C*-DYNAMICS AND CROSSED PRODUCTS Third exercise sheet

EUSEBIO GARDELLA

You must hand in a minimum of three exercises by December 12th.

Exercise 1. Let $\alpha: \{-1, 1\} \to \operatorname{Aut}(C([-1, 1]))$ be the action induced by multiplication by -1 on [-1, 1].

- (1) Describe the spectral subspaces of α .
- (2) Compute $\text{Sp}(\alpha)$, $\Gamma(\alpha)$, $\text{Sp}(\alpha)$ and $\Gamma(\alpha)$ directly from their definitions.

Exercise 2. Let G be a compact abelian group, let \mathcal{H} be a Hilbert space, and let $u: G \to \mathcal{U}(\mathcal{H})$ be a unitary representation. We set

 $\operatorname{Sp}(u) = \{\chi \in \widehat{G} : \text{there exists } \xi \in \mathcal{H} \setminus \{0\} \text{ with } u_g(\xi) = \chi(g)\xi \text{ for all } g \in G\}.$

- (1) Describe the eigenspaces of the action $\operatorname{Ad}(u) \colon G \to \operatorname{Aut}(\mathcal{K}(\mathcal{H}))$ in terms of the eigenspaces of u.
- (2) Prove that $\widetilde{\mathrm{Sp}}(\mathrm{Ad}(u)) = \widehat{G}$ if and only if $\mathrm{Sp}(u) = \widehat{G}$.

Exercise 3.

- (1) Construct an example of a compact abelian group action $\alpha \colon G \to \operatorname{Aut}(A)$ for which there exists $B \in \operatorname{Her}_B(A)$ such that $\operatorname{Sp}(\alpha) \neq \operatorname{Sp}(\alpha|_B)$. Deduce that $\operatorname{Sp}(\alpha)$ is generally different from $\widetilde{\operatorname{Sp}}(\alpha)$.
- (2) Construct an example of a compact abelian group action $\alpha \colon G \to \operatorname{Aut}(A)$ for which there exists $B \in \operatorname{Her}_B(A)$ such that $\Gamma(\alpha) \neq \Gamma(\alpha|_B)$. Deduce that $\Gamma(\alpha)$ is generally different from $\widetilde{\Gamma}(\alpha)$.

Exercise 4. Let G be a locally compact abelian group, acting trivially on \mathbb{C} . Show that the dual action $\widehat{G} \to \operatorname{Aut}(C^*(G))$ can be identified with the left translation action of \widehat{G} on itself.

Exercise 5. Give a complete proof of Takai duality for $G = \mathbb{Z}_2$ and A unital. In this case, the isomorphism can be described very explicitly.

Exercise 6. Let Γ be a discrete abelian group, and set $G = \widehat{\Gamma}$. Let $\beta \colon \Gamma \to \operatorname{Aut}(B)$ be an action, and set

 $A = B \rtimes_{\beta} \Gamma$ and $\alpha = \widehat{\beta} \colon G \to \operatorname{Aut}(A).$

Show that $A(\chi) = Bu_{\chi}$ for all $\chi \in \widehat{G} \cong \Gamma$. In particular, this shows that the fixed point algebra of the dual action $\widehat{\beta}$ is B.

Exercise 7. Let $\theta \in \mathcal{R} \setminus \mathbb{Q}$ and consider the irrational rotation algebra A_{θ} . Let $\gamma: S^1 \to \operatorname{Aut}(A_{\theta})$ be the gauge action, which is given by

$$\gamma_z(u) = u \quad \text{and} \quad \gamma_z(v) = zv$$

for all $z \in S^1$.

Date: November 23, 2018.

EUSEBIO GARDELLA

- (1) Compute the spectral subspaces of A_{θ} with respect to γ .
- (2) Compute $\Gamma(\gamma)$.
- (3) Show, using Takai duality and the characterization of ideals in the crossed product in the case of full strong Connes spectrum, that A_{θ} is simple.

Exercise 8. Let G be a locally compact abelian group, let A be a C^* -algebra, and let $\alpha: G \to \operatorname{Aut}(A)$ be an action. Given a \widehat{G} -invariant ideal J in $A \rtimes_{\alpha} G$, let I_J be the unique G-invariant ideal in A such that $J \rtimes_{\widehat{\alpha}} \widehat{G} = I_J \otimes \mathcal{K}(L^2(G))$. Show that $J = I_J \rtimes_{\alpha} G$.

Exercise 9. Let V be an abelian semigroup. If G is an abelian group and $\varphi: V \to G$ is a semigroup homomorphism, show that there exists a unique group homomorphism $\psi: G(V) \to G$ satisfying $\psi \circ \iota_V = \varphi$. In other words, the following diagram commutes

$$V \xrightarrow{\varphi} G$$

$$\downarrow^{\iota_V} \bigvee_{\varphi} \xrightarrow{\checkmark} \exists ! \psi$$

$$G(V).$$

Morever, if $\mathcal{G}(V)$ is another abelian group and $j_V \colon V \to \mathcal{G}(V)$ is a semigroup homomorphism satisfying the same property as above, show that there exists an isomorphism $\theta \colon G(V) \to \mathcal{G}(V)$ satisfying $\theta \circ \iota_V = j_V$.

Eusebio Gardella Mathematisches Institut, Fachbereich Mathematik und Informatik der Universität Münster, Einsteinstrasse 62, 48149 Münster, Germany.

E-mail address: gardella@uni-muenster.de *URL*: www.math.uni-muenster.de/u/gardella/

 $\mathbf{2}$