
INTRODUCTION TO THE HAMILTON-JACOBI-BELLMAN EQUATION

ADAM ANDERSSON

This text is a summary of important parts of chapter 3 and 4 in the book (Controlled
Markov Processes and Viscosity Solutions, Fleming and Soner) [1]. It first states the opti-
mal control problem over a finite time interval, or horizon. It then contains a formal derivation
of the Hamilton-Jacobi-Bellman partial differential equation. In the third section some exis-
tence results are stated without proofs for the Hamilton-Jacobi-Bellman equation under a non-
degeneracy condition. In the fourth and final section a verification theorem is stated. It gives
the rigorous connection between the solution of the HJB-equation and the original stochastic
control problem.

1. The control problem

The following diffusion type SDE will be considered:

dX(t) = f(t,X(t), u(t)) dt+ σ(t,X(t), u(t)) dW (t), t ≥ 0, X(0) = x0.

The state {X(t)}t≥0 here depends on the process {u(t)}t≥0 that we refer to as a control process.
For the ease of notation this dependence is not made explicit.

To settle the framework let {W (t)}t≥0 be a d-dimensional Wiener process on a filtered prob-
ability space (Ω,F , {Ft}t≥0,P). The control process {u(t)}t≥0 takes its values in a closed subset
U ⊂ Rm. The coefficients f : [0, T ] × Rn × U → Rn and σ : [0, T ] × Rn × U → Rn×d are
deterministic functions. They are assumed to have continuous and bounded first derivatives in
t and x and moreover satisfy a linear growth condition in the control variable u.

The purpose of stochastic control is to control the diffusion to behave in a certain way. This
is done by stating and solving a minimization or maximization problem. Define, for (t, x, v) ∈
[0, T ]× Rn × U , the cost functional

J(t, x, u) = E
[ ∫ τ

t

L(s,X(s), u(s))ds+ Ψ(τ,X(τ))
∣∣∣X(t) = x

]
.

Here τ = min(τ̃ , T ), where τ̃ ≥ t is the stoping time when X leaves the open set O ⊂ Rn,
that may be Rn itself. This means that the X lives in O and is stopped when hitting the
boundary ∂O. The function L : [0, T ] × Rn × U → R is called the running cost function and
Ψ : ([0, T )× ∂O) ∪ ({T} ×O)→ R the terminal cost function. The running cost is assumed to
be bounded in t and of polynomial growth in x and u. The terminal cost is assumed to have
polynomial growth. If L ≡ 0 the control problem is said to be on Meyer form and when Ψ ≡ 0
the problem is said to be on Lagrange form.

It is common practice to state the problem as a minimization problem, choosing u to minimize
J . This we will do in those notes. In finance on the other hand one often needs to maximize
the utility of an investment, where, with our notation, Ψ is the utility function and L ≡ 0. The
utility function describes the investors risk aversion.

A process u : [t, T ]×Ω→ U is called progressively measurable if its restriction to [t, s]×Ω is
B[t,s]×Fs-measurable. A control u : [t, T ]×Ω→ U is said to be admissible if it is progressively
measurable and

E
∫ T

t

|u(s)|m ds <∞, ∀m ∈ N.
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An easy way to make this assumption hold is to assume U to be compact. The class of admissible
controls will be denoted At.

2. A formal derivation of the HJB-equation

For simplicity we here take O = Rn. It then make sense to consider a terminal cost function
Ψ : Rn → R, only depending on the state since τ̃ =∞ in this case. Define the value function

(2.1) V (t, x) = inf
u∈At

J(t, x, u)

It plays an important role in control theory. We will derive formally an equation for V called the
dynamic programming equation. This can be done for any Markov process, e.g., Levy processes
or finite state Markov Chains. For diffusions the equation becomes a non-linear second order
PDE called the Hamilton-Jacobi-Bellman (HJB) equation. Often it can be deduced from the
equation what the optimal control is. It is then often of the form u∗(s) = π∗(s,X(s)), where
π : [0, T ] × Rn → U is a deterministic function, see (2.7) below. Such a control is called a
Markov control policy.

Bellman’s dynamic programming principle reads

V (t, x) = inf
u∈At

E
[ ∫ t+h

t

L(s,X(s), u(s))ds+ V (t+ h,X(t+ h))
∣∣∣X(t) = x

]
.

The intuition is that the minimal cost on [t, T ] is achieved when running optimally in [t, t+h] and
then continue optimally in [t+h,T] with X(t+ h) as initial value. We will accept this heuristic
argument in order to give a formal derivation of the HJB-equation. The important implications
goes the other way. Once we have a smooth enough solution to the HJB-equation, we can
prove the dynamic programming principle and other important results. So called verification
theorems is used for this purpose.

We now start deriving the dynamic programming equation. Let the control be constant
u(s) = v for s ∈ [t, t+ h]. Then the dynamic programming principle yields

V (t, x) ≤ E
[ ∫ t+h

t

L(s,X(s), v)ds+ V (t+ h,X(t+ h))
∣∣∣X(t) = x

]
.

Subtracting V (t, x) from both sides and dividing by h gives

0 ≤ 1

h
E
[ ∫ t+h

t

L(s,X(s), v)ds
∣∣∣X(t) = x

]
+

1

h
E
[
(V (t+ h,X(t+ h))− V (t, x))

∣∣∣X(t) = x
]

= Ih1 + Ih2

Using Fubinis theorem for conditional expectation and letting h→ 0 we have that

Ih1 =
1

h

∫ t+h

t

E[L(s,X(s), v)|X(t) = x] ds

→ L(t, x, v).

The second term Ih2 needs a little more work. Itô’s formula yields

V (t+ h,X(t+ h))− V (t, x)

=

∫ t+h

t

AvV (s,X(s)) ds+

∫ t+h

t

Vx(s,X(s)) · σ(s,X(s), v) dW (s),
(2.2)
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where the backward operator1 is given by

AvΦ(t, x) = Φt(t, x) + Φx(t, x) · f(t, x, v) +
1

2
Tr{Φxx(t, x)σ(t, x, v)σ∗(t, x, v)}.

The trace of a square matrix is the sum of the diagonal elements. The above trace becomes for
a = σσ∗

Tr{Φxx(t, x)σ(t, x, v)σ∗(t, x, v)} =

n∑
i,j=1

aij(t, x, v)Φxixj (t, x).

It is here important to choose a suitable domain D, for Av, common for all v ∈ U , since we later
want to vary v. Moreover the functions of this domain must be such that AvV is continuous
and the Itô term in (2.2), for V ∈ D, is a martingale. Assume here that this is the case. Then,
when taking expectation in (2.2), we get that

Ih2 =
1

h
E
[ ∫ t+h

t

AvV (s,X(s)) ds
∣∣∣X(t) = x

]
=

1

h

∫ t+h

t

E[AvV (s,X(s))|X(t) = x] ds

→ AvV (t, x)

as h→ 0. To conclude, for all v ∈ U ,

(2.3) 0 ≤ AvV (t, x) + L(t, x, v).

Assume now that the optimal control is given by an optimal Markov control policy, i.e,
u∗(s) = π∗(s,X∗(s)). Here X∗ is the optimal state process, controlled under u∗. The dynamic
programming principle then takes the form

V (t, x) = E
[ ∫ t+h

t

L(s,X∗(s), π∗(s,X∗(s)))ds+ V (t+ h,X∗(t+ h))
∣∣∣X∗(t) = x

]
.

Using this, noticing that the backward operator of X∗ is Aπ
∗

:= Aπ
∗(t,x) and making similar

calculation as those above one shows that

(2.4) 0 = Aπ
∗
V (t, x) + L(t, x, π∗(t, x)).

For the limit argument to hold in this case continuity of π∗ is needed, something we boldly
assume. Combining (2.3) and (2.4) yields the dynamic programming equation

(2.5) 0 = inf
v∈U

[AvV (t, x) + L(t, x, v)],

for (t, x) ∈ [0, T ]× Rn, with terminal data

(2.6) V (T, x) = Ψ(x).

If we accept this then a reasonable candidate for an optimal control policy is

(2.7) π∗(t, x) = argmin[AvV (t, x) + L(t, x, v)].

1The operator Av is called backward since it is the operator appearing in the backward Kolmogorov equation
AvΦ = 0, for Φ(T, x) = φ(x). Its solution is given by Φ(t, x) = E[φ(X(T ))|X(t) = x]. In Markov theory standard

notation reeds Av = ∂t +Gv , where Gv is the infinitesimal generator of the Markov semigroup.
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If it exist almost everywhere and the solution V to (2.5) and (2.6) is sufficiently smooth, then
a verification theorem guarantees that so is the case. The same theorem states that V really is
the value function we defined in (2.1).

We rewrite the dynamic programming equation in terms of the Hamiltonian

H(t, x, p, A) = sup
v∈U

[
− f(t, x, v) · p− 1

2
Tr{Aσ(t, x, v)σ∗(t, x, v)} − L(t, x, v)

]
.

The equation then takes the form of the Hamilton-Jacobi-Bellman equation

−∂V
∂t

+H(t, x,DxV,D
2
xV ) = 0, (t, x) ∈ (0, T )× Rn

satisfying

V (T, x) = Ψ(x), x ∈ Rn.

3. HJB in the case of a non-degenerate diffusion

Taking into account the more general case of an arbitrary open O ⊂ Rn the Hamilton-Jacobi-
Bellman equation becomes

(3.1) −∂V
∂t

+H(t, x,DxV,D
2
xV ) = 0, (t, x) ∈ (0, T )×O

with the boundary condition

(3.2) V (t, x) = Ψ(t, x), (t, x) ∈ ([0, t)× ∂O) ∪ (T ×O).

So, by leaving O at x ∈ ∂O a time t < T costs Ψ(t, x), while as before, we pay Ψ(T, x) if X
remains inside O for all t < T and has value x at the final time.

There is one property of the diffusion that splits the problem into two categories. In the
first category the HJB-equation has a unique classical solution. In the second the solution has
a generalized solution in terms of viscosity solutions, possible to handle but more difficult. The
property that makes this clear division is that of non-degeneracy.

The diffusion (1) is called non-degenerate if the diffusion matrix a = σσ∗ satisfies the uniform
elipticity condition

(3.3)

n∑
i,j=1

aij(t, x, v)ξiξj ≥ C|ξ|2.

The HJB-equation is then uniformly parabolic, allowing for classical solutions. Condition (3.3)
implies that a is invertible. This can only happen if rank(σ) = n and hence d ≥ n. We now
interpreters this in probabilistic terms. That d ≥ n means that there are no less Brownian mo-
tions than space dimensions, i.e., there is enough noise to disturb the solution in any dimension.
That rank(σ) = n means that σ distributes the noise in the n linearly independent directions
of the row vectors of σ. Finally condition (3.3) guarantees that the noise is bounded away from
zero, i.e., the behavior of the diffusion is never dominated by the drift. An equivalent definition
is that X is non-degenerate iff it has a probability density for all t > 0.

We here state known existence and uniqueness results from PDE-theory for the Hamilton-
Jacobi-Bellman equation in the non-degenerate case.

Theorem 3.1. Under the assumptions

• U is compact;
• O is bounded with ∂O being a manifold of class C3;
• a = σσ∗, f , L have one continuous t-derivative and two continuous x-derivatives;
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• Ψ has three continuous derivatives in both t and x;
• σ satisfies (3.3)

equation (3.1) and (3.2) has a unique solution W ∈ C1,2((0, T )×O) ∩ C([0, T ]×O)

Theorem 3.2. Under the assumptions

• U is compact;
• O = Rn;
• a = σσ∗, f , L are bounded and have one continuous t-derivative and two continuous
x-derivatives;
• Ψ has three continuous and bounded derivatives in x (t-independent since O = Rn);
• σ satisfies (3.3)

equation (3.1) and (3.2) has a unique solution W ∈ C1,2
b ([0, T ]× Rn)

4. A Verification theorem

We now have the Hamilton-Jacobi-Bellman equation and some existence results for it. Con-
sider this as the starting point. The following verification theorem gives us the connection to
the optimal control problem.

Theorem 4.1. Let W ∈ C1,2((0, T )×O)∩Cp([0, T ]×O) be a solution to (3.1) and (3.2). Then

• W (t, x) ≤ J(t, x, u), for all (t, x) ∈ (0, T )×O and any admissible control u.
• If there exists an admissible control u∗ such that

u∗(s) ∈ argmin
[
f(s, x∗(s), v) ·Wx(s, x∗(s))

+
1

2
Tr{Φxx(t, x)σ(t, x, v)σ∗(t, x, v)}+ L(s, x, v)

]
for ds× P almost every (s, ω) ∈ [t, τ ]× Ω, then W (t, x) = J(t, x, u∗).
• The dynamic programming principle holds.

The proof contains much of the spirit of the formal derivation of the HJB-equation, but is
done in the right direction.
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