C*-DYNAMICS AND CROSSED PRODUCTS Fifth exercise sheet

EUSEBIO GARDELLA

You must hand in a minimum of two exercises by January 30th.

Exercise 1. Let A be a unital C^* -algebra, let G be a finite group, and let $\alpha \colon G \to \operatorname{Aut}(A)$ be an action with the Rokhlin property.

- Let B be a unital C*-algebra, and let β: G → Aut(B) be an action of G on B. Let A ⊗ B be any C*-algebra completion of the algebraic tensor product of A and B for which the tensor product action α ⊗ β is defined. Show that α ⊗ β has the Rokhlin property.
- (2) Let I be an α -invariant ideal in A, and denote by $\overline{\alpha} \colon G \to \operatorname{Aut}(A/I)$ the induced action on A/I. Show that $\overline{\alpha}$ has the Rokhlin property.
- (3) Let p be an α -invariant projection in A. Set B = pAp and denote by $\beta: G \to \operatorname{Aut}(B)$ the compressed action of G. Show that β has the Rokhlin property.

Exercise 2. Let G be a finite group, let A be a unital C^{*}-algebra, let $\alpha : G \to Aut(A)$ be an action, and let $w : G \to U(A)$ be an α -cocycle.

- (1) Show that α has the Rokhlin property if and only if α^w does.
- (2) Suppose that α has the Rokhlin property. Show that there exists $v \in \mathcal{U}(A)$ with $w_g = v\alpha_g(v^*)$ for all $g \in G$. (Hint: use Proposition 10.2.3 together with an approximation argument.)

In the following exercise, you may use that \mathbb{C}^n is semiprojective for every $n \in \mathbb{N}$.

Exercise 3. Let G be a finite group, let A be a separable unital C^* -algebra, and let $\alpha: G \to \operatorname{Aut}(A)$ be an action. Prove that α has the Rokhlin property if and only if there is a unital, equivariant homomorphism $\varphi: (C(G), \operatorname{Lt}) \to (A_{\infty} \cap A', \alpha_{\infty})$.

Exercise 4. Let A be a unital C^* -algebra, let G be a finite group, and let $\alpha \colon G \to \operatorname{Aut}(A)$ be an action with the Rokhlin property. Given a finite subset $F \subseteq A$ and $\varepsilon > 0$, show that there exists a unital map $\psi \colon A \to A^{\alpha}$ such that

(1) For all $a, b \in F_1$, we have

$$\|\psi(ab) - \psi(a)\psi(b)\| < \varepsilon$$
 and $\|\psi(a)^* - \psi(a^*)\| < \varepsilon;$

(2) For all $x \in A^{\alpha}$, we have $\psi(x) = x$.

Exercise 5. Let G be a finite group and let $n \in \{2, \ldots, \infty\}$. Show that there is an action of G on \mathcal{O}_n with the Rokhlin property if and only if |G| and n-1 are relatively prime. (By convention, ∞ is relatively prime with any natural number.) Hint: for the "if" implication, use the existence of an isomorphism $\mathcal{O}_n \otimes M_{|G|^{\infty}} \cong \mathcal{O}_n$. For the "only if" implication, use an argument similar to the one used with UHF-algebras.

Date: January 16, 2019.

Exercise 6. Let $\theta \in \mathbb{R} \setminus \mathbb{Q}$, and let G be a nontrivial finite group. Show that there is no action of G on A_{θ} with the Rokhlin property.

Exercise 7. Let A be a unital C^* -algebra, let G be a finite group, and let $\alpha \colon G \to \operatorname{Aut}(A)$ be an action with the Rokhlin property. Denote by $\iota \colon A^{\alpha} \to A$ the canonical inclusion.

- (1) Show that $K_0(\iota)$ and $K_1(\iota)$ are injective.
- (2) Show that $K_0(\iota)$ is an order-embedding, that is, that for all $x, y \in K_0(A^{\alpha})$, one has $K_0(\iota)(x) \leq K_0(\iota)(y)$ if and only if $x \leq y$.¹
- (3) Show that

$$K_j(\iota)(K_j(A^{\alpha})) = \{ x \in K_0(A) \colon K_j(\alpha_g)(x) = x \text{ for all } g \in G \}.$$

EUSEBIO GARDELLA MATHEMATISCHES INSTITUT, FACHBEREICH MATHEMATIK UND INFORMATIK DER UNIVERSITÄT MÜNSTER, EINSTEINSTRASSE 62, 48149 MÜNSTER, GERMANY.

 $E\text{-}mail\ address:\ \texttt{gardella}\texttt{Quni-muenster.de}$

URL: www.math.uni-muenster.de/u/gardella/

¹This part requires some additional knowledge of K-theory, namely the order structure on K_0 , and may be skipped.