: ω = 5,α = 1,T = 1 for the above parameters
and X0 = 0,Y0 = 1 for the initial values.

In the lecture, we have seen that the exact solution verifies the following trace formula (i. e. linear
drift in the expected energy of the harmonic oscillator)

E
[1

2
Y (t )2 + ω2

2
X (t )2

]
= 1

2
Y 2

0 + ω2

2
X 2

0 + α2

2
t for all time t .

Compute and plot the linear drift in the expected energy along the numerical solutions given by
the Euler-Maruyama scheme

Xn+1 = Xn +hYn

Yn+1 = Yn −hω2Xn +α∆Wn ,

where ∆Wn ∼ p
hN (0,1), and the stochastic trigonometric method

Xn+1 = Xn cos(ωh)+Ynω
−1 sin(ωh)+αω−1 sin(ωh)∆Wn

Yn+1 =−Xnωsin(ωh)+Yn cos(ωh)+αcos(ωh)∆Wn .

The following code may be helpful:
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c l e a r a l l ;randn(’state’,100)

% number of paths samples for
% the approximation of the expectation

5 M=10^3;

% Initial parameters
omega=5;X0=0;Y0=1; alpha=1;

10 % initial energy
Haminit= ...

Tend=5;N=2^(5);h=Tend/N;

15 % initialisation of matrix containing
% numerical energies
Hamem= z e r o s (M,N);
Hamstm= z e r o s (M,N);

20 f o r s=1:M % loop on the samples
% Initial values
Xtempem= ... ;Ytempem= ... ;
Xtempstm= ...;Ytempstm= ...;
f o r j=1:N

25 Winc= s q r t (h)*randn(1,N); % Wiener increment

% Euler−Maruyama
X1em=Xtempem+h*Ytempem;
Y1em= ... ;

30 Xtempem=X1em;Ytempem= ... ;
% energy for EM
Hamem(s,j)= ... ;

% Stoch. trigon. method
35 X1stm=Xtempstm* c o s(h*omega)+ s i n (h*omega)/omega*Ytempstm+ ...

alpha* s i n (h*omega)/omega*Winc;
Y1stm= ... ;
...

end
40 end

s e t (0,’DefaultTextFontSize’,12)
s e t (0,’DefaultAxesFontSize’,12)
s e t (0,’DefaultLineLineWidth’,2)

45 s e t (0,’DefaultLineMarkerSize’,10)

% plots of the expected energy for EM, STM, exact
Dtvals=[h:h:Tend];
f i g u r e (),

50 p l o t (Dtvals,mean(Hamem),’ks-’, ...
Dtvals,mean(Hamstm),’k+-’, ...
Dtvals,Haminit+alpha^2.*Dtvals./2,’r’),
a x i s ([Dtvals(1) Dtvals(end) 0 30])
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hold off
55 x l a b e l (’Time’,’FontSize’,14)

y l a b e l (’Energy’,’Rotation’,0,’FontSize’,14)
l e g e n d(’EM’,’STM’,’Exact’)
s e t (gca ,’FontSize’,15);

In the above code, the expectation of a random variable E[Z ] is approximated by the mean E[Z ] ≈
1

M

M∑
s=1

Z s , where Z s are independent realisations of Z .
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