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Chapter 1: Crash course in probability theory

o Atriple (Q,<f,[P) is called a probability space (PS) provided that:

s the sample space Q) # @ (this is the set of all possible outcomes);
s the set of events «f is a o-algebra of subsets of Q with
(o1) Qe
(02) If A€ o/ then its complement A € of, where A®=Q\ A
(03) If Ay, Ap, As,... € of then fj Ap € s

n=1
s the map P: of — [0, 1] is a probability measure, that is

(p1) P(Q)=1
(p2) PA®%) =1-P(A) forall Ae o
(p3) If Ay, Az, As, ... € of are disjoint (i.e. A;nA; =@ for i # j), then

P(U An) =:P(lH An) = ) P(A).
n=1 =1

n=1 n=

o Two events A, B € of are independent if P(An B) =P(A) -P(B).
» A property which is true except for an event of probability zero is said to hold almost surely (a.s).

o The o-algebra of Borel sets in R is denoted by 2 (R). It is the smallest o-algebra containing all
intervals of the form [a, b[ for reals a < b (] — oo, b| is also ok). In a similar way, 28([0, 1]) denotes the
smallest o-algebra containing all intervals of the form [a, b|, for reals a < b with [a, b[< [0,1].

Observe that the Borel o-algebra does not contain only intervals of the form [a, b[, but also (for

example) intervals of the form [a, b], 1a, bl, 1a, b], or the singleton {a}.

¢ Consider (Q, «/,P) a PS. A (real-valued) random variable (RV) is a measurable function X: Q — R.
Here, measurable means X ! (B) € o for all B € B(R), where X !(B) = {we Q: X(w) € B}.

e ARV X on aPS (Q,«,P) is called continuous if there exists a piecewise continuous non-negative
function px: R — [0,1] such that the cumulative distribution function of X (CDF), Fx: R — [0,1],
satisfies

X
Fx(x)=P(X<x):=PlweQ: X(w) <x}) = f px(s)ds forall xeR.
—00
In this case, we call px the probability density function of X (PDF).

From this definition, it follows that P(X € B) = f px(s)ds for all Borel sets B € B(R). Furthermore,
B
b
P(a< X <b)=Fx(b)-Fx(a) :[ px(s)ds forreals a < b. Finally, if px is continuous at x € R, one
a

d
has px(x) = aFX(x).

e Let —oo < a < b <oo. ARV X is uniformly distributed in [a, b] if its probability density function is
given by

5 for xe€la,bl

0 else.

Notation: X ~ % (a, b).
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e Let u,0 € Rwith 62 > 0. ARV X is normally distributed or a Gaussian random variable if its proba-
bility density function is given by

_ (x—/,t)2
e 20°

px(x) =
202

If =0 and o =1, then X has a standard normal distribution or is a standard Gaussian random
variable.

Notation: X ~ A (u,02).

o Let X be a continuous RV with probability density function p. Let Y be another continuous RV. Let
g: R— Rand let a positive integer k.
The expected value of X or mean of X or expectation of X is defined as

(o]

W= [E[X]:z/ X(w)le(w)zf xp(x)dx.
Q o)

Similarly, we define

Eg@ﬂ:f 20 p(dx

and the kth moment of X

E(xk) :=f *Fp(x)dx

as well as the variance of X
Var[X] = E[(X — u)?] = E[X?] — u?.

Finally, the covariance of X and Y is given by
Cov(X,Y) =E[(X —E[XD(Y —E[Y]].

If Cov(X, Y) =0, one says that the RV X and Y are uncorrelated.
Examples: For X ~ % (a, b), one has E[X] = 1 (a+ b) and Var[X] = -5 (b— @)®. For X ~ .4 (u,0?), one
has E[X] = p and Var[X] = o2
o Let (Q,o/,P) be a PS. For A € o/, we define the indicator function or characteristic function I4 =
xa: Q—Rby
1 if weA
Ipn(w) = yalw) =
0 else.

Observe that this is a RV. A simple random variable X has the form
n
X) =) cjla W),
j=1

where neN,c; eR,Aj € of.

e The space of simple random variables is denoted by Sgry. It is equipped with the inner product
(X,Y):=E[XY] and norm || X gy := (X, X)V/? = (E[X?])"/? for X, Y € Sgy. The space Sgy is dense in
its completion the Hilbert space of random variables Hgy.

 Consider a sequence of RV {X,}77, and a RV X defined on a PS (Q,«/,P). Let p > 0. We have the
following types of convergence:
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{Xn}5~, converge strongly in L? or in the mean-square sense to X if

EllXn— XI*] = Xy — X%y — 0 as n— oo.

{Xn}~, converge strongly in L' or strongly to X if

E[|X;,— X|]]—0 as n— oo.

{Xn}S2, converge strongly in L” to X if

E[|X,-X|’1—0 as n— oo.

{Xn}‘;l":1 converge in probability to X if

Ve>0, lim P(X,—-X|=¢) =0.
n—oo

{Xn}‘,’f: | converge to X almost surely (a.s.) or with probability 1 if

PweQ: nli_r)Ioloan(w) -X(w)|=0})=1.

{Xn}j’f:l converge in distribution to X if

r}im Fx (x) = Fx(x) atall points, where Fx is continuous.
—00

{Xn}‘,’l":1 converge weakly to X if

o0

nh_r& f fX)Fx, (x)dx = f f(x)Fx(x)dx for all smooth functions f.

—00

In general one has: a.s. convergence = convergence in probability = convergence in distribution
< weak convergence. And ms convergence = convergence in probability.

e For 0 < p < r, Lyapunov inequality reads

ENXIPHYP < ENXITDYT.

e For ¢: R — R convex, Jensen’s inequality reads

@[E[X]) = Elp(X)].

o0
o If Z P(X - X,|<¢)<ooforalle >0, then X,, — X a.s.

n=1
Further resources
e https://www.cs.utah.edu/~fletcher/cs6957/lectures/ProbabilityCrashCourse.pdf
e https://faculty.math.illinois.edu/~kkirkpat/SampleSpace.pdf
e https://onlinecourses.science.psu.edu/stat414/node/5

e http://www.randomservices.org/random/prob/index.html
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e https://www.probabilitycourse.com/

e https://www.statlect.com/fundamentals-of-probability/

Chapter 2: Stochastic processes

This chapter introduces stochastic processes. This is needed to define, for instance, solutions to SDEs.
Below, we let (Q, «Z,[P) be a fixed probability space.

o A stochastic process (SP) is a family of random variables {X(¢),t € 7} = {X(#)};e; defined on the
probability space (Q2, «/,P) and indexed by a parameter ¢ varying over a set 7.

Observe, that X: 7 x Q — R, so that (notation) X := X(¢) := X(¢,w). Remark that X(¢,-) is a RV

for each fixed r € 7. And, for a fixed w € Q, X(-,w): T — R is called the sample path, realisation,
trajectory of the SP X(#).

If 7 is discrete, e.g. 7 ={0,1,2,3} or 7 = N, then the SP is called discrete. The discrete random walk is
an example of a (discrete) stochastic process.

If 7 is continuous, e.g. T = [0,1] or 7 = R, then the SP is called continuous. The Brownian mo-
tion (BM) also called Wiener process (WP) is an example of a (continuous) stochastic process (see
below).

e Let T > 0. A standard one-dimensional Brownian motion (BM), also called Wiener process (WP),
on [0, T] is a real-valued, with a.s. continuous sample paths, SP {B(#)};c[o,7] such that

(BM1) B(0) =0 almost surely;
(BM2) Forall s < twith s, £ € [0, T], the increment B(¢) — B(s) is normally distributed with mean zero
and variance t — s,i.e. B(t) — B(s) ~ A4 (0,t— 5);

(BM3) B(t) hasindependentincrements: forall0<t; <, <t3<ty < T, B(f,)—B(t;) and B(ty) — B(t3)
are independent.

The notation W (t) is also used for a BM/WP.
A BM {B(8)}s¢[0,7) has the following properties:

s E[B(t)]=0forall r€[0,T].
s Cov(B(1),B(s)) = sA t=min(s, t) forall s, t€[0, T].

m B(t) is almost surely nowhere differentiable.

* An elementary stochastic process, also called a random step function, f := f(f,w) := {f ()} se0,1)

has the form
N-1

flw) =) fltn,o) i, 0., (D),

n=0
where NeNisfixed, 0=ty <ty < <...<ty =T, f(ty,) are RV in Hgy for each fixed t,, and
I, 1,.,1 denotes the (deterministic) characteristic function on the interval [, f;,41].

T N-1
The linear space of all elementary SP (with f ELf2(01dt = Y ELf*(tn, 0)](tn+1 — tn) < 00) will be
0

n=0
T
denoted by Sgp. It is equipped with the inner product (f, g8)sp := f E[f(t)g(?)]dt which defines a
0

1/2

T
nom | £lp = (7,035 = (| B 014
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The completion of the space Ssp is denoted by Hgp and is an Hilbert space. Observe that Sgp is
dense in Hgp.

Further resources:
e https://www.probabilitycourse.com/chapterl®/10_1_0_basic_concepts.php
e http://www.randomservices.org/random/prob/Processes.html

e https://www.kent.ac.uk/smsas/personal/1b209/files/notesl.pdf containssome nice ex-
amples

e http://www.maths.manchester.ac.uk/~gajjar/magicalbooks/risk/a_Intro_to_SDEs.pdf
(first part for the moment)

Chapter 3: Stochastic integration

This chapter introduces stochastic integration. This is the final needed tool to define, for instance,
SDEs. Below, we let (Q,<,P) be a fixed probability space, a < b be two real numbers, and a = fp < f; <
Ir <...< ty-1 < ty = b be a partition of the interval [a, b] with N € N. Furthermore, Ij;, ;,.,| denotes
the characteristic/indicator function on the interval [¢;, t,+1[. Finally, W (¢) will denote a Brownian mo-
tion/Wiener process defined on this probability space.

Below, we should also assume that the integrands (a stochastic process denoted by f here) satisfies

(cl) f(a,") € Hry
) || f(t,) - ft2,) ||§W < K|t; — t,| for all #1, > € [a, b] and a positive constant K

(c3) fisnon-anticipating on [a, b], meaning more or less, that f(¢,w) does not depend on information
from time 7 with 7 > 7 (i. e. the integrand f(¢) must be independent of the later values {W ()} of
the Brownian path).

e The integral of an elementary stochastic process {f (£, w)}se[q,p) € Ssp of the form
N-1
flt,w) = Z fn@)1,1,,,1(2), where f, € Hgy, is defined as
n=0

N-1

b b
J(f)(w):zf f(t,w)dtzf fdr= )" ful@)(tne1 — tn).
a a n=0

It is a random variable with J(f) € Hgy as || f|| 5, < oo by the Cauchy-Schwarz inequality.

« The stochastic integral of a stochastic process f € Hgp is defined as

b b b N-1
J(f)(w):=f f(t,w)dt:f Fdi= limf frde=lim Y FN (@) (et — 1),
a a N—ooJg N—»oonzo

where {fy}%_, is a Cauchy sequence in Ssp converging to f in the sense: ||fN - f|| sp — 0as N —oo.

« [Ito’s stochastic integral for an elementary process f € Sgp is defined as

b N-1

b
I(f)(w)::f fEw)dWtw) = fAW =) fulw)AW,,

n=0
with the Wiener increment AW, := W (t,41,0) — W(t,,w) ~ N(O, ty41 — ).
Observe that || 1(f) ”iv = ||f||§P <ooandso I(f) € Hpy.
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o The Ito integral of a stochastic process f € Hgp is defined as
b b b RSy (V) N
1= [ feoawio = [ raw=tim [ fvdw = tim ¥ 500 (Wl - w),
a a N—ooJg N—oo ;=

where {fy}%_, is a Cauchy sequence in Ssp converging to f in the sense: ||fN - f|| sp — 0as N —oo.

The following properties hold for Ito’s integral:

1. I(cf+g) =cl(f)+1(g) forany f,g € Hsp and ceR.

2. E[I(fH]=0.
b 2 b
fde ]=f E[lf1%] dz.

b
4, [E[I(f)I(g)]zf E[fgldr.

3. Tto’s isometry: E

Further resources:

e http://venus.unive.it/imef/themes/imef/images/files/doc0910/StochasticIntegral2008.
pdf

e http://www.math.wsu.edu/math/faculty/lih/SDE-week6.pdf

e https://www.youtube.com/watch?v=10nJ7t_4-nM

Chapter 4: Stochastic differential equations

In this chapter we combine all the tools seen so far in order to define and analyse stochastic differen-
tial equations (SDE). Below, we let (Q, «/,[P) be a fixed probability space, T >0, Xo € Hgy, f,8: RxR—-R
and (W (#)) rejo,7) @ Brownian motion/Wiener process defined on this probability space.

¢ An Ito stochastic differential equation on the interval [0, T'] has the form

t

t
X(t,w) :Xo(w)+f f(s,X(s,w))ds+f g(s,w)dW(s,w) for 0<t=<T. (SDE)
0 0

We will also use the (simpler) representation in differential form

dX(z)
X(0)

Fl6,X(0)dr+g(t, X (1) dW ()
Xo.

The function f is called the drift coefficient, the function g the diffusion coefficient.

o For y,0 €R, aSP X is called a geometric Brownian motion if it is the solution to the SDE

dXx
X(0)

pXdt+oXdwW
Xo.

This equation models stock prices in the Black-Scholes model. Its exact solution reads

X(8) = Xoexp ((u ~ 2+ aW(t)).
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¢ For b >0 and o € R, the Langevin equation is given by

dX = -bXdr+odW
X0) = X,.

This models the motion of particles in a fluid.

t
Its exact solution reads X(¢) = e_b’Xo + af e b=9) dW (s).
0

e Let A,u,0 > 0. The mean-reverting square root process is the solution to the SDE

dXx
X(0)

AMu-X)dt+o VXdW
Xo.

This is an interest rate model, also known as the CIR model.

o Consider an integer N > 0, define the stepsize At := % and consider a partition of the interval [0, T]
givenby 0=t < f; <...< ty = T, where t, = nAt for n =0,1,..., N. We present some numerical
methods for the approximation of solutions to (SDE). This provides numerical approximations
X,=X(ty)forn=1,2,...,N.

The Euler-Maruyama scheme (EM) is given by

Xn1 = Xn+f(tnan)At+g(tn»Xn)AWn
Xy = X(0),

where the Wiener increments AW, = W(t,+1) — W(t;) ~ N(0,At).
The backward Euler-Maruyama scheme (BEM) is given by

Xpns1 = Xp+ [, Xns DAL+ 810, X)) AW,
Xo X(0).

The Milstein scheme (M) reads

1
Xpi = Xn+f(tn,Xn)At+g(tn,Xn)AWn+Eg’(xn)g(xn)(AW,f—At)
Xo X(0).

¢ For a function ®: R — R, the weak error is

errieak ;= sup_ IE[D(Xp)] —E[®(X (£,))]].

A numerical method for (SDE) converges weakly if for any function ® of a certain class

weak
erry,, —0 as Atr—0.

A numerical method for (SDE) has weak order of convergence p if there exist K > 0 and At* > 0
such that
erry® < KA (P

forO<At<At*.

For the above mentioned numerical methods, one has (in general) pgy =1, ppeym =1, and py = 1.
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¢ The strong error is
strong

err,, ~:= sup E[IX,—X(#)Il.
0<t,<T
A numerical method for (SDE) converges strongly if

strong

T, —0 as Ar—0.

er

A numerical method for (SDE) has strong order of convergence g if there exist K > 0 and At* >0
such that

t
errzzong < KAt?

forO<At<At*.

For the above mentioned numerical methods, one has (in general) ggy = 1/2, gy = 1/2, and
qm = 1.

+ We have investigated the statistical error due to a Monte-Carlo algorithm for the approximation of
E[X] of some random variable X:

1. Compute M independent realisations of X, denoted by X* for k=1,2,..., M.
1 M
2. Compute the sample average [EM[X] = i Z xk.
We have found that E[X] -EM[X] =@ (\/LM). In particular, when considering the weak error of EM

scheme, one should take M =~ N? realisations in order to properly approximate the expectations.

o Let f,g:10,T] xQ — R be nice processes, T > 0, and Xy € Hry. A stochastic process X is called an
Ito process if it satisfies

t t
X() =X +f f(s)ds+f g(s)dW(s) for 0<t<T.

0 0

We also say, that X has the stochastic differential

dX(1)
X(0)

fde+gt)dw(n
Xo.

For such processes and a nice function F: [0, T] x R — R, Ito’s formula tells us that

d(F(t, X)) = f(¢, X()dt + &£, X () dW (D), (IF)
where f(t,x) =2 (6, + F(OE (1, x0) + %g(t)zg%:(t, x) and g(t,x) := g(O % (¢, %).
Equation (IF) has to be understood as an integral equation. Furthermore, formula (IF) is for in-
stance useful to find exact solutions to particular SDEs or to compute moments of such solutions.

* We have seen that, if the coefficients of the stochastic differential equation (SDE) are non-anticipating,
globally Lipschitz and satisfy a linear growth condition, then (SDE) has a unique (strong) global so-
lution. Furthermore, the solution (a stochastic process) X (¢) is continuous (with respect to time )
and has bounded second moment.

* We also studied the convergence of Euler-Maruyama’s scheme. In particular, under some technical
assumptions, we saw that (in general) the strong order of convergence of this numerical method
is (in general) 1/2 and the weak order of convergence is 1 (for the class of test functions that are
smooth and with at most polynomial growth).
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Further resources:
e http://www.azimuthproject.org/azimuth/show/Stochastic+differential+equation

e https://www.stat.auckland.ac.nz/~geoff/talks/SDE-notes.pdf

https://www.mimuw.edu.pl/~apalczew/CFP_lecture5.pdf

http://people.math.sfu.ca/~tupper/days/m3.pdf

https://ocw.mit.edu/courses/sloan-school-of-management/15-070j-advanced-stochastic-proces
lecture-notes/MIT15_070]F13_Lecl7.pdf


david.cohen@umu.se
http://www.azimuthproject.org/azimuth/show/Stochastic+differential+equation
https://www.stat.auckland.ac.nz/~geoff/talks/SDE-notes.pdf
https://www.mimuw.edu.pl/~apalczew/CFP_lecture5.pdf
http://people.math.sfu.ca/~tupper/days/m3.pdf
https://ocw.mit.edu/courses/sloan-school-of-management/15-070j-advanced-stochastic-processes-fall-2013/lecture-notes/MIT15_070JF13_Lec17.pdf
https://ocw.mit.edu/courses/sloan-school-of-management/15-070j-advanced-stochastic-processes-fall-2013/lecture-notes/MIT15_070JF13_Lec17.pdf

