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Abstract. The study of operator algebras on Hilbert spaces, and C∗-algebras
in particular, is one of the most active areas within Functional Analysis. A

natural generalization of these is to replace Hilbert spaces (which are L2-

spaces) with Lp-spaces, for p ∈ [1,∞). The study of such algebras of operators
is notoriously more complicated, due to the very complicated geometry of Lp-

spaces (including the fact that they are not self-dual unless p = 2).
These notes are based on a postgraduate course given in July-August of

2019 at the Instituto de Matemática y Estad́ıstica Rafael Laguardia of the

Universidad de la República in Montevideo, Uruguay. This course provided an
introduction to Lp-operator algebras, with special emphasis on group algebras

and Cuntz algebras.
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1. Introduction

Given p ∈ [1,∞), we say that a Banach algebra A is an Lp-operator algebra if
it admits an isometric representation on an Lp-space. Lp-operator algebras have
been historically studied by example, starting with Herz’s influential works [21] on
harmonic analysis on Lp-spaces. Given a locally compact group G, Herz studied the
Banach algebra PFp(G) ⊆ B(Lp(G)) generated by the left regular representation,
as well as its weak-∗ closure PMp(G) and its double commutant CVp(G). The
study of the structure of these algebras has attracted the attention of a number
of mathematicians in the last decades (see, for example, [5], [24], [9], [8], and
[10]), particularly in what refers to the so-called “convolvers and pseudomeasures”
problem, which asks whether CVp(G) = PMp(G) for all groups G and for all
p ∈ [1,∞). We refer the interested reader to the recent paper [7] for an excellent
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survey on the problem as well as for a proof that CVp(G) = PMp(G) when G has
the approximation property.
Lp-operator algebras have recently seen renewed interest, thanks to the infusion

of ideas and techniques from operator algebras, particularly in the works of Phillips
[25, 26]. There, Phillips introduced and studied the Lp-analogs Opn of the Cuntz
algebras On from [6] (which are the case p = 2), and of UHF-algebras. The work of
Phillips motivated other authors to study Lp-analogs of other well-studied families
of C∗-algebras. These classes include group algebras [26, 15, 19]; groupoid algebras
[13]; crossed products by topological systems [26]; AF-algebras [27, 12]; and graph
algebras [4]. In these works, an Lp-operator algebra is obtained from combinatorial
or dynamical data, and properties of the underlying data are related to properties
of the algebra. Quite surprisingly, the lack of symmetry of the unit ball of an Lp-
space for p 6= 2 allows one to prove isomorphism results that show a stark contrast
with the case p = 2.

More recent works have approached the study of Lp-operator algebras in a more
abstract and systematic way [14, 17, 2], showing that there is an interesting theory
waiting to be unveiled, of which only very little is currently known.

These notes are an introduction to Lp-operator algebras, beginning in Section 2
with what is arguably the most fundamental result in the area: Lamperti’s theorem
(see Theorem 2.13), which characterizes the invertible isometries of an Lp-space for
p ∈ [1,∞) \ {2}. In Section 3 we define Lp-operator algebras, prove some elemen-
tary facts about them, and give some basic examples. The next four sections are
devoted to the study of three very prominent classes of examples: group algebras
(Sections 4 and 5); Cuntz and graph algebras (Section 6); and crossed products
(Section 7). Finally, in Section 8 we discuss a recent result obtained in [3]: Op2⊗O

p
2

is not isomorphic to Op2 for p ∈ [1,∞) \ {2} (while it is well-known that an isomor-
phism exists for p = 2; see [28]). This answers a question of Phillips.

Acknowledgements: These are notes from a course given at the Instituto de
Matemática y Estad́ıstica Rafael Laguardia of the Facultad de Ingenieŕıa, Univer-
sidad de la República in Montevideo, Uruguay. The author would like to thank
all the participants of the course for their valuable feedback and the stimulating
learning atmosphere.

2. Lamperti’s theorem

In [22], Lamperti gave a description of the linear isometries of the Lp-space of
a σ-finite measure space, for p ∈ [1,∞] with p 6= 2. This result had been earlier
announced (without proof) by Banach for the unit interval with the Lebesgue mea-
sure, and for this reason it is also sometimes referred to as the “Banach-Lamperti
Theorem”. In this section, which is based on Sections 2 and 3 of [18], we generalize
their result by characterizing the surjective, linear isometries on the Lp-space of
a localizable measure algebra; see Theorem 2.13. The generalization from σ-finite
spaces to localizable ones will allow us in the next sections to deal with locally
compact groups that are not σ-compact.

Definition 2.1. A Boolean algebra is a set A containing two distinguished elements
∅ and I, and with commutative, associative operations ∨ (disjoint union/orthogonal
sum) and ∧ (intersection/multiplication), and a notion of complementation E 7→
Ec, satisfying the following properties:
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(1) Idempotency: E ∨ E = E ∧ E = E for all E ∈ A;
(2) Absorption: E ∨ (E ∧ F ) = E ∧ (E ∧ F ) = E for all E,F ∈ A;
(3) Universality: for all E ∈ A, we have

E ∨ ∅ = E = E ∧ I, E ∧ ∅ = ∅ and E ∨ I = I;

(4) Complementation: E ∨ Ec = I and E ∧ Ec = ∅ for all E ∈ A.

A homomorphism between Boolean algebras is a function preserving all the opera-
tions and the distinguished sets ∅ and I.

Given E,F ∈ A, we write E ≤ F if E∧F = E, and we write E ⊥ F if E∧F = ∅.
We say that A is (σ)-complete if every nonempty countable subset of A has a

supremum, and every nonempty (countable) subset of A has an infimum.

The reader is referred to [11] for a thorough treatment of Boolean algebras. The
most important example for the purposes of these notes is the following.

Example 2.2. Let (X,Σ, µ) be a measure space. Set N = {E ∈ Σ: µ(E) = 0},
and let A denote the quotient Σ/N . Then A is a σ-complete Boolean algebra, with
countable suprema given by union, and countable infima given by intersection.

There is a natural notion of measure on a Boolean algebra.

Definition 2.3. Let A be a Boolean algebra. A map µ : A → [0,∞] is said to be
a measure if it satisfies µ(∅) = 0 and µ(

∨
n∈NEn) =

∑
n∈N µ(En) whenever the En

are pairwise orthogonal. We call a measure µ semi-finite if for every E ∈ A there
exists F ≤ E with 0 < µ(F ) <∞.

Finally, we say that the measured algebra (A, µ) is localizable if A is σ-complete
and µ is semi-finite.

Example 2.4. In Example 2.2, the map A → [0,∞] which µ naturally induces is
a measure. Localizability can be easily characterized in terms of the measure space
(X,Σ, µ): for every E ∈ Σ with 0 < µ(E), there exists F ∈ Σ with F ⊆ E such
that 0 < µ(F ) <∞.

Our next goal is to define Lp-spaces associated to a measured algebra. We denote
by B(R) the Boolean algebra of all Borel-measurable subsets of R.

Definition 2.5. Let A be a Boolean algebra. A measurable real valued function is
a Boolean homomorphism f : B(R)→ A which preserves the suprema of countable
sets. For t ∈ R, we write {f > t} for the set f((t,∞)).

Note that two functions f, g : B(R)→ A are equal if and only if {f > t} = {g > t}
for all t ∈ R.

Example 2.6. In the context of Example 2.2, a measurable function f : X → R is

identified with the homomorphism f̃ : B(R)→ A given by f̃(E) = f−1(E)+N ∈ A.

The set of all measurable functions on A is denoted L0
R(A). We set L0(A) =

L0
R(A) + iL0

R(A). For f ∈ L0
R(A), we define its integral by∫
f dµ =

∫ ∞
0

µ({f > t}) dt.

For f ∈ L0(A) and p ∈ [1,∞), we set ‖f‖pp =
∫
|f |1/pdµ.

The context of measured Boolean algebras seems to be the most appropriate one
to do measure theory. The notion of σ-finiteness for measure spaces is technically
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very useful, but virtually every result for σ-finite measure spaces can be proved
in the more general context of localizable measures. One instance of this is the
Radon-Nikodym theorem; in fact, localizability is characterized by the validity of
the Radon-Nikodym theorem.

Theorem 2.7. LetA be a σ-complete Boolean algebra, and let µ and ν be measures
on A with µ localizable. Then there exists a unique function dν

dµ ∈ L
0
R(A), called

the Radon-Nikodym derivative of ν with respect to µ, satisfying∫
f dν =

∫
f
dν

dµ
dµ

for all f ∈ L1(ν).

In the context of the theorem above, the function dν
dµ is characterized by the fact

that, for t ∈ (0,∞), the element { dνdµ > t} ∈ A is the supremum of all the elements

E ∈ A satisfying ν(E) > tµ(E).

Exercise 2.8. Let (A, µ) be a localizable measured Boolean algebra, and let ϕ ∈
Aut(A). Show that ∫

f dµ =

∫
(ϕ ◦ f)

d(µ ◦ ϕ−1)

dµ
dµ

for all f ∈ L0
R(A). This identity is known as the “change of variables formula”.

The problem we will address in the rest of this section is to describe all iso-
metric isomorphisms (surjective isometries) between Lp-spaces, for p ∈ [1,∞). For
`p({0, 1}), this is easy to answer.

Example 2.9. Endow {0, 1} with the counting measure. The geometric description
of the unit ball of `p({0, 1}), for p ∈ [1,∞], reveals that the case p = 2 has many
more symmetries than the other ones. In particular, for p 6= 2, it is clear that δ0
must be mapped either to a complex multiple of δ0 or to a complex multiple of δ1,
and similarly for δ1. In other words, an invertible isometry in this case has one of
the following forms: [

λ1 0
0 λ2

]
or

[
0 λ1
λ2 0

]
for λ1, λ2 ∈ S1. For p = 2, rotations by angles other than multiples of π/2 also
give rise to invertible isometries (also known as unitary matrices), which are not
isometric when regarded as maps on `p({0, 1}) for p 6= 2.

Proposition 2.10. Let (A, µ) be a localizable measured Boolean algebra and let
p ∈ [1,∞).

(1) Set

U(L∞(µ)) = {f ∈ L0(A) : {|f | > 1} = {|f | < 1} = ∅},

which is a group under multiplication. Then there is a group homomor-
phism

m : U(L∞(µ))→ Isom(Lp(µ))

given by mf (ξ) = fξ for all f ∈ U(L∞(µ)) and all ξ ∈ Lp(µ).
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(2) There is a group homomorphism

u : Aut(A)→ Isom(Lp(µ))

given by

uϕ(ξ) = ϕ ◦ ξ
(
d(µ ◦ ϕ−1)

dµ

)1/p

for all ϕ ∈ Aut(A) and all ξ ∈ Lp(µ).
(3) Let ϕ ∈ Aut(A) and let f ∈ U(L∞(µ)). Then

uϕmfu
−1
ϕ = mϕ◦f .

In particular, there exists a group homomorphism

U(L∞(µ))oAut(A)→ Isom(Lp(µ)).

(4) Given f, g ∈ U(L∞(µ)) and ϕ,ψ ∈ Aut(A), we have

‖mfuϕ −mguψ‖ = max{‖f − g‖∞, 2− 2δϕ,ψ}.

Proof. Most of the proposition is routine. We will prove in (2) that uϕ is isometric.
Given ξ ∈ Lp(µ), we use Exercise 2.8 at the third step to get

‖uϕ(ξ)‖pp =

∫ ∣∣∣∣∣(ϕ ◦ ξ)
(
d(µ ◦ ϕ−1)

dµ

)1/p
∣∣∣∣∣
p

dµ

=

∫
|ϕ ◦ ξ|p d(µ ◦ ϕ−1)

dµ
dµ

=

∫
|ξ|pdµ

= ‖ξ‖pp.

�

Exercise 2.11. Complete the proof of Proposition 2.10.

The main result of this section, Theorem 2.13, asserts that for p 6= 2, the only
isometries of Lp(µ) for localizable µ are the ones described in Proposition 2.10.

We need a preparatory lemma.

Lemma 2.12. Let (A, µ) be a measured Boolean algebra, let p ∈ [1,∞), and let
ξ, η ∈ Lp(µ).

(1) For 2 ≤ p, we have

‖ξ + η‖pp + ‖ξ − η‖pp ≥ 2
(
‖ξ‖pp + ‖η‖pp

)
,

and equality holds for p 6= 2 if and only if ξη = 0.
(2) For p ≤ 2, we have

‖ξ + η‖pp + ‖ξ − η‖pp ≤ 2
(
‖ξ‖pp + ‖η‖pp

)
,

and equality holds for p 6= 2 if and only if ξη = 0.
(3) If p 6= 2 and T : Lp(µ) → Lp(µ) is isometric, then T (ξ)T (η) = 0 whenever

ξη = 0. (In other words, T is “disjointness preserving”.)
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Proof. (1). Set φ(t) = tp for t ∈ R. Then φ(
√

(t)) is convex, and by standard
results, we have

φ−1
(
φ(|z + w|) + φ(|z − w|)

2

)
≥ (|z|2 + |w|2)1/2 ≥ φ−1(φ(|z|) + φ(|w|)),

for all z, w ∈ C. Moreover, when φ is strictly convex, equality holds if and only if
zw = 0. Since φ−1 is increasing, the result follows by integration.

(2). This is entirely analogous to (1).
(3). Suppose p 6= 2. If ξη = 0, then

‖T (ξ) + T (η)‖pp + ‖T (ξ)− T (η)‖pp = ‖ξ + η‖pp + ‖ξ − η‖pp
= 2

(
‖ξ‖pp + ‖η‖pp

)
= 2

(
‖T (ξ)‖pp + ‖T (η)‖pp

)
.

It follows that T (ξ)T (η) = 0, as desired. �

We have now arrived at Lamperti’s theorem.

Theorem 2.13. Let (A, µ) be a localizable measured Boolean algebra, let p ∈
[1,∞) \ {2} and let T : Lp(µ)→ Lp(µ) be an invertible isometry. Then there exist
unique ϕ ∈ Aut(A) and f ∈ U(L∞(µ)) such that T = mfuϕ.

Proof. To make the proof more transparent, we will assume that (A, µ) arises as in
Example 2.2 from a finite measure space (X,Σ, µ). Given E ∈ A = Σ/N , set

ϕ(E) = {|T (χE)| > 0}.

If E,F ∈ A are disjoint, then so are ϕ(E) and ϕ(F ) by part (3) of Lemma 2.12.
In particular, ϕ(X −E) = ϕ(X)−ϕ(E), so ϕ preserves complements and is thus a
homomorphism from A to itself. Since T is invertible, so is ϕ.

Using that µ(X) <∞, set h = T (χX).
We claim that T (ξ) = (ξ ◦ ϕ)h for all ξ ∈ Lp(µ). To check this, suppose first

that ξ = χE for E ∈ A. Note that

h = T (χE) + T (χEc),

and that the supports of the functions on the right-hand side are disjoint. In
particular, h agrees with T (χE) on the support of T (χE), which is ϕ(E). Thus,

T (χE) = hχϕ(E) = h(χE ◦ ϕ).

This verifies the claim for indicator functions, and thus for step functions. Since
these are dense in Lp(µ), the claim follows.

It remains to identify h. For E ∈ A, we have

µ(E) = ‖χE‖pp = ‖T (χE)‖pp =

∫
|h|pχpϕ(E)dµ =

∫
ϕ(E)

|h|pdµ.

On the other hand,

µ(E) = (µ ◦ ϕ−1)(ϕ(E)) =

∫
ϕ(E)

d(µ ◦ ϕ−1)

dµ
dµ.

It follows that |h|p = d(µ◦ϕ−1

dµ , so there exists f ∈ U(L∞(µ)) such that h =

f
(
d(µ◦ϕ−1

dµ

)1/p
. This finishes the proof. �
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Remark 2.14. Suppose that (A, µ) arises from a measure space (X,Σ, µ) as in
Example 2.2. In some cases, it is possible to “lift” the automorphism ϕ to a bi-
measurable bijective transformation T : X → X satisfying

µ(E) = 0⇔ µ(T (E)) = 0⇔ µ(T−1(E)) = 0.

This is always the case, for example, when µ is an atomic measure, in which case
one even has µ(T (E)) = µ(E) for all E ∈ Σ.

Exercise 2.15. Let (A, µ) be a localizable measure algebra, let p, q ∈ [1,∞) with
p 6= q, and let T : Lp(µ) ∩ Lq(µ)→ Lp(µ) ∩ Lq(µ) be a linear map that extends to
isometric surjections Lp(µ) → Lp(µ) and Lq(µ) → Lq(µ). Prove that there exist
f ∈ U(L∞(µ)) and ϕ ∈ Aut(A) with µ ◦ ϕ = µ and

T (ξ) = f(ϕ ◦ ξ).

3. Lp-operator algebras: basic examples

Recall that a Banach algebra is a complex algebra A with a Banach space struc-
ture, satisfying ‖ab‖ ≤ ‖a‖‖b‖ for all a, b ∈ A. When A has a multiplicative unit,
we moreover demand that ‖1‖ = 1.

Definition 3.1. Let A be a Banach algebra. We say that A is an Lp-operator
algebra if there exist an Lp-space E and an isometric homomorphism A→ B(E).

A representation ofA (on an Lp-space E) is a contractive homomorphism ϕ : A→
B(E). We say that ϕ is non-degenerate if span{ϕ(a)ξ : a ∈ A, ξ ∈ E} is dense in E.

We make some comments on why we restrict to p ∈ [1,∞). First, for p < 1,
the vector space Lp(µ) is not normed (and its dual space is in fact trivial). On the
other hand, for p = ∞ we do not have a Lamperti-type theorem that allows us to
represent the invertible isometries spatially (neither do we for p = 2, but in this
case there are adjoints). For p ∈ (1,∞), the fact that an Lp-space is reflexive is
sometimes quite useful and produces legitimate differences with the case p = 1; see,
for example, Theorem 4.10.

Remark 3.2. For p = 2, an L2-operator algebra is a not necessarily self-adjoint
operator algebra.

Example 3.3. If E is an Lp-space, then B(E) is trivially an Lp-operator algebra.
When E = `p({1, . . . , n}), then B(E) is algebraically isomorphic to Mn, and we
denote the resulting Banach algebra by Mp

n.

The norm described above is not the only Lp-operator norm on Mn (even for
p = 2):

Example 3.4. If s ∈ Mp
n is an invertible operator, one can define a new Lp-

operator norm ‖ · ‖s on Mn by setting ‖x‖s = ‖sxs−1‖. This norm is in general
different from the one on Mp

n.

Example 3.5. Let X be a locally compact topological space. Then C0(X) is an
Lp-operator algebra. In the case that there exists a regular Borel measure µ on
X, one can represent C0(X) isometrically on Lp(µ) via multiplication operators.
(Such a measure does not always exist, but one can always find a “separating”
family of such measures and take the direct sum of the resulting representations by
multiplication.)
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It is very convenient to work with non-degenerate representations. However,
such representations don’t always exist.

Example 3.6. Let C0 be the Banach algebra whose underlying Banach space is C,
endowed with the trivial product: ab = 0 for all a, b ∈ C. Then C0 is an Lp-operator
algebra for all p ∈ [1,∞), since it is isometrically isomorphic to the upper-triangular
matrices in Mp

2 . However, C0 does not admit non-degenerate representations.

For Lp-operator algebras with contractive approximate identities, one can al-
ways “cut-down” a given representation to obtain a non-degenerate one. This is
much more subtle than in the Hilbert space case (where one just co-restricts to the
essential range, which is automatically a Hilbert space), since there are subspaces
of an Lp-space which are not themselves Lp-spaces. The case of unital algebras is
much easier to prove.

Proposition 3.7. Let A be a unital Lp-operator algebra. Then A admits an
isometric, unital representation ϕ : A→ B(E) on an Lp-space E.

Proof. Let F be an Lp-space and let ψ : A→ B(F ) be an isometric representation.
Set e = ϕ(1), which is a contractive idempotent. By the main result of [29], the
image E = e(F ) of e is an Lp-space. Define ϕ : A→ B(E) by ϕ(a)(ξ) = ψ(a)(ξ) for
all a ∈ A and all ξ ∈ E ⊆ F . Then ϕ is an isometric representation. �

For general algebras with a contractive approximate identity, one shows that
there is a contractive idempotent from the ambient Lp-space to the essential range,
which implies that the essential range is an Lp-space; see [17].

The study of Lp-operator algebras is generally much more complicated than that
of (L2-)operator algebras, largely due to the complicated geometry of Lp-spaces.
Even for algebras that “look like” C∗-algebras, many of the most fundamental facts
about C∗-algebras fail. To mention a few:

• There is no abstract characterization of Lp-operator algebras among all
Banach algebras, or canonical way of obtaining a representation on an Lp-
space for a given Lp-operator algebra;

• Lp-operator norms are not unique; in particular, a homomorphism between
Lp-operator algebras does not necessarily have closed range, and an injec-
tive homomorphism is not necessarily isometric.

• For p 6= 2, not every quotient of an Lp-operator algebra can be represented
on an Lp-space; see [16]. There is also no known characterization of which
ideals give Lp-operator quotients.

There is so far no general theory, and it has been very productive to study
concrete families of Lp-operator algebras, typically (but not always) constructed
from some topological/algebraic data. In the following sections, we will introduce
some of the most studied classes of examples.

4. Group algebras acting on Lp-spaces

Let G be a locally compact group, and let µ denote its Haar measure. For
functions f and g defined on G, their convolution is defined as

(f ∗ g)(s) =

∫
G

f(t)g(t−1s) dµ(t)
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for all s ∈ G. When f ∈ L1(G) and g ∈ Lp(G), the convolution f ∗ g belongs
to Lp(G), and ‖f ∗ g‖p ≤ ‖f‖1‖g‖p. In particular, L1(G) is a Banach algebra
under convolution, and we denote by λp : L1(G) → B(Lp(G)) the action by left
convolution (also called the left regular representation).

Exercise 4.1. Let G be a locally compact group. Show that L1(G) is unital if and
only if G is discrete.

The following definitions are due to Herz [21].

Definition 4.2. Let G be a locally compact group.

(1) We define the algebra of p-pseudofunctions PFp(G) of G, usually also de-
noted F pλ (G) for consistency with other notations, to be

PFp(G) = λp(L1(G))
‖·‖
⊆ B(Lp(G)).

(This algebra is sometimes also denoted F pλ (G) and called the reduced group
Lp-operator algebra of G.)

(2) We define the algebra of p-pseudomeasure PMp(G) of G to be

PMp(G) = λp(L1(G))
weak

⊆ B(Lp(G)).

(3) We define the algebra of p-convolvers CVp(G) of G to be

CVp(G) = λp(L
1(G))′′ ⊆ B(Lp(G)).

In general, we have PFp(G) ⊆ PMp(G) ⊆ CVp(G).

Notation 4.3. In these notes, we will usually denote the algebra of p-pseudo-
functions on G by F pλ (G). This algebra is also sometimes called the “reduced group
Lp-operator algebra”.

There is another very important Lp-operator algebra associated to a locally
compact group, due to Phillips [26].

Definition 4.4. Let G be a locally compact group and let p ∈ [1,∞). We define
its full group Lp-operator algebra F p(G) to be the completion of L1(G) in the norm

‖f‖Fp(G) = sup{‖ϕ(f)‖ : ϕ : L1(G)→ B(E) contractive representation},
for f ∈ L1(G). (Where E ranges over all possible Lp-spaces.)

Representations of L1(G) as above are in one-to-one correspondence with iso-
metric representations of G, via the integrated form. The case of discrete groups is
particularly easy to prove:

Exercise 4.5. Let G be a discrete group, and let E be any Banach space. Given
a unital, contractive homomorphism ϕ : `1(G) → B(E), let uϕ : G → Isom(E)
be given by uϕ(g) = ϕ(δg) for g ∈ G. Conversely, given u : G → Isom(E), let
ϕu : `1(G) → B(E) be the bounded linear map determined by ϕu(δg) = ug for all
g ∈ G.

(1) Prove that uϕ is an isometric representation of G on E (that is, show that
uϕ(g) is an invertible isometry of E for all g ∈ G, and that uϕ(gh) =
uϕ(g)uϕ(h) for all g, h ∈ G.)

(2) Prove that ϕu extends to a well-defined algebra homomorphism, and that
it is unital and contractive.

(3) Prove that ϕuϕ = ϕ and uϕu = u.
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(4) Suppose that E = `p(G), and let Lt : G → `p(G) be given by Ltg(ξ)(h) =
ξ(g−1h) for all g, h ∈ G and all ξ ∈ E. Prove that ϕLt = λp.

It is not entirely obvious from the definition that F p(G) is indeed an Lp-operator
algebra (unlike for the algebras defined in Definition 4.2, which is explicitly con-
structed as a Banach subalgebras of B(Lp(G))). For this, one needs to produce an
isometric representation on some Lp-space.

Proposition 4.6. Let G be a locally compact group and let p ∈ [1,∞). Then
F p(G) is an Lp-operator algebra.

Proof. For f ∈ L1(G) and n ∈ N, let ϕf,n : L1(G) → B(Ef,n) be a contractive
representation satisfying

‖ϕf,n‖ ≥ ‖f‖Fp(G) −
1

n
.

Set E =
⊕

f∈L1(G)

⊕
n∈N

Ef,n and let ϕ : L1(G) → B(E) denote the “diagonal” rep-

resentation. Then E is an Lp-space. Moreover, for f ∈ L1(G) and n ∈ N, one
has

‖ϕ(f)‖ = sup
m∈N

sup
g∈L1(G)

‖ϕg,m(f)‖ ≥ ‖ϕf,n(f)‖ ≥ ‖f‖Fp(G) −
1

n
.

In particular, ‖ϕ(f)‖ ≥ ‖f‖Fp(G). Since ϕ is a contractive representation of L1(G)
on some Lp-space, we also have ‖ϕ(f)‖ ≤ ‖f‖Fp(G), and hence ‖ϕ(f)‖ = ‖f‖Fp(G).

It follows that the norm-closure of ϕ(L1(G)) in B(E) is isometrically isomorphic to
F p(G), and thus F p(G) is an Lp-operator algebra. �

Remark 4.7. When G is discrete, F p(G) is the universal Lp-operator algebra
generated by invertible isometries us, for s ∈ G, satisfying usut = ust.

Since λp : L1(G) → B(Lp(G)) is a contractive representation, it follows that
‖ · ‖Fpλ (G) ≤ ‖ · ‖Fp(G). In other words, the identity map

id: (L1(G), ‖ · ‖Fpλ (G))→ (L1(G), ‖ · ‖Fp(G))

is contractive, and it extends to a contractive map κp : F p(G) → F pλ (G) between
their completions, which has dense range since it contains L1(G).

The cases p = 1 and p = 2 of the algebras in Definition 4.2 and Definition 4.4
are easy to describe. For the identification of F 2(G), we will need the following
exercise:

Exercise 4.8. Let H be a Hilbert space and let u ∈ B(H). Show that u is a unitary
if and only if u is invertible and ‖u‖ = ‖u−1‖ = 1.

Proposition 4.9. Let G be a locally compact group.

• When p = 1, we get F 1
λ(G) = F 1(G) = L1(G) and PM1(G) = CV1(G) =

M(G).
• When p = 2, we get F 2

λ(G) = C∗λ(G), F 2(G) = C∗(G) and PM2(G) =
CV2(G) = W ∗(G).

Proof. (1). Recall that L1(G) has a contractive approximate identity (fn)n∈N.
Given f ∈ L1 and ε > 0, find n ∈ N such that ‖f ∗ fn‖1 ≥ ‖f‖1 − ε. Then

‖f‖1 ≥ ‖λ1(f)‖B(L1(G)) ≥
‖f ∗ fn‖1
‖fn‖1

≥ ‖f‖1 − ε.
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Since ε > 0 is arbitrary, it follows that ‖λ1(f)‖B(L1(G)) = ‖f‖1 and thus F 1
λ(G) =

L1(G).
Since ‖ · ‖F 1

λ(G) ≤ ‖ · ‖F 1(G) ≤ ‖ · ‖1, it follows that ‖ · ‖F 1(G) = ‖ · ‖1 and hence

F 1(G) = L1(G) as well. We omit the proofs of the identities PM1(G) = CV1(G) =
M(G), which are analogous.

(2). The identities F 2
λ(G) = C∗λ(G) and PMp(G) = W ∗(G) are true by definition,

and CV2(G) = W ∗(G) by the double-commutant theorem. The identity F 2(G) =
C∗(G) follows from Exercise 4.5 and Exercise 4.8. �

In view of the previous proposition, we often regard the group algebras from
Definition 4.2, for different values of p, as a continuously varying family of Banach
algebras that deform L1(G) or M(G) into C∗λ(G), C∗(G), or W ∗(G).

The fact that F 1
λ(G) and F 1(G) agree is misleading, since, for other values of p,

this happens if and only if G is amenable. (Recall that a group G is amenable if
for every ε > 0 and for every compact subset K ⊆ G, there exists a compact subset
F ⊆ G such that µ(FK4F ) < εµ(F ).) The following is Theorem 3.20 in [15], and
it was also independently proved by Phillips.

Theorem 4.10. Let G be a locally compact group and let p > 1. Then the
canonical map κp : F p(G)→ F pλ (G) is an isometric isomorphism if and only if G is
amenable.

This implies, among others, that for G amenable the reduced group algebra
F pλ (G) admits a characterization in terms of generators and relations. For G = Z,
this description is particularly nice:

Corollary 4.11. F pλ (Z) is the Banach subalgebra of B(`p(Z)) generated by the
forward and backward shifts. For p = 2, this algebra is isometrically isomorphic to
C(S1), but in general the norm is larger.

A natural question that arises from looking at the cases p = 1, 2 is whether the
equality PMp(G) = CVp(G) always holds. This is arguably the most important
open problem in the area, dating back to Herz’s work in the 70’s, and is known as
the “convolvers and pseudomeasures” problem.

Question 4.12. Let G be a locally compact group and let p ∈ [1,∞). Is it true
that PMp(G) = CVp(G)?

The question above asks whether a specific case of the double-commutant theo-
rem holds for operators on Lp-spaces. It is known that Question 4.12 has a positive
answer, for all p ∈ [1,∞), whenever G has the so-called approximation property.
This is in particular the case when G is amenable.

We finish this subsection by discussing the smallest non-trivial group algebra.

Example 4.13. F pλ (Z2) is the Banach subalgebra of B(`p({0, 1})) generated by

the rotation matrix

[
0 1
1 0

]
(and its inverse, which is itself). This algebra can be

identified with C2, but its norm is not the maximum norm. The norm of (a, b) ∈

F pλ (Z2) is the Lp-operator norm of the matrix 1
2

[
a+ b a− b
a− b a+ b

]
.

One can verify with elementary methods that the algebras F pλ (Z2), for different
values of p, are pairwise not isometrically isomorphic (unless 1

p + 1
q = 1 or p = q).
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Exercise 4.14. Let p ∈ [1,∞). Prove that

‖(1, i)‖Fpλ (Z2) = 2|
1
p−

1
2 |.

Deduce that F pλ (Z2) is not isometrically isomorphic to F qλ(Z2) unless 1
p + 1

q = 1.

(Hint: for the upper bound, use the Riesz-Thorin interpolation theorem.)

The previous exercise can be used to deduce a similar result for F pλ (Z); see
Theorem 3.5 in [19].

4.1. Subgroups and quotients. In this short subsection, we study some elemen-
tary functoriality properties of the Lp-operator group algebras.

Remark 4.15. Let G be a locally compact group, let H ⊆ G be an open subgroup,
and let p ∈ [1,∞). Regard L1(H) as a subalgebra of L1(G) canonically (by extend-
ing a function on H as zero on its complement). Then λGp |L1(H) is isometrically
conjugate to the representation

λHp ⊗ id`p(G/H) : L1(H)→ B (Lp(H)⊗ `p(G/H)) .

Exercise 4.16. Prove the claim in Remark 4.15 in the case that G is countable
and discrete.

Proposition 4.17. Let G be a locally compact group, let H ⊆ G be an open
subgroup, and let p ∈ [1,∞). Denote by ι : L1(H)→ L1(G) the canonical isometric
inclusion described in Remark 4.15. Then there are canonical injective contractive
homomorphisms

ιpλ : F pλ (H)→ F pλ (G) and ιp : F p(H)→ F p(G).

Moreover, ιpλ is isometric.

Proof. For the map ιp, one needs to show that for all f ∈ L1(H) one has

‖ι(f)‖Fp(G) ≤ ‖f‖Fp(H).

Given a contractive representation ϕ : L1(G) → B(E) on an Lp-space E, the com-
position ψ = ϕ ◦ ι : L1(H)→ B(E) is also contractive, and one clearly has

‖ϕ(ι(f))‖ = ‖ψ(f)‖.

One readily checks, using the definition of ‖ · ‖Fp(G) as a supremum, that the above
implies the desired inequality.

The result for ιpλ follows immediately from Remark 4.15, together with the fact
that ‖λHp (f)⊗ idE‖ = ‖λHp (f)‖ for all f ∈ L1(H) and all Lp-spaces E. �

For the following result, we will use, without proof, that if N is a closed nor-
mal subgroup in a locally compact group G, then there exists a quotient map
π : L1(G)→ L1(G/N).

Proposition 4.18. Let G be a locally compact group, let N ⊆ G be a closed
normal subgroup, and let p ∈ [1,∞).

(1) There is a canonical contractive homomorphism with dense range

πp : F p(G)→ F p(G/N).
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(2) When p > 1, there is a canonical contractive homomorphism with dense
range

πpλ : F pλ (G)→ F pλ (G/N)

if and only if N is amenable.

Exercise 4.19. Prove part (1) of the previous proposition.

The proof of part (2) (for p > 1) uses the theory of weak containment of repre-
sentations, and we omit it. The map in (2) exists for p = 1 regardless of whether
N is amenable or not: indeed, this is just the map π : L1(G)→ L1(G/N) described
before the proposition.

4.2. The effect of changing the exponent p. In this subsection, we look at the
question of whether the algebras F pλ (G) (or F p(G)), for different values of p, are
isometrically isomorphic or anti-isomorphic.

Definition 4.20. Let A be a Banach algebra. We define its opposite algebra as the
Banach algebra Aopp whose underlying Banach space structure agrees with that of
A, and where a ·opp b = ba for all a, b ∈ A. A representation of Aopp is naturally
identified with an anti-representation of A (namely one which is multiplicative with
respect to the opposite multiplication).

The following exercise follows by using the adjoint of an operator (which is an
operator on the dual Banach space).

Exercise 4.21. Given p ∈ (1,∞), we denote by p′ ∈ (1,∞) its conjugate exponent.
Given a Banach algebra A, show that A is an Lp-operator algebra if and only if
Aopp is an Lp

′
-operator algebra.

LetG be a locally compact group, and denote by ∆: G→ R its modular function.
For f ∈ L1(G), let f ] : G→ C be given by f ](s) = ∆(s−1)f(s−1) for all s ∈ G.

Exercise 4.22. Let G be a locally compact group.

(1) Given f ∈ L1(G), show that f ] also belongs to L1(G). We denote by
] : L1(G)→ L1(G) the induced map.

(2) Prove that ] : L1(G)→ L1(G) is an anti-multiplicative isometric linear map
of order two.

(3) Let p ∈ (1,∞). Prove that λp(f)′ = λp′(f
]) for all f ∈ L1(G).

Proposition 4.23. Let G be a locally compact group, and let p ∈ (1,∞). Then
] : L1(G)→ L1(G) extends to isometric anti-isomorphisms

F p(G) ∼= F p
′
(G) and F pλ (G) ∼= F p

′

λ (G).

Proof. We prove it for F p(G). Let π : L1(G) → B(E) be a contractive represen-
tation on an Lp-space E. Denote by π′ : L1(G) → B(E′) the linear map given

by π′(f) = π(f)′ for all f ∈ L1(G). Then E′ is an Lp
′
-space, and the map π′

is contractive (since an operator and its adjoint have the same norm) and anti-
multiplicative. Hence π̃ = π′ ◦ ] : L1(G) → B(E′) is a contractive representation
satisfying ‖π̃(f ])‖ = ‖π(f)‖ for all f ∈ L1(G). Since the norm on F p(G) is uni-
versal with respect to contractive representations of L1(G) on Lp-spaces, it follows

that ] extends to an isometric anti-isomorphism F p(G) ∼= F p
′
(G).

The claim for F pλ (G) follows immediately from part (2) of Exercise 4.22. �
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Since L1(G) is self-opposite (via the map ]), it is tempting to guess that the
universal completion F p(G) is self-opposite. This is however not the case in general,
as we explain next. Denote by Lp the class of all Lp-spaces, and for a Banach algebra

A, denote by A
Lp

the universal completion of A with respect to all contractive

representations of A on Lp-spaces. (For example, F p(G) = L1(G)
Lp

.) It is tempting

to claim that AoppL
p

is canonically the opposite algebra of A
Lp

. (If this were
true, what we said before about F p(G) being self-opposite would follow.) Without

further assumptions, this does not seem to be true: the norm on the algebra AoppL
p

is constructed using all anti-representations of A on Lp-spaces, while the norm on

A
Lp

is defined using genuine representations. Since there is in general no way to
relate these two families of maps (given a representation of A on an Lp-space, it
is not clear how to get an anti-representation of A on some potentially different

Lp-space), we do not see any relationship between AoppL
p

and (A
Lp

)opp.

Remark 4.24. When G is abelian, the anti-isomorphisms in Proposition 4.23
are trivially isomorphisms. Since abelian groups are unimodular, the map ] is
just inversion on G, which in the abelian case is an isomorphism. By composing
again with the inversion, it follows that the identity on L1(G) extends to isometric
isomorphisms between all the relevant completions for p and p′. Except for p = 2,
it is unclear whether there are any nonabelian groups for which the identity on

L1(G) extends to an isometric isomorphism F pλ (G)→ F p
′

λ (G). In fact, in his PhD
thesis, Herz conjectured that this is never the case. While the conjecture remains
open in general, it has been confirmed for several classes of groups.

In view of Proposition 4.23, one can restrict the attention to group algebras
F p(G) and F pλ (G) for Hölder exponents p in [1, 2]. The remaining question is
whether the algebras one gets for different values in [1, 2] are really different. This
is indeed the case:

Theorem 4.25. Let G be a nontrivial locally compact group, and let p, q ∈ [1.2].
Then the following are equivalent:

(1) There is an isometric isomorphism F p(G) ∼= F q(G);
(2) There is an isometric isomorphism F pλ (G) ∼= F qλ(G);
(3) p = q.

The theorem above is not just saying that the norms ‖ · ‖Fpλ (G) and ‖ · ‖F qλ(G) (or

‖ · ‖Fp(G) and ‖ · ‖F q(G)) on L1(G) are different: it states that there are no abstract
isometric isomorphisms between their completions.

5. Homomorphisms between convolution algebras

In this last subsection, based on Chapter XVI of [20] and on [18], we aim at
describing all contractive, unital homomorphisms between two Lp-operator group
algebras. In particular, we want to describe all isomorphisms between them. For
p = 2, this is very complicated, and we illustrate this through some examples.

Example 5.1. The groups Z4 and Z2×Z2 have the same group C∗-algebra, namely
C4.

Example 5.2. The group von Neumann algebra of Zn, for n = 1, . . . ,∞, is
L∞([0, 1]), independently of n.
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The following is one of the most important open problems in operator algebras,
and is known as the “free factor problem”:

Problem 5.3. Is there an isomorphism W ∗(F2) ∼= W ∗(F3)?

A positive answer to the above problem implies that W ∗(F2) ∼= W ∗(Fn) for all
n ∈ N with n ≥ 2.

We will see that, for p 6= 2, we can obtain a very satisfactory description of the ho-
momorphisms between group algebras, which in particular implies that groups with
isomorphic Lp-group algebras must themselves be isomorphic; see Theorem 5.8. In
this section, we will work exclusively with F pλ , although the results also hold for
PMp(G) and CVp(G). The situation for F p(G) is unknown.

We begin with some preparatory results.

Exercise 5.4. Let G be a locally compact group and let p ∈ [1,∞). For s ∈ G, let
Rts ∈ Isom(Lp(G)) be the invertible isometry given by

Rts(ξ)(t) = ξ(ts)

for all ξ ∈ Lp(G) and all t ∈ G. Show that λp(f)◦Rts = Rts◦λp(f) for all f ∈ L1(G)
and all s ∈ G. Deduce that every element of F pλ (G), PMp(G) or CVp(G) commutes
with Rts.

We will work with discrete groups in the sequel; the results are also valid for
general locally compact groups, but the arguments become more complicated and
the discrete case is interesting enough.

Lemma 5.5. Let G be a discrete group and let p ∈ [1,∞). Define Lt : G →
Isom(`p(G)) by Lts(ξ)(t) = ξ(s−1t) for all s, t ∈ G and all ξ ∈ `p(G). Then F pλ (G)
is the subalgebra of B(`p(G)) generated by {Lts : s ∈ G}.
Proof. We have seen in Exercise 4.5 that the integrated form of Lt is λp. By the
first parts of said exercise, the image of λp is generated, as a Banach algebra, by
the image of Lt, which is what we wanted to show. �

For a unital Banach algebra A, we write

Isom(A) = {v ∈ A : v invertible and ‖v‖ = ‖v−1‖ = 1}.
Note that if A is a unital subalgebra of another Banach algebra B, then Isom(A)
is a subgroup of Isom(B).

Theorem 5.6. Let G be a discrete group and let p ∈ [1,∞) \ {2}. Then there is
a natural identification of topological groups

Isom(F pλ (G)) ∼= G× T,
where Isom(F pλ (G)) is endowed with the norm topology, and G×T is endowed with
the product topology.

Proof. Let v ∈ Isom(F pλ (G)). Since F pλ (G) is a unital subalgebra of B(`p(G)), and
since p 6= 2, by Lamperti’s theorem Theorem 2.13 (and Remark 2.14) there exist a
bijection ϕ : G→ G and a measurable function h : G→ S1 such that

v(ξ)(s) = h(s)ξ(ϕ(s))

for all ξ ∈ `p(G) and all s ∈ G. By Exercise 5.4, we have v ◦ ρt = ρt ◦ v for all
t ∈ G. We evaluate on both sides of this identity:

v(ρt(ξ))(s) = h(s)(ρt(ξ)(ϕ(s))) = h(s)ξ(ϕ(s)t)
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and

(ρt ◦ v)(ξ)(s) = v(ξ)(st) = h(st)ξ(ϕ(st)).

It follows that h(s)ξ(ϕ(s)t) = h(st)ξ(ϕ(st)) for all s, t ∈ G. When s = 1, we get
h(1)ξ(ϕ(1)t) = h(t)ξ(ϕ(t)) for all t ∈ G and all ξ ∈ `p(G). Setting ξ = δr for some
r ∈ G, we deduce that ϕ(t) = ϕ(1)t and h(1) = h(t) for all t ∈ G. With gv = ϕ(t)
and αv = h(1), this shows that ϕ is left multiplication by gv, and h is the constant
function αv. In other words,

v(ξ)(s) = αvξ(gvs)

for all ξ ∈ `p(G) and all s ∈ G.
Define θ : Isom(F pλ (G)) → G × T by θ(v) = (gv, αv) for all v ∈ Isom(F pλ (G)).

It is easy to check that θ is a group homomorphism, and it is clearly injective.
Moreover, it is clearly surjective, by Lemma 5.5.

The claim about the norm follows from the norm computation in part (4)
of Proposition 2.10. �

Corollary 5.7. Let G be a discrete group and let p ∈ [1,∞) \ {2}. Then there
exists a natural identification G ∼= Isom(F pλ (G))/ ∼h.

The following is the structure theorem for maps between group algebras that we
were aiming at:

Theorem 5.8. Let G and H be discrete groups, let p ∈ [1,∞) \ {2}, and let
ϕ : F pλ (G)→ F pλ (H) be a unital, contractive homomorphism. Then:

(1) There exist group homomorphisms θ : G→ H and γ : G→ S1 such that

ϕ(LtGg ) = γ(g)LtHθ(g)

for all g ∈ G.
(2) The kernel of θ is amenable.
(3) ϕ is injective if and only if θ is injective if and only if θ is isometric.

In particular, there is an isometric isomorphism F pλ (G) → F pλ (H) if and only if
G ∼= H.

Exercise 5.9. Prove Theorem 5.8.

Exercise 5.10. In the context of Theorem 5.8, can it happen that F pλ (G) is isomor-
phic, but not isometrically, to F pλ (H), even though G and H are not isomorphic?

6. Spatial partial isometries and graph algebras

We begin with a general definition.

Definition 6.1. Let A be an algebra. We say that an element s ∈ A is a partial
isometry if there exists t ∈ A such that st and ts are idempotents.

The prototypical example of a partial isometry in B(H) is given by a surjective
isometry between subspaces; in fact, these are precisely the partial isometries of
norm one.

For some purposes in Lp-operator algebras, one needs to work with partial isome-
tries that are in some sense “spatially implemented”, similarly to how invertible
isometries are spatially implemented by Lamperti’s theorem. This motivates the
following definition.
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Definition 6.2. Let (A, µ) be a localizable measured algebra. Given E ∈ A, we
set AE = {E ∩ F : F ∈ A} and let µE denote the restriction of µ to AE . Then
(AE , µE) is also localizable. Observe that Lp(µ) ∼= Lp(µE)⊕ Lp(µEc).

Given E,F ∈ A, given an isomorphism ϕ : AE → AF of Boolean algebras, and
given f ∈ U(L∞(µF )), the formula

s(ξ) = f(ξ ◦ ϕ)

(
d(µE ◦ ϕ−1)

dµF

)1/p

for all ξ ∈ Lp(µE), defines an isometric isomorphism Lp(µE)→ Lp(µF ), which can
be regarded as a contractive map s : Lp(µ) → Lp(µ) (vanishing on Lp(µEc)). We
call this map the spatial partial isometry associated to (E,F, ϕ, f).

Spatial partial isometries are partial isometries in the sense of Definition 6.1.
In fact, the element t is uniquely determined and is the spatial partial isometry
associated to (F,E, ϕ−1, f ◦ ϕ−1). (For p = 2, this is just the adjoint of s.)

Exercise 6.3. Verify the claim above, computing st and ts.

Spatiality for partial isometries is defined in terms of the underlying measured
algebra. However, for p 6= 2 and as long as the measured algebra is localizable, the
notion is independent of the underlying algebra.

Exercise 6.4. Let (A, µ) and (B, ν) be localizable measure algebras, let p ∈ [1,∞)\
{2}. Suppose that there exists an isometric isomorphism u : Lp(µ)→ Lp(ν), define
an isometric isomorphism ϕ : B(Lp(µ)) → B(Lp(ν)) by ϕ(a) = u ◦ a ◦ u−1 for all
a ∈ B(Lp(µ)). Show that an operator s ∈ B(Lp(µ)) is a spatial partial isometry if
and only if ϕ(s) is a spatial partial isometry. Moreover, show that t ∈ B(Lp(µ)) is
the reverse of s if and only if ϕ(t) is the reverse of ϕ(s). (Hint: Lamperti’s theorem
is valid for isometric isomorphisms between different Lp-spaces.)

In view of the previous exercise, for p 6= 2, it makes sense to say that an operator
s on an Lp-space E is spatial without fixing a presentation of E as Lp(µ) for some
localizable measure µ.

An idempotent is always a partial isometry (take s = t). An idempotent which
is additionally a spatial partial isometry is called a spatial idempotent.

Exercise 6.5. Let e ∈ B(Lp(µ)) be a spatial idempotent. Prove that there exists
E ∈ A such that e is the multiplication operator by the characteristic function of
E.

Exercise 6.6. Let p ∈ [1,∞) \ {2}, let E be an Lp-space, and let s ∈ B(Lp(µ))
be a partial isometry. Prove that s is a spatial partial isometry if and only if it is
contractive and there exists t ∈ B(E) such that ts and st are spatial idempotents.

Not all contractive partial isometries on an Lp-space, for p 6= 2, are spatial
(unlike the case of invertible isometries, by Lamperti’s theorem). For example, the

contractive idempotent 1
2

[
1 1
1 1

]
∈Mp

2 is not spatial.

6.1. Spatial representations of matrix algebras. For n ∈ N, we denote by
cn the counting measure on {1, . . . , n}. Note that Lp(cn) = `pn for all p ∈ [1,∞).
Spatial partial isometries can be used to characterize the canonical matrix norms:



18 EUSEBIO GARDELLA

Proposition 6.7. Let n ∈ N, let p ∈ [1,∞) \ {2}, let E be an Lp-space, and let
ϕ : Mp

n → B(E) be a (not necessarily contractive) unital representation. Then the
following are equivalent:

(1) ϕ is isometric;
(2) ‖ϕ(ej,k)‖ = 1 and ϕ(ej,j) is a spatial idempotent;
(3) ϕ(ej,k) is a spatial partial isometry, for all j, k = 1, . . . , n;
(4) ϕ(ej,k) is a spatial partial isometry with reverse ϕ(ek,j), for all j, k =

1, . . . , n;
(5) There exist another Lp-space F and an isometric isomorphism

u : F ⊗ `pn → E

such that ϕ(a)(u(ξ ⊗ η)) = u(ξ ⊗ aη) for all ξ ∈ F and all η ∈ `pn. In other
words, ϕ is (conjugate to) a dilation of the canonical representation of Mp

n.

Proof. It is clear that (5) ⇔ (4) ⇔ (3) ⇔ (2) and that (5) ⇔ (1). We show that
(1) implies (2) and that (2) implies (5).

Assume (1). Then ‖ϕ(ej,k)‖ = 1 for all j, k = 1, . . . , n because ‖ej,k‖ = 1 in Mp
n.

Given z ∈ S1 and j = 1, . . . , n, set vj,z = 1 − ej,j + zej,j . One easily checks that
‖vj,z‖ ≤ 1, that vj,z is invertible and that its inverse is vj,z. It follows that vj,z
belongs to Isom(Mp

n). Since ϕ is unital, ϕ(vj,z) is an invertible isometry on E. Fix
a localizable measure algebra (A, µ) such that E ∼= Lp(µ). By Lamperti’s theorem,
there exist hj,z ∈ U(L∞(µ)) and ψt,j ∈ Aut(A) such that

ϕ(vj,z) = mhj,zuψj,z .

On the other hand, vj,z is homotopic to vj,1 = 1, so all the automorphisms ψj,z
must be the identity. Set fj = hj,−1 for j = 1, . . . , n. Since vj,−1 has order two, we
deduce that the range of fj is contained in {1,−1} ⊆ S1. It follows that

1− 2ϕ(ej,j) = ϕ(vj,−1) = mfj

and hence ϕ(ej,j) =
1−mfj

2 is the multiplication operator by the characteristic
function of the set where fj equals −1. This, by definition, is a spatial idempotent.

Assume (2). For j = 1, . . . , n, choose Ej ∈ A such that ϕ(ej,j) is the multi-

plication operator by the characteristic function of Ej . Since ϕ is unital,
n⊔
j=1

Ej

must be the total space in A. It is easy to see that ϕ(ej,k) restricts to an isometric
isomorphism from Lp(µEk) to Lp(µEj ). Set F = Lp(µE1). Identify F ⊗ `pn with the
space of n-tuples (ξ1, . . . , ξn) with ξ1, . . . , ξn ∈ F with the norm given by

‖(ξ1, . . . , ξn)‖pp = ‖ξ1‖pp + . . .+ ‖ξn‖pp.
Define u : F ⊗ `pn → E by setting

u(ξ1, . . . , ξn) = ξ1 + ϕ(e2,1)(ξ2) + · · ·+ ϕ(en,1)(ξn)

for all (ξ1, . . . , ξn) ∈ F ⊗ `pn. (Observe that ξ1 = ϕ(e1,1)(ξ1).) Then u is isometric
because the summands ϕ(ej,1)ξj are supported on disjoint subsets. One easily
checks that u is bijective and that ϕ(ej,k) = u(ej,k ⊗ 1)u−1 for j, k = 1, . . . , n. We
omit the details. �

A representation ϕ satisfying the equivalent conditions above is called spatial.
In particular, we obtain another way of defining the spatial norm on Mn: one
defines an (algebraic, unital) representation ρ of Mn on an Lp-space to be spatial if
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ρ(ej,k) is a spatial partial isometry for all j, k = 1, . . . , n. The previous proposition
shows that the Lp-operator norm ‖ · ‖ on Mn defined by ‖x‖ = ‖ρ(x)‖, for a spatial
representation ρ, is independent of ρ, and is in fact the same norm from Example 3.3.
We will see that this idea can be used in other contexts too, specifically to define
Lp-analogs of the Cuntz algebras and, more generally, of graph algebras.

6.2. Analogs of Cuntz algebras on Lp-spaces. In this subsection, which is
based on [25] (generalizing the case p = 2 from [6]), we discuss the Lp-Cuntz
algebras.

We begin by defining an algebraic object: the Leavitt algebras.

Definition 6.8. Let n ∈ N with n ≥ 2. We define the Leavitt algebra Ln to be the
universal complex algebra generated by elements s1, . . . , sn, t1, . . . , tn, satisfying

tjsk = δj,k and

n∑
j=1

sjtj = 1

for all j, k = 1, . . . , n.

Leavitt algebras are simple, and they are interesting for many reasons. They
were discovered by Leavitt in his attempts to show that there is no way of defining
a notion of dimension for free modules over general rings (they case of Z being
well-known to work). Indeed, he showed that Ln, as a free Ln-module, satisfies

Ln � ⊕mj=1Ln for 1 < m < n and Ln ∼= ⊕nj=1Ln.

In particular, Ln does not have the so-called “Invariant Basis Number Property”.
Next, we define a distinguished class of representations of Leavitt algebras on

Lp-spaces.

Definition 6.9. Let n ∈ N with n ≥ 2 and let p ∈ [1,∞). An algebraic unital
representation ρ : Ln → B(E) on an Lp-space E is said to be spatial if ρ(sj) is a
spatial partial isometry with reverse ρ(tj) for all j = 1, . . . , n.

It is easy to see that spatial representations exist. The following is probably
the easiest example. For notational convenience, we describe the representation for
n = 2.

Exercise 6.10. Let p ∈ [1,∞). Define operators s1, s2, t1, t2 on `p(Z) by setting

sj(en) = e2n+j and tj(en) =

{
en−j

2
if n− j is even

0 if n− j is odd

for j = 1, 2 and n ∈ N.

(1) Show that s1 and s2 are spatial isometries with reverses t1 and t2.
(2) Show that there is a well-defined algebra homomorphism ρ : L2 → B(`p(Z))

satisfying ρ(sj) = sj and ρ(tj) = tj for j = 1, 2.
(3) For p = 2, show that s∗j = tj for j = 1, 2.

We now define the Lp-Cuntz algebras Opn. For p = 2, these are C∗-algebras
which are called simply Cuntz algebras and denoted On. They were introduced by
Cuntz in the late 70’s [6] and play a fundamental role in the theory of simple C∗-
algebras. Their Lp-analogs are much more recent, and were introduced by Phillips
in 2012 [25].
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Definition 6.11. Let n ∈ N with n ≥ 2 and let p ∈ [1,∞). We define a spatial
Lp-operator norm on Ln by setting

‖x‖ = sup{‖ρ(x)‖ : ρ : Ln → B(Lp(µ)) spatial representation}.
We define the Lp-operator Cuntz algebra Opn to be the completion of Ln in the
above norm.

Besides the group algebras discussed in Definition 4.2, which were introduced
in the 70’s, the Lp-operator Cuntz algebras were the first class of examples of Lp-
operator algebras that was considered. The motivation was the following: Cortiñas
and Phillips showed that for a class of C∗-algebras that contains On, topological

K-theory K∗ = Ktop
∗ and algebraic K-theory Kalg

∗ agree naturally. They suspected
that their methods were applicable to other Banach algebras, and the search for
such examples led Phillips to define the algebras Opn. It seems to be still unknown
whether the algebraic and topological K-theories of Opn agree:

Question 6.12. Let n ∈ N with n ≥ 2 and let p ∈ [1,∞). Is there a natural

isomorphism K∗(Opn) ∼= Kalg
∗ (Opn)?

As is the case for matrix algebras (Proposition 6.7), any two spatial representa-
tions induce the same norm:

Theorem 6.13. Let n ∈ N with n ≥ 2 and let p ∈ [1,∞). Then any two spatial
Lp-representations of Ln induce the same norm.

In particular, it follows from the previous theorem and Exercise 6.10 that Op2
(and in fact any Opn) can be isometrically represented on `p(Z).

Exercise 6.14. Find an isometric representation of Op2 on Lp([0, 1]).

The Lp-Cuntz algebras are remarkable algebras that satisfy a number of very
relevant properties:

Theorem 6.15. Let n ∈ N with n ≥ 2 and let p ∈ [1,∞). Then

(1) Opn is simple.
(2) Opn is purely infinite: for all x ∈ Opn with x 6= 0, there exist a, b ∈ Opn with

axb = 1.
(3) K0(Opn) ∼= Zn−1 and K1(Opn) ∼= {0}.

None of these results are particularly easy to prove, and the first proofs for p = 2
(which appeared much earlier) are very different from the case p 6= 2. Indeed, the
method originally used by Cuntz to compute K∗(On) breaks down for p 6= 2, since
it used the fact that the group of unitary matrices in Mn is connected (while the
group of invertible isometries in Mp

n is not, by Lamperti’s theorem).
The argument which does carry over to the case p ∈ [1,∞) consists in expressing

Opn as the crossed product of the spatial Lp-operator UHF-algebra of type n∞ (this
is essentially the infinite tensor product of copies of Mp

n) by the shift automorphism.
Once this is accomplished, there exists a 6-term exact sequence (the “Pimsner-
Voiculescu exact sequence”) in K-theory relating the K-groups of an Lp-operator
algebra A and the K-groups of its crossed product by Z. We omit the details.

Another result about Cuntz C∗-algebras which proved to be absolutely funda-
mental in the theory of simple C∗-algebras is the following theorem of Elliott; see
[28] for a published proof.
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Theorem 6.16. There is an (isometric) isomorphism O2 ⊗O2
∼= O2.

This result motivated the search for analogs of this theorem in other contexts.
For Leavitt algebras, Ara and Cortiñas showed that there is no such isomorphism;
see [1]:

Theorem 6.17. There is no isomorphism L2 ⊗ L2
∼= L2.

It remained open whether there is an isomorphism for the Lp-versions of O2.
In joint work with Choi and Thiel (see [3]), we have shown that this is also not
the case; a proof will be outlined in the last section. This shows that the C∗-
case is really quite special and that there are many more isomorphisms between
C∗-algebras than between Lp-operator algebras.

6.3. Lp-operator algebras of finite directed graphs. This subsection is based
on [4]. Let Q be a finite directed graph, which we write as Q = Q(0) ∪Q(1), where
the elements of Q(0) are the vertices and the elements of Q(1) are the edges. We
denote by d, r : Q(1) → Q(0) the domain and range maps.

We begin by defining the Leavitt path algebra associated to a graph. To avoid
technicalities, we assume that for every v ∈ Q(0) there exists an edge a ∈ Q(1) such
that r(a) = v. (In the standard terminology, this means that every vertex in Q is
regular.)

Definition 6.18. Let Q be a finite oriented graph. We define its associated Leavitt
path algebra LQ to be the universal complex algebra (with a unit) generated by

elements ev, sa, tb, for v ∈ Q(0) and a, b ∈ Q(1), subject to the following relations:

(1) evew = δv,wev for v, w ∈ Q(0);

(2) er(a)sa = saed(a) = sa for all a ∈ Q(1);

(3) taer(a) = ed(a)ta = ta for all a ∈ Q(1);

(4) tasb = ed(b)δs,b for all a, b ∈ Q(1);

(5) ev =
∑

{a∈Q(1) : r(a)=v}
sata for all v ∈ Q(0).

Lp-operator graph algebras are defined similarly to how Lp-operator Cuntz al-
gebras were defined in Definition 6.11: one considers the completion of the Leavitt
path algebra with respect to spatial representations.

Definition 6.19. Let Q be a finite oriented graph and let p ∈ [1,∞). Given an
Lp-space E and a representation ϕ : LQ → B(E), we say that ϕ is spatial if

• ϕ(ev) is a spatial idempotent for all v ∈ Q(1);
• ϕ(sa) and ϕ(ta) are spatial partial isometries for all a ∈ Q(1).

We define the associated Lp-operator graph algebra Op(Q) to be the completion of
LQ in the norm

‖x‖ = sup{‖ϕ(x)‖ : ϕ spatial representation on an Lp-space}.

Unlike in the case for Cuntz algebras, it is not in general true that any two spatial
representations of LQ induce the same norm. In other words, the supremum in the
previous definition is actually necessary.

Example 6.20. Let C denote the graph with one vertex and one loop around it.
Then Op(C) ∼= F p(Z) for all p ∈ [1,∞).
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Example 6.21. Let n ∈ N with n ≥ 2. Denote by Cn the graph with one vertex
and n loops around it. Then Op(Cn) ∼= Opn for all p ∈ [1,∞).

Exercise 6.22. For n ∈ N, let Qn be the following graph

•1 // •2 // · · · // •n

For p ∈ [1,∞), show that there is an isometric isomorphism Op(Qn) ∼= Mp
n.

There is so far not so much known about Lp-operator graph algebras, although
graph C∗-algebras are a very well-studied class with a number of very nice prop-
erties. A thorough and systematic study of Lp-operator graph algebras is at this
point within reach and certainly very interesting.

7. Crossed products and their isomorphisms

Crossed products are a generalization of group algebras, where one considers an
action of a group on a topological space or, more generally, an Lp-operator algebra,
and constructs an “enveloping algebra” that encodes dynamical information of the
original action.

7.1. Construction of crossed products. Let G be a locally compact group,
endowed with its Haar measure µ, let A be an Lp-operator algebra, and let α : G→
Aut(A) be an action (by isometric isomorphisms). For example, one could take
A = C0(X) for X locally compact and Hausdorff, take an action G y X by
homeomorphisms, and for s ∈ G let αs : C0(X) → C0(X) be given by αs(f)(x) =
f(s−1 · x) for f ∈ C0(X) and x ∈ X.

Our next goal is to define the (reduced) crossed product F pλ (G,A, α), also de-
noted Aoα,λ G whenever p is clear from the context. Intuitively speaking, and by
analogy with the semidirect product of groups, the crossed product F pλ (G,A, α) is
the “smallest” algebra that contains A and G, and where the action of G on A is
implemented by conjugation by invertible isometries.

The reduced crossed product will be constructed as a certain completion of the
Banach algebra L1(G,A, α), which as a Banach space agrees with L1(G,A) and
whose product is given by twisted convolution:

(f ∗ g)(s) =

∫
G

f(t)αt(g(s−1t)) dµ(t)

for all f, g ∈ L1(G,A, α).

Definition 7.1. A covariant representation of (G,A, α) on an Lp-space E is a pair
(ϕ, u) where ϕ : A → B(E) is a representation and u : G → Isom(E) is a group
homomorphism, which satisfy

usϕ(a)u−1s = ϕ(αs(a))

for all s ∈ G and all a ∈ A.
Given a covariant pair (ϕ, u), we define the associated integrated representation

ϕo u : L1(G,A, α)→ B(E) by

(ϕo u)(f)(ξ) =

∫
G

ϕ(f(s))(us(ξ)) dµ(s)

for all f ∈ L1(G,A, α) and all ξ ∈ E.
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We will consider a distinguished class of covariant pairs, called the regular co-
variant pairs.

Definition 7.2. Let ϕ0 : A → B(E0) be any representation. Set E = Lp(G,E0),
and define the associated regular covariant pair (ϕ, u) by

ϕ(a)(ξ)(s) = ϕ0(αs−1(a))(ξ(s)) and us(ξ)(t) = ξ(s−1t)

for all a ∈ A, all s, t ∈ G and all ξ ∈ E.

Definition 7.3. The reduced crossed product F pλ (G,A, α) is the completion of
L1(G,A, α) in the norm

‖f‖ = sup{‖(ϕo u)(f)‖ : (ϕ, u) is a regular covariant pair}.

Exercise 7.4. Let G be a locally compact group and let p ∈ [1,∞). Prove that
there is a canonical identification F pλ (G,C) ∼= F pλ (G).

When A has the form C(X), so that the action α comes from an action of G on
X via homeomorphisms, we usually write F pλ (G,X) instead of F pλ (G,C(X)).

There is also a full crossed product F p(G,A, α) which is defined using all co-
variant pairs and not just those that are regular. The full crossed product, being
universal for all covariant pairs, admits a very nice description in terms of generator
and relations. Moreover, when G is amenable, then F p(G,A, α) and F pλ (G,A, α)
agree canonically; the case A = C is Theorem 4.10. As a consequence, whenever G
is amenable, the reduced crossed product F pλ (G,A, α) can be described in a very
concrete way. A particularly nice case if that of integer actions:

Theorem 7.5. Take G = Z and X compact and Hausdorff. Then an action of Z
on C(X) is generated by one homeomorphism h : X → X. Then F pλ (Z, X) is the
universal Lp-operator algebra generated by a copy of C(X), an invertible isometry
u and its inverse, subject to the relation

ufu−1 = f ◦ h−1.

7.2. Isomorphisms of crossed products. The study of crossed products, par-
ticularly of those of the form F pλ (G,X), is a very active area of research within
C∗-algebras. In this setting, one tries to understand what properties of the dynam-
ics G y X are reflected in the algebraic structure of the crossed product. In this
section, which is based on [3], try to answer this question.

Example 7.6. Let G be a finite group, acting on the compact Hausdorff space
X = G via left translation. Then F pλ (G,G) ∼= B(`p(G)). In particular, the crossed
product of Gy G only remembers the cardinality of G.

Although it does not remember the group G, we will see that F pλ (G,X) remem-
bers C(X) (and hence X), and more generally that it remembers the “continuous
orbit equivalence” of the action, at least when the action is essentially free1.

Definition 7.7. LetG andH be countable discrete groups, letX and Y be compact
Hausdorff spaces, and let G yσ X and H yρ Y be actions. We say that σ
and ρ are continuously orbit equivalent, written G yσ X ∼coe H yρ Y , if there

1Recall that an action G y X is said to be essentially free if for all g ∈ G \ {1}, the set
{x ∈ X : g · x = x} has empty interior.
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exist a homeomorphism θ : X → Y and continuous maps cH : G × X → H and
cG : H × Y → G satisfying

θ(σg(x)) = ρcH(g,x)(θ(x)) and θ−1(ρh(y)) = σcG(h,y)(θ
−1(y))

for all x ∈ X, y ∈ Y , g ∈ G and h ∈ H.

When two essentially free actions as above are continuously orbit equivalent, the
maps cG and cH from the definition are uniquely determined and satisfy certain co-
cycle conditions. These cocycle conditions allow one to show that if two essentially
free actions are continuously orbit equivalent, then their reduced crossed products
are naturally isometrically isomorphic, for all p ∈ [1,∞). The following theorem
asserts that the converse is true for p 6= 2.

Theorem 7.8. Let p ∈ [1,∞) \ {2}, let G and H be countable discrete groups, let
X and Y be compact Hausdorff spaces, and let Gy X and H y Y be topologically
free actions. Then the following are equivalent:

(1) There is an isometric isomorphism F pλ (G,X) ∼= F pλ (H,Y );
(2) Gy X and H y Y are continuously orbit equivalent.

We will not prove Theorem 7.8, and we will only explain how to prove that an
isometric isomorphism F pλ (G,X) ∼= F pλ (H,Y ) must map the canonical copy of C(X)
inside F pλ (G,X) to the canonical copy of C(Y ) inside F pλ (H,Y ). This is attained
using the notion of the C∗-core of an Lp-operator algebra.

Theorem 7.9. Let p ∈ [1,∞), and let A be a unital Lp-operator algebra. Then
there is a unique maximal unital C∗-subalgebra core(A) of A, called the C∗-core
of A. If p 6= 2, then core(A) is abelian, hence of the form C(XA) for a (uniquely
determined) compact Hausdorff space XA.

The proof that such an algebra exists is a bit technical for p 6= 2, but we give
three other ways of identifying it:

• Given any unital isometric representation ϕ : A → B(Lp(µ)) of A on an
Lp-space Lp(µ), the set

Ah = {a ∈ A : ϕ(a) ∈ L∞(µ)R} ⊆ A
can be shown to be independent of ϕ, and is closed under multiplication
and pointwise complex conjugation (as a subset of L∞(µ)). In particular,
Ah+iAh is a norm-closed self-adjoint subalgebra of L∞(µ), and is therefore
a commutative C∗-algebra. This is the C∗-core of A.

• Given any unital isometric representation ϕ : A → B(Lp(µ)) of A on an
Lp-space Lp(µ), the subgroup

V(A) = {u ∈ Isom(A) : ϕ(u) ∈ L∞(µ)} ⊆ Isom(A)

can be shown to be independent of ϕ. It is clearly commutative because
L∞(µ) is commutative. Then C(XA) is the closed linear span of V(A).

• Set
Herm(A) = {a ∈ A : ‖eita‖ = 1 for all t ∈ R}.

Then Herm(A) + iHerm(A) = C(XA). (In fact, Herm(A) agrees with the
set Ah from the first bullet point above.)

The algebra C(XA) plays the role that maximal abelian subalgebras play in the
context of C∗-algebras, with two differences: it is unique (an advantage), and it
may be very small (a disadvantage). For example:
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Exercise 7.10. Let G be a discrete group and let p 6= 2. Then XFpλ (G) = {∗}.
(Hint: use the second description of C(XA) given above together with Theorem 5.6.)

Exercise 7.11. Let µ be a localizable measure and let p 6= 2. Show that the core
of B(Lp(µ)) is L∞(µ). Deduce that XMp

n
= {1, . . . , n}.

The following result clarifies how C(X) is abstractly identified inside F pλ (G,X).

Theorem 7.12. Let G be a discrete group, let X be a compact Hausdorff space,
let Gy X be an action, and let p ∈ [1,∞) \ {2}. Then the C∗-core of F pλ (G,X) is
C(X).

We close this section with some comments on what information about G and H
one can deduce from knowing that they admit two continuously orbit equivalent
action. One of course does not expect to get an isomorphism of the groups, and in
fact the type of equivalence one gets is really very weak (although strong enough
to give some interesting applications; see the following section).

Definition 7.13. Let G and H be finitely generated groups, endowed with their
word metrics dG and dH . We say that G and H are quasi-isometric, written G ∼q.i.

H, if there exist a function ϕ : G→ H and a constant K > 0 such that

K−1dG(g, g′)−K ≤ dH(ϕ(g), ϕ(g′)) ≤ KdG(g, g′) +K

for all g, g′ ∈ G.

Remark 7.14. By Theorem 3.2 in [23], if G y X and H y Y are continuously
orbit equivalent, then G is quasi-isometric to H.

8. Tensor products of Cuntz algebras

In this final section, also based on [3], we answer a question of Phillips regarding
the existence of an isometric isomorphism Op2 ∼= O

p
2 ⊗O

p
2 for p ∈ [1,∞) \ {2}.

Theorem 8.1. Let p ∈ [1,∞) \ {2}, let n,m ∈ N. Then there is an isometric
isomorphism

Op2 ⊗p · · · ⊗p O
p
2︸ ︷︷ ︸

n

∼= Op2 ⊗p · · · ⊗p O
p
2︸ ︷︷ ︸

m

if and only if n = m.

The first step in proving the previous theorem is identifying Op2 as a crossed
product by an essentially free topological action. This is done in the following
proposition.

Proposition 8.2. Let p ∈ [1,∞). Then there exist an essentially free action of
Z2 ∗ Z3 on the Cantor set X an isometric isomorphism

F pλ (Z2 ∗ Z3, X) ∼= Op2 .

Proof. We only describe the action, and omit the construction of the isomorphism.
We identify the Cantor set X as

X =

x : N→ Z2 ∗ Z3

∣∣∣∣∣∣
for k ∈ N there is jk ∈ {2, 3}
such that x(k) ∈ Zjk ⊆ Z2 ∗ Z3

and jk 6= jk+1 for all k ∈ N

 .
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We denote by a ∈ Z2 the nontrivial element, and by b ∈ Z3 the canonical
generator of order 3. Define an action Z2 ∗ Z3 y X by

(ax)(k) =


x(k + 1) if x(0) = a;
x(k) if j0 = 2, x(0) 6= a, and k > 0;
ax(0) if j0 = 2, x(0) 6= a, and k = 0;
x(k − 1) if j0 6= 2, and k > 0;
a if j0 6= 2, and k = 0,

and

(bx)(k) =


x(k + 1) if x(0) = b;
x(k) if j0 = 2, x(0) 6= bn, and k > 0;
bx(0) if j0 = 2, x(0) 6= bn, and k = 0;
x(k − 1) if j0 6= 2, and k > 0;
b if j0 6= 2, and k = 0.

One checks that a acts via a homeomorphism of order 2, and that b acts via a
homeomorphism of order 3, so that the previous equations really do define an
action of Z2 ∗ Z3 on X. We omit the details. �

It is not difficult to deduce from the previous proposition that Op2 ⊗p · · · ⊗p O
p
2︸ ︷︷ ︸

n

is isometrically isomorphic to the crossed product of an essentially free action of
(Z2∗Z3)n on the Cantor space. We are now ready to finish the proof of Theorem 8.1.

Proof of Theorem 8.1. Suppose that there exists an isometric isomorphism

Op2 ⊗p · · · ⊗p O
p
2︸ ︷︷ ︸

n

∼= Op2 ⊗p · · · ⊗p O
p
2︸ ︷︷ ︸

m

.

By the comments above, there are actions of (Z2∗Z3)n and (Z2∗Z3)m on the Cantor
space X such that F pλ ((Z2 ∗ Z3)n, X) ∼= F pλ ((Z2 ∗ Z3)m, X). By Theorem 7.8, this
implies that the underlying dynamical systems are continuously orbit equivalent.
By Remark 7.14, this implies that (Z2 ∗ Z3)n is quasi-isometric to (Z2 ∗ Z3)m.
Finally, it is known that such a quasi-isometry exists if and only if n = m. This
finishes the proof.
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