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Chapter 1: Crash course in probability theory

• A triple (Ω,A ,P) is called a probability space (PS) provided that:

■ the sample space Ω,; (this is the set of all possible outcomes);

■ the set of events A is a σ-algebra of subsets of Ω with

(σ1) Ω ∈A

(σ2) If A ∈A then its complement Ac ∈A , where Ac =Ω\ A

(σ3) If A1, A2, A3, . . . ∈A then
∞∪

n=1
An ∈A ;

■ the map P : A → [0,1] is a probability measure, that is

(p1) P(Ω) = 1

(p2) P(Ac) = 1−P(A) for all A ∈A

(p3) If A1, A2, A3, . . . ∈A are disjoint (i. e. Ai ∩ A j =; for i , j ), then

P(
∞∪

n=1
An) =: P(

∞⊎
n=1

An) =
∞∑

n=1
P(An).

• Two events A,B ∈A are independent if P(A∩B) =P(A) ·P(B).

• A property which is true except for an event of probability zero is said to hold almost surely (a.s).

• The σ-algebra of Borel sets in R is denoted by B(R). It is the smallest σ-algebra containing all
intervals of the form [a,b[ for reals a < b (]−∞,b[ is also ok). In a similar way, B([0,1]) denotes the
smallest σ-algebra containing all intervals of the form [a,b[, for reals a < b with [a,b[⊂ [0,1].

Observe that the Borel σ-algebra does not contain only intervals of the form [a,b[, but also (for
example) intervals of the form [a,b], ]a,b[, ]a,b], or the singleton {a}.

• Consider (Ω,A ,P) a PS. A (real-valued) random variable (RV) is a measurable function X : Ω→ R.
Here, measurable means X −1(B) ∈A for all B ∈B(R), where X −1(B) = {ω ∈Ω : X (ω) ∈ B}.

• A RV X on a PS (Ω,A ,P) is called continuous if there exists a piecewise continuous non-negative
function pX : R→ [0,1] such that the cumulative distribution function of X (CDF), FX : R→ [0,1],
satisfies

FX (x) :=P(X ≤ x) :=P({ω ∈Ω : X (ω) ≤ x}) =
∫ x

−∞
pX (s)ds for all x ∈R.

In this case, we call pX the probability density function of X (PDF).

From this definition, it follows that P(X ∈ B) =
∫

B
pX (s)ds for all Borel sets B ∈B(R). Furthermore,

P(a ≤ X ≤ b) = FX (b)−FX (a) =
∫ b

a
pX (s)ds for reals a < b. Finally, if pX is continuous at x ∈R, one

has pX (x) = d

dx
FX (x).

• Let −∞< a < b <∞. A RV X is uniformly distributed in [a,b] if its probability density function is
given by

pX (x) =
{

1
b−a for x ∈ [a,b]

0 else.

Notation: X ∼U (a,b).
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• Let µ,σ ∈R with σ2 > 0. A RV X is normally distributed or a Gaussian random variable if its proba-
bility density function is given by

pX (x) = 1p
2πσ2

e−
(x−µ)2

2σ2 .

If µ = 0 and σ = 1, then X has a standard normal distribution or is a standard Gaussian random
variable.

Notation: X ∼N (µ,σ2).

• Let X be a continuous RV with probability density function p. Let Y be another continuous RV. Let
g : R→R and let a positive integer k.

The expected value of X or mean of X or expectation of X is defined as

µ := E[X ] :=
∫
Ω

X (ω)dP(ω) =
∫ ∞

−∞
xp(x)dx.

Similarly, we define

E[g (X )] :=
∫ ∞

−∞
g (x)p(x)dx

and the kth moment of X

E[X k ] :=
∫ ∞

−∞
xk p(x)dx

as well as the variance of X
Var[X ] = E[(X −µ)2] = E[X 2]−µ2.

Finally, the covariance of X and Y is given by

Cov(X ,Y ) = E[(X −E[X ])(Y −E[Y ])].

If Cov(X ,Y ) = 0, one says that the RV X and Y are uncorrelated.

Examples: For X ∼U (a,b), one has E[X ] = 1
2 (a +b) and Var[X ] = 1

12 (b −a)2. For X ∼N (µ,σ2), one
has E[X ] =µ and Var[X ] =σ2.

• Let (Ω,A ,P) be a PS. For A ∈ A , we define the indicator function or characteristic function I A =
χA : Ω→R by

I A(ω) =χA(ω) =
{

1 if ω ∈ A

0 else.

Observe that this is a RV. A simple random variable X has the form

X (ω) =
n∑

j=1
c j I A j (ω),

where n ∈N,c j ∈R, A j ∈A .

• The space of simple random variables is denoted by SRV . It is equipped with the inner product
(X ,Y ) := E[X Y ] and norm ∥X ∥RV := (X , X )1/2 = (E[X 2])1/2 for X ,Y ∈ SRV . The space SRV is dense in
its completion the Hilbert space of random variables HRV .

• Consider a sequence of RV {Xn}∞n=1 and a RV X defined on a PS (Ω,A ,P). Let p > 0. We have the
following types of convergence:
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■ {Xn}∞n=1 converge strongly in L2 or in the mean-square sense to X if

E[|Xn −X |2] = ∥Xn −X ∥2
RV −→ 0 as n −→∞.

■ {Xn}∞n=1 converge strongly in L1 or strongly to X if

E[|Xn −X |] −→ 0 as n −→∞.

■ {Xn}∞n=1 converge strongly in Lp to X if

E[|Xn −X |p ] −→ 0 as n −→∞.

■ {Xn}∞n=1 converge in probability to X if

∀ε> 0, lim
n→∞P(|Xn −X | ≥ ε) = 0.

■ {Xn}∞n=1 converge to X almost surely (a.s.) or with probability 1 if

P({ω ∈Ω : lim
n→∞ |Xn(ω)−X (ω)| = 0}) = 1.

■ {Xn}∞n=1 converge in distribution to X if

lim
n→∞FXn (x) = FX (x) at all points, where FX is continuous.

■ {Xn}∞n=1 converge weakly to X if

lim
n→∞

∫ ∞

−∞
f (x)FXn (x)dx =

∫ ∞

−∞
f (x)FX (x)dx for all smooth functions f .

In general one has: a.s. convergence ⇒ convergence in probability ⇒ convergence in distribution
⇔ weak convergence. And ms convergence ⇒ convergence in probability.

• For 0 < p < r , Lyapunov inequality reads

(E[|X |p ])1/p ≤ (E[|X |r ])1/r .

• For φ : R→R convex, Jensen’s inequality reads

φ(E[X ]) ≤ E[φ(X )].

• If
∞∑

n=1
P(|X −Xn | ≤ ε) <∞ for all ε> 0, then Xn −→ X a.s.

Further resources:

• https://www.cs.utah.edu/~fletcher/cs6957/lectures/ProbabilityCrashCourse.pdf
• https://faculty.math.illinois.edu/~kkirkpat/SampleSpace.pdf
• https://onlinecourses.science.psu.edu/stat414/node/5
• http://www.randomservices.org/random/prob/index.html
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• https://www.probabilitycourse.com/
• https://www.statlect.com/fundamentals-of-probability/

Chapter 2: Stochastic processes

This chapter introduces stochastic processes. This is needed to define, for instance, solutions to SDEs.
Below, we let (Ω,A ,P) be a fixed probability space.

• A stochastic process (SP) is a family of random variables {X (t ), t ∈ τ} = {X (t )}t∈τ defined on the
probability space (Ω,A ,P) and indexed by a parameter t varying over a set τ.

Observe, that X : τ×Ω → R, so that (notation) X := X (t ) := X (t ,ω). Remark that X (t , ·) is a RV
for each fixed t ∈ τ. And, for a fixed ω ∈ Ω, X (·,ω) : τ → R is called the sample path, realisation,
trajectory of the SP X (t ).

If τ is discrete, e.g. τ= {0,1,2,3} or τ=N, then the SP is called discrete. The discrete random walk is
an example of a (discrete) stochastic process.

If τ is continuous, e.g. τ = [0,1] or τ = R, then the SP is called continuous. The Brownian mo-
tion (BM) also called Wiener process (WP) is an example of a (continuous) stochastic process (see
below).

• Let T > 0. A standard one-dimensional Brownian motion (BM), also called Wiener process (WP),
on [0,T ] is a real-valued, with a.s. continuous sample paths, SP {B(t )}t∈[0,T ] such that

(BM1) B(0) = 0 almost surely;

(BM2) For all s < t with s, t ∈ [0,T ], the increment B(t )−B(s) is normally distributed with mean zero
and variance t − s, i. e. B(t )−B(s) ∼N (0, t − s);

(BM3) B(t ) has independent increments: for all 0 ≤ t1 < t2 ≤ t3 < t4 ≤ T , B(t2)−B(t1) and B(t4)−B(t3)
are independent.

The notation W (t ) is also used for a BM/WP.

A BM {B(t )}t∈[0,T ] has the following properties:

■ E[B(t )] = 0 for all t ∈ [0,T ].

■ Cov(B(t ),B(s)) = s ∧ t = min(s, t ) for all s, t ∈ [0,T ].

■ B(t ) is almost surely nowhere differentiable.

• An elementary stochastic process, also called a random step function, f := f (t ,ω) := { f (t )}t∈[0,T ]

has the form

f (t ,ω) =
N−1∑
n=0

f (tn ,ω)I[tn ,tn+1[(t ),

where N ∈ N is fixed, 0 = t0 < t1 < t2 < . . . < tN = T , f (tn , ·) are RV in HRV for each fixed tn , and
I[tn ,tn+1[ denotes the (deterministic) characteristic function on the interval [tn , tn+1[.

The linear space of all elementary SP (with
∫ T

0
E[ f 2(t )]dt =

N−1∑
n=0

E[ f 2(tn ,ω)](tn+1 − tn) <∞) will be

denoted by SSP . It is equipped with the inner product ( f , g )SP :=
∫ T

0
E[ f (t )g (t )]dt which defines a

norm
∥∥ f

∥∥
SP = ( f , f )1/2

SP =
(∫ T

0
E[ f 2(t )]dt

)1/2
.
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The completion of the space SSP is denoted by HSP and is an Hilbert space. Observe that SSP is
dense in HSP .

Further resources:

• https://www.probabilitycourse.com/chapter10/10_1_0_basic_concepts.php
• http://www.randomservices.org/random/prob/Processes.html
• https://www.kent.ac.uk/smsas/personal/lb209/files/notes1.pdf contains some nice ex-

amples

• http://www.maths.manchester.ac.uk/~gajjar/magicalbooks/risk/a_Intro_to_SDEs.pdf
(first part for the moment)

Chapter 3: Stochastic integration

This chapter introduces stochastic integration. This is the final needed tool to define, for instance,
SDEs. Below, we let (Ω,A ,P) be a fixed probability space, a < b be two real numbers, and a = t0 < t1 <
t2 < . . . < tN−1 < tN = b be a partition of the interval [a,b] with N ∈ N. Furthermore, I[tn ,tn+1[ denotes
the characteristic/indicator function on the interval [tn , tn+1[. Finally, W (t ) will denote a Brownian mo-
tion/Wiener process defined on this probability space.

Below, we should also assume that the integrands (a stochastic process denoted by f here) satisfies

(c1) f (a, ·) ∈ HRV

(c2)
∥∥ f (t1, ·)− f (t2, ·)∥∥2

RV ≤ K |t1 − t2| for all t1, t2 ∈ [a,b] and a positive constant K

(c3) f is non-anticipating on [a,b], meaning more or less, that f (t ,ω) does not depend on information
from time t̃ with t̃ > t (i. e. the integrand f (t ) must be independent of the later values {W (s)}s>t of
the Brownian path).

• The integral of an elementary stochastic process { f (t ,ω)}t∈[a,b] ∈ SSP of the form

f (t ,ω) =
N−1∑
n=0

fn(ω)I[tn ,tn+1[(t ), where fn ∈ HRV , is defined as

J ( f )(ω) :=
∫ b

a
f (t ,ω)dt =

∫ b

a
f dt =

N−1∑
n=0

fn(ω)(tn+1 − tn).

It is a random variable with J ( f ) ∈ HRV as
∥∥ f

∥∥
RV <∞ by the Cauchy-Schwarz inequality.

• The stochastic integral of a stochastic process f ∈ HSP is defined as

J ( f )(ω) :=
∫ b

a
f (t ,ω)dt =

∫ b

a
f dt = lim

N→∞

∫ b

a
fN dt = lim

N→∞

N−1∑
n=0

f (N )
n (ω)(tn+1 − tn),

where { fN }∞N=1 is a Cauchy sequence in SSP converging to f in the sense:
∥∥ fN − f

∥∥
SP → 0 as N →∞.

• Ito’s stochastic integral for an elementary process f ∈ SSP is defined as

I ( f )(ω) :=
∫ b

a
f (t ,ω)dW (t ,ω) :=

∫ b

a
f dW =

N−1∑
n=0

fn(ω)∆Wn ,

with the Wiener increment ∆Wn :=W (tn+1,ω)−W (tn ,ω) ∼ N (0, tn+1 − tn).

Observe that
∥∥I ( f )

∥∥2
RV = ∥∥ f

∥∥2
SP <∞ and so I ( f ) ∈ HRV .
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• The Ito integral of a stochastic process f ∈ HSP is defined as

I ( f )(ω) :=
∫ b

a
f (t ,ω)dW (t ,ω) =

∫ b

a
f dW = lim

N→∞

∫ b

a
fN dW = lim

N→∞

N−1∑
n=0

f (N )
n (ω)

(
W (t (N )

n+1)−W (t (N )
n )

)
,

where { fN }∞N=1 is a Cauchy sequence in SSP converging to f in the sense:
∥∥ fN − f

∥∥
SP → 0 as N →∞.

The following properties hold for Ito’s integral:

1. I (c f + g ) = cI ( f )+ I (g ) for any f , g ∈ HSP and c ∈R.

2. E[I ( f )] = 0.

3. Ito’s isometry: E

[∣∣∣∣∫ b

a
f dW

∣∣∣∣2]
=

∫ b

a
E[| f |2]dt .

4. E[I ( f )I (g )] =
∫ b

a
E[ f g ]dt .

Further resources:

• http://venus.unive.it/imef/themes/imef/images/files/doc0910/StochasticIntegral2008.
pdf

• http://www.math.wsu.edu/math/faculty/lih/SDE-week6.pdf
• https://www.youtube.com/watch?v=10nJ7t_4-nM

Chapter 4: Stochastic differential equations

In this chapter we combine all the tools seen so far in order to define and analyse stochastic differen-
tial equations (SDE). Below, we let (Ω,A ,P) be a fixed probability space, T > 0, X0 ∈ HRV , f , g : R×R→R

and (W (t ))t∈[0,T ] a Brownian motion/Wiener process defined on this probability space.

• An Ito stochastic differential equation on the interval [0,T ] has the form

X (t ,ω) = X0(ω)+
∫ t

0
f (s, X (s,ω))ds +

∫ t

0
g (s,ω)dW (s,ω) for 0 ≤ t ≤ T. (SDE)

We will also use the (simpler) representation in differential form

dX (t ) = f (t , X (t ))dt + g (t , X (t ))dW (t )

X (0) = X0.

The function f is called the drift coefficient, the function g the diffusion coefficient.

• For µ,σ ∈R, a SP X is called a geometric Brownian motion if it is the solution to the SDE

dX = µX dt +σX dW

X (0) = X0.

This equation models stock prices in the Black-Scholes model. Its exact solution reads

X (t ) = X0exp
(
(µ− σ2

2 )t +σW (t )
)
.
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• For b > 0 and σ ∈R, the Langevin equation is given by

dX = −bX dt +σdW

X (0) = X0.

This models the motion of particles in a fluid.

Its exact solution reads X (t ) = e−bt X0 +σ

∫ t

0
e−b(t−s) dW (s).

• Let λ,µ,σ> 0. The mean-reverting square root process is the solution to the SDE

dX = λ(µ−X )dt +σ
p

X dW

X (0) = X0.

This is an interest rate model, also known as the CIR model.

• Consider an integer N > 0, define the stepsize ∆t := T
N and consider a partition of the interval [0,T ]

given by 0 = t0 < t1 < . . . < tN = T , where tn = n∆t for n = 0,1, . . . , N . We present some numerical
methods for the approximation of solutions to (SDE). This provides numerical approximations
Xn ≈ X (tn) for n = 1,2, . . . , N .

The Euler-Maruyama scheme (EM) is given by

Xn+1 = Xn + f (tn , Xn)∆t + g (tn , Xn)∆Wn

X0 = X (0),

where the Wiener increments ∆Wn =W (tn+1)−W (tn) ∼ N (0,∆t ).

The backward Euler-Maruyama scheme (BEM) is given by

Xn+1 = Xn + f (tn+1, Xn+1)∆t + g (tn , Xn)∆Wn

X0 = X (0).

The Milstein scheme (M) reads

Xn+1 = Xn + f (tn , Xn)∆t + g (tn , Xn)∆Wn + 1

2
g ′(Xn)g (Xn)

(
∆W 2

n −∆t
)

X0 = X (0).

• For a function Φ : R→R, the weak error is

errweak
∆t := sup

0≤tn≤T
|E[Φ(Xn)]−E[Φ(X (tn))]| .

A numerical method for (SDE) converges weakly if for any function Φ of a certain class

errweak
∆t → 0 as ∆t → 0.

A numerical method for (SDE) has weak order of convergence p if there exist K > 0 and ∆t∗ > 0
such that

errweak
∆t ≤ K∆t p

for 0 ≤∆t ≤∆t∗.

For the above mentioned numerical methods, one has (in general) pE M = 1, pBE M = 1, and pM = 1.
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• The strong error is
errstrong

∆t := sup
0≤tn≤T

E[|Xn −X (tn)|].

A numerical method for (SDE) converges strongly if

errstrong
∆t → 0 as ∆t → 0.

A numerical method for (SDE) has strong order of convergence q if there exist K > 0 and ∆t∗ > 0
such that

errstrong
∆t ≤ K∆t q

for 0 ≤∆t ≤∆t∗.

For the above mentioned numerical methods, one has (in general) qE M = 1/2, qBE M = 1/2, and
qM = 1.

• We have investigated the statistical error due to a Monte-Carlo algorithm for the approximation of
E[X ] of some random variable X :

1. Compute M independent realisations of X , denoted by X k for k = 1,2, . . . , M .

2. Compute the sample average EM [X ] := 1

M

M∑
k=1

X k .

We have found that E[X ]−EM [X ] = O ( 1p
M

). In particular, when considering the weak error of EM

scheme, one should take M ≈ N 2 realisations in order to properly approximate the expectations.

• Let f , g : [0,T ]×Ω→ R be nice processes, T > 0, and X0 ∈ HRV . A stochastic process X is called an
Ito process if it satisfies

X (t ) = X0 +
∫ t

0
f (s)ds +

∫ t

0
g (s)dW (s) for 0 ≤ t ≤ T.

We also say, that X has the stochastic differential

dX (t ) = f (t )dt + g (t )dW (t )

X (0) = X0.

For such processes and a nice function F : [0,T ]×R→R, Ito’s formula tells us that

d(F (t , X (t ))) = f̃ (t , X (t ))dt + g̃ (t , X (t ))dW (t ), (IF)

where f̃ (t , x) := ∂F
∂t (t , x)+ f (t )∂F

∂x (t , x)+ 1
2 g (t )2 ∂2F

∂x2 (t , x) and g̃ (t , x) := g (t )∂F
∂x (t , x).

Equation (IF) has to be understood as an integral equation. Furthermore, formula (IF) is for in-
stance useful to find exact solutions to particular SDEs or to compute moments of such solutions.

• We have seen that, if the coefficients of the stochastic differential equation (SDE) are non-anticipating,
globally Lipschitz and satisfy a linear growth condition, then (SDE) has a unique (strong) global so-
lution. Furthermore, the solution (a stochastic process) X (t ) is continuous (with respect to time t )
and has bounded second moment.

• We also studied the convergence of Euler-Maruyama’s scheme. In particular, under some technical
assumptions, we saw that (in general) the strong order of convergence of this numerical method
is (in general) 1/2 and the weak order of convergence is 1 (for the class of test functions that are
smooth and with at most polynomial growth).
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Further resources:

• http://www.azimuthproject.org/azimuth/show/Stochastic+differential+equation
• https://www.stat.auckland.ac.nz/~geoff/talks/SDE-notes.pdf
• https://www.mimuw.edu.pl/~apalczew/CFP_lecture5.pdf
• http://people.math.sfu.ca/~tupper/days/m3.pdf
• https://ocw.mit.edu/courses/sloan-school-of-management/15-070j-advanced-stochastic-processes-fall-2013/
lecture-notes/MIT15_070JF13_Lec17.pdf
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