INTRODUCTION TO THE HAMILTON-JACOBI-BELLMAN EQUATION

ADAM ANDERSSON

This text is a summary of important parts of chapter 3 and 4 in the book (*Controlled Markov Processes and Viscosity Solutions*, Fleming and Soner) [1]. It first states the optimal control problem over a finite time interval, or horizon. It then contains a formal derivation of the Hamilton-Jacobi-Bellman partial differential equation. In the third section some existence results are stated without proofs for the Hamilton-Jacobi-Bellman equation under a nondegeneracy condition. In the fourth and final section a verification theorem is stated. It gives the rigorous connection between the solution of the HJB-equation and the original stochastic control problem.

1. The control problem

The following diffusion type SDE will be considered:

$$dX(t) = f(t, X(t), u(t)) dt + \sigma(t, X(t), u(t)) dW(t), \quad t \ge 0, \quad X(0) = x_0.$$

The state $\{X(t)\}_{t\geq 0}$ here depends on the process $\{u(t)\}_{t\geq 0}$ that we refer to as a control process. For the ease of notation this dependence is not made explicit.

To settle the framework let $\{W(t)\}_{t\geq 0}$ be a *d*-dimensional Wiener process on a filtered probability space $(\Omega, \mathcal{F}, \{\mathcal{F}_t\}_{t\geq 0}, \mathbb{P})$. The control process $\{u(t)\}_{t\geq 0}$ takes its values in a closed subset $U \subset \mathbb{R}^m$. The coefficients $f : [0,T] \times \mathbb{R}^n \times U \to \mathbb{R}^n$ and $\sigma : [0,T] \times \mathbb{R}^n \times U \to \mathbb{R}^{n\times d}$ are deterministic functions. They are assumed to have continuous and bounded first derivatives in t and x and moreover satisfy a linear growth condition in the control variable u.

The purpose of stochastic control is to control the diffusion to behave in a certain way. This is done by stating and solving a minimization or maximization problem. Define, for $(t, x, v) \in [0, T] \times \mathbb{R}^n \times U$, the **cost functional**

$$J(t, x, u) = \mathbb{E}\Big[\int_t^{\tau} L(s, X(s), u(s))ds + \Psi(\tau, X(\tau))\Big|X(t) = x\Big].$$

Here $\tau = \min(\tilde{\tau}, T)$, where $\tilde{\tau} \geq t$ is the stoping time when X leaves the open set $O \subset \mathbb{R}^n$, that may be \mathbb{R}^n itself. This means that the X lives in O and is stopped when hitting the boundary ∂O . The function $L : [0,T] \times \mathbb{R}^n \times U \to \mathbb{R}$ is called the running cost function and $\Psi : ([0,T) \times \partial O) \cup (\{T\} \times \overline{O}) \to \mathbb{R}$ the terminal cost function. The running cost is assumed to be bounded in t and of polynomial growth in x and u. The terminal cost is assumed to have polynomial growth. If $L \equiv 0$ the control problem is said to be on Meyer form and when $\Psi \equiv 0$ the problem is said to be on Lagrange form.

It is common practice to state the problem as a minimization problem, choosing u to minimize J. This we will do in those notes. In finance on the other hand one often needs to maximize the utility of an investment, where, with our notation, Ψ is the utility function and $L \equiv 0$. The utility function describes the investors risk aversion.

A process $u : [t, T] \times \Omega \to U$ is called progressively measurable if its restriction to $[t, s] \times \Omega$ is $\mathcal{B}_{[t,s]} \times \mathcal{F}_s$ -measurable. A control $u : [t, T] \times \Omega \to U$ is said to be admissible if it is progressively measurable and

$$\mathbb{E}\int_t^T |u(s)|^m \, \mathrm{d} s < \infty, \quad \forall m \in \mathbb{N}.$$

An easy way to make this assumption hold is to assume U to be compact. The class of admissible controls will be denoted \mathcal{A}_t .

2. A FORMAL DERIVATION OF THE HJB-EQUATION

For simplicity we here take $O = \mathbb{R}^n$. It then make sense to consider a terminal cost function $\Psi : \mathbb{R}^n \to \mathbb{R}$, only depending on the state since $\tilde{\tau} = \infty$ in this case. Define the **value function**

(2.1)
$$V(t,x) = \inf_{u \in \mathcal{A}_t} J(t,x,u)$$

It plays an important role in control theory. We will derive formally an equation for V called the dynamic programming equation. This can be done for any Markov process, e.g., Levy processes or finite state Markov Chains. For diffusions the equation becomes a non-linear second order PDE called the Hamilton-Jacobi-Bellman (HJB) equation. Often it can be deduced from the equation what the optimal control is. It is then often of the form $u^*(s) = \pi^*(s, X(s))$, where $\pi : [0, T] \times \mathbb{R}^n \to U$ is a deterministic function, see (2.7) below. Such a control is called a **Markov control policy**.

Bellman's dynamic programming principle reads

$$V(t,x) = \inf_{u \in \mathcal{A}_t} \mathbb{E}\Big[\int_t^{t+h} L(s,X(s),u(s))ds + V(t+h,X(t+h))\Big|X(t) = x\Big].$$

The intuition is that the minimal cost on [t, T] is achieved when running optimally in [t, t+h] and then continue optimally in [t+h,T] with X(t+h) as initial value. We will accept this heuristic argument in order to give a formal derivation of the HJB-equation. The important implications goes the other way. Once we have a smooth enough solution to the HJB-equation, we can prove the dynamic programming principle and other important results. So called **verification theorems** is used for this purpose.

We now start deriving the dynamic programming equation. Let the control be constant u(s) = v for $s \in [t, t + h]$. Then the dynamic programming principle yields

$$V(t,x) \leq \mathbb{E}\Big[\int_t^{t+h} L(s,X(s),v)ds + V(t+h,X(t+h))\Big|X(t) = x\Big].$$

Subtracting V(t, x) from both sides and dividing by h gives

$$0 \le \frac{1}{h} \mathbb{E} \Big[\int_{t}^{t+h} L(s, X(s), v) ds \Big| X(t) = x \Big] + \frac{1}{h} \mathbb{E} \Big[(V(t+h, X(t+h)) - V(t, x)) \Big| X(t) = x \Big]$$

= $I_{1}^{h} + I_{2}^{h}$

Using Fubinis theorem for conditional expectation and letting $h \to 0$ we have that

$$I_1^h = \frac{1}{h} \int_t^{t+h} \mathbb{E}[L(s, X(s), v) | X(t) = x] \, \mathrm{d}s$$
$$\to L(t, x, v).$$

The second term I_2^h needs a little more work. Itô's formula yields

(2.2)
$$V(t+h, X(t+h)) - V(t, x) = \int_{t}^{t+h} A^{v} V(s, X(s)) \, \mathrm{d}s + \int_{t}^{t+h} V_{x}(s, X(s)) \cdot \sigma(s, X(s), v) \, \mathrm{d}W(s),$$

where the **backward operator**¹ is given by

$$A^{v}\Phi(t,x) = \Phi_{t}(t,x) + \Phi_{x}(t,x) \cdot f(t,x,v) + \frac{1}{2} \operatorname{Tr} \{ \Phi_{xx}(t,x)\sigma(t,x,v)\sigma^{*}(t,x,v) \}.$$

The trace of a square matrix is the sum of the diagonal elements. The above trace becomes for $a = \sigma \sigma^*$

$$\operatorname{Tr}\{\Phi_{xx}(t,x)\sigma(t,x,v)\sigma^{*}(t,x,v)\} = \sum_{i,j=1}^{n} a_{ij}(t,x,v)\Phi_{x_{i}x_{j}}(t,x).$$

It is here important to choose a suitable domain \mathcal{D} , for A^v , common for all $v \in U$, since we later want to vary v. Moreover the functions of this domain must be such that A^vV is continuous and the Itô term in (2.2), for $V \in \mathcal{D}$, is a martingale. Assume here that this is the case. Then, when taking expectation in (2.2), we get that

$$\begin{split} I_2^h &= \frac{1}{h} \mathbb{E}\Big[\int_t^{t+h} A^v V(s, X(s)) \,\mathrm{d}s \Big| X(t) = x\Big] \\ &= \frac{1}{h} \int_t^{t+h} \mathbb{E}[A^v V(s, X(s))| X(t) = x] \,\mathrm{d}s \\ &\to A^v V(t, x) \end{split}$$

as $h \to 0$. To conclude, for all $v \in U$,

(2.3)
$$0 \le A^{v}V(t,x) + L(t,x,v).$$

Assume now that the optimal control is given by an optimal Markov control policy, i.e, $u^*(s) = \pi^*(s, X^*(s))$. Here X^* is the optimal state process, controlled under u^* . The dynamic programming principle then takes the form

$$V(t,x) = \mathbb{E}\Big[\int_{t}^{t+h} L(s, X^{*}(s), \pi^{*}(s, X^{*}(s)))ds + V(t+h, X^{*}(t+h))\Big|X^{*}(t) = x\Big].$$

Using this, noticing that the backward operator of X^* is $A^{\pi^*} := A^{\pi^*(t,x)}$ and making similar calculation as those above one shows that

(2.4)
$$0 = A^{\pi^*} V(t, x) + L(t, x, \pi^*(t, x)).$$

For the limit argument to hold in this case continuity of π^* is needed, something we boldly assume. Combining (2.3) and (2.4) yields the **dynamic programming equation**

(2.5)
$$0 = \inf_{v \in U} [A^v V(t, x) + L(t, x, v)],$$

for $(t, x) \in [0, T] \times \mathbb{R}^n$, with terminal data

$$(2.6) V(T,x) = \Psi(x).$$

If we accept this then a reasonable candidate for an optimal control policy is

(2.7)
$$\pi^*(t,x) = \operatorname{argmin}[A^v V(t,x) + L(t,x,v)].$$

¹The operator A^v is called backward since it is the operator appearing in the backward Kolmogorov equation $A^v \Phi = 0$, for $\Phi(T, x) = \phi(x)$. Its solution is given by $\Phi(t, x) = \mathbb{E}[\phi(X(T))|X(t) = x]$. In Markov theory standard notation reeds $A^v = \partial_t + G^v$, where G^v is the infinitesimal generator of the Markov semigroup.

ADAM ANDERSSON

If it exist almost everywhere and the solution V to (2.5) and (2.6) is sufficiently smooth, then a verification theorem guarantees that so is the case. The same theorem states that V really is the value function we defined in (2.1).

We rewrite the dynamic programming equation in terms of the Hamiltonian

$$\mathcal{H}(t,x,p,A) = \sup_{v \in U} \Big[-f(t,x,v) \cdot p - \frac{1}{2} \operatorname{Tr} \{ A\sigma(t,x,v)\sigma^*(t,x,v) \} - L(t,x,v) \Big].$$

The equation then takes the form of the Hamilton-Jacobi-Bellman equation

$$-\frac{\partial V}{\partial t} + \mathcal{H}(t, x, D_x V, D_x^2 V) = 0, \quad (t, x) \in (0, T) \times \mathbb{R}^n$$

satisfying

$$V(T, x) = \Psi(x), \quad x \in \mathbb{R}^n.$$

3. HJB in the case of a non-degenerate diffusion

Taking into account the more general case of an arbitrary open $O \subset \mathbb{R}^n$ the Hamilton-Jacobi-Bellman equation becomes

(3.1)
$$-\frac{\partial V}{\partial t} + \mathcal{H}(t, x, D_x V, D_x^2 V) = 0, \quad (t, x) \in (0, T) \times O$$

with the boundary condition

(3.2)
$$V(t,x) = \Psi(t,x), \quad (t,x) \in ([0,t) \times \partial O) \cup (T \times \overline{O}).$$

So, by leaving O at $x \in \partial O$ a time t < T costs $\Psi(t, x)$, while as before, we pay $\Psi(T, x)$ if X remains inside O for all t < T and has value x at the final time.

There is one property of the diffusion that splits the problem into two categories. In the first category the HJB-equation has a unique classical solution. In the second the solution has a generalized solution in terms of viscosity solutions, possible to handle but more difficult. The property that makes this clear division is that of non-degeneracy.

The diffusion (1) is called non-degenerate if the diffusion matrix $a = \sigma \sigma^*$ satisfies the uniform elipticity condition

(3.3)
$$\sum_{i,j=1}^{n} a_{ij}(t,x,v)\xi_i\xi_j \ge C|\xi|^2.$$

The HJB-equation is then uniformly parabolic, allowing for classical solutions. Condition (3.3) implies that a is invertible. This can only happen if $\operatorname{rank}(\sigma) = n$ and hence $d \ge n$. We now interpreters this in probabilistic terms. That $d \ge n$ means that there are no less Brownian motions than space dimensions, i.e., there is enough noise to disturb the solution in any dimension. That $\operatorname{rank}(\sigma) = n$ means that σ distributes the noise in the n linearly independent directions of the row vectors of σ . Finally condition (3.3) guarantees that the noise is bounded away from zero, i.e., the behavior of the diffusion is never dominated by the drift. An equivalent definition is that X is non-degenerate iff it has a probability density for all t > 0.

We here state known existence and uniqueness results from PDE-theory for the Hamilton-Jacobi-Bellman equation in the non-degenerate case.

Theorem 3.1. Under the assumptions

- U is compact;
- O is bounded with ∂O being a manifold of class C^3 ;
- $a = \sigma \sigma^*$, f, L have one continuous t-derivative and two continuous x-derivatives;

• Ψ has three continuous derivatives in both t and x;

• σ satisfies (3.3)

equation (3.1) and (3.2) has a unique solution $W \in C^{1,2}((0,T) \times O) \cap C([0,T] \times \overline{O})$

Theorem 3.2. Under the assumptions

- U is compact;
- $O = \mathbb{R}^n$;
- $a = \sigma \sigma^*$, f, L are bounded and have one continuous t-derivative and two continuous x-derivatives;
- Ψ has three continuous and bounded derivatives in x (t-independent since $O = \mathbb{R}^n$);

• σ satisfies (3.3)

equation (3.1) and (3.2) has a unique solution $W \in C_b^{1,2}([0,T] \times \mathbb{R}^n)$

4. A VERIFICATION THEOREM

We now have the Hamilton-Jacobi-Bellman equation and some existence results for it. Consider this as the starting point. The following verification theorem gives us the connection to the optimal control problem.

Theorem 4.1. Let $W \in C^{1,2}((0,T) \times O) \cap C_p([0,T] \times \overline{O})$ be a solution to (3.1) and (3.2). Then

- $W(t,x) \leq J(t,x,u)$, for all $(t,x) \in (0,T) \times O$ and any admissible control u.
- If there exists an admissible control u^* such that

$$u^*(s) \in \operatorname{argmin} \left[f(s, x^*(s), v) \cdot W_x(s, x^*(s)) + \frac{1}{2} \operatorname{Tr} \{ \Phi_{xx}(t, x) \sigma(t, x, v) \sigma^*(t, x, v) \} + L(s, x, v) \right]$$

for $ds \times \mathbb{P}$ almost every $(s, \omega) \in [t, \tau] \times \Omega$, then $W(t, x) = J(t, x, u^*)$.

• The dynamic programming principle holds.

The proof contains much of the spirit of the formal derivation of the HJB-equation, but is done in the right direction.

References

 W.H. Fleming and H.M. Soner Controlled Markov Processes and Viscosity Solutions, Applications of mathematics 25, Springer-Verlag 1993