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Introduction.

The study of amenability, both for both groups and for operator algebras, revolves around the idea of approximation
by internal finite or finite-dimensional structures. The classical theory of Kolmogorov-Sinai entropy is built on such
internal finite approximation, which provides a mechanism for averaging in an asymptotic way. By externalizing the
approximation, one arrives at the notion of tracial microstates in the context of operator algebras and at the notion of
soficity in the context of groups. Soficity was formalized by Gromov and Weiss and is the basis of a far-reaching extension
of classical entropy theory that was pioneered a few years ago by Bowen.

1. Motivation: Gottschalk’s surjunctivity problem

The notion of a sofic group goes back to the definition of a finite set. (Sofic means finite in Hebrew.) We should
therefore begin by recalling the following.

Definition 1.1. Let X be a set.

(1) We say that X is finite if there exist n ∈ N and a bijection X → {1, . . . , n}.
(2) We say that X is Dedekind finite if every injective map X → X is automatically surjective.

Remark 1.2. For a set X, finiteness implies Dedekind finiteness, but without the Axiom of Choice, Dedekind finiteness
in general does not imply finiteness.

Both notions generalize to different notions in operator algebras and in other areas such as group theory. We turn to
one of the main motivations of soficity.

Definition 1.3. Let G be a discrete group and give {1, . . . , k}G ∼=
∏
g∈G{1, . . . , k} the product topology and the G-

action by shifts. The group G is said to be surjunctive if for every k ∈ N, every G-equivariant injective continuous map
{1, . . . , k}G → {1, . . . , k}G is automatically surjective.

The following is known as Gottschalk’s surjunctivity problem. It is an equivariant version of Dedeking finiteness.

Question 1.4. Which countable groups are surjunctive?

Entropy is a very useful tool to show surjunctivity for some groups. We point out that there are no known examples
of non-surjunctive groups. We will illustrate this fact by showing surjunctivity for Z using entropy. We need some
definitions first.

Definition 1.5. Let T : X → X be a homeomorphism of a compact metric space (X, d). Given n ∈ N and ε > 0, we say
that a subset E ⊆ X is (n, ε)-separated if for every x and y in E with x 6= y, there is k ∈ {0, . . . , n− 1} such that

d(T k(x), T k(y)) ≥ ε.
1
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Define the topological entropy of T by

htop(T ) = sup
ε>0

lim sup
n→∞

[
1

n
log

(
max

E is (n,ε)-separated
|E|

)]
.

Remark 1.6. The expression lim supn→∞ is necessary to get a meaningful invariant. Indeed,

sup
ε>0

[
log

(
max

E is (n,ε)-separated
|E|

)]
= log |X|,

if X is finite, and infinite otherwise.

This is an invariant under conjugation of dynamical systems, but it is rather difficult to compute.

Proposition 1.7. The entropy does not depend on the choice of the metric. In fact, one gets the same value for any
continuous pseudometric ρ which is dynamically generating in the sense that for every x, y in X with x 6= y, there exists
n ∈ N such that ρ(Tn(x).Tn(y)) > 0.

Proof. Let ρ and ρ′ be continuous dynamically generating pseudometrics on X. Let ε > 0. Using compactness of X,
choose n ∈ N and ε′ > 0 such that whenever x and y in X are such that

max
k=−N+1,...,N

ρ′(T k(x), T k(y)) < ε′,

then ρ(x, y) < ε. Let E ⊆ X be (ρ, n, ε)-separated. Then E is (ρ′, 2N + n, ε′)-separated and so

1

n
log

(
max

E is (ρ,n,ε)-separated
|E|

)
≤ 2N + n

n
· 1

2N + n
log

(
max

E is (ρ′,2N+n,ε′)-separated
|E|

)
.

Taking lim supn→∞ and supε>0, one concludes that hρtop(T ) ≤ hρ
′

top(T ), and by symmetry they are equal. �

Example 1.8. Define a pseudometric ρ on {1, . . . , k}G by

ρ ((ag)g∈G, (bg)g∈G) =

{
0, if ae = be;
1, if ae 6= be.

One checks that ρ is a dynamically generating pseudometric. One then reduces the computation of the entropy on
{1, . . . , k}Z to a combinatorial problem. The entropy measures the exponential growth of the number of strings over the
window {0, . . . , n− 1}, which is just kn. Hence htop(T ) = log(k).

What makes the computation possible is the fact that 2N+n
n converges to 1 as n goes to ∞, which is essentially due

to the existence of Følner sets in Z. This suggests that the definition can be generalized to all amenable groups.

2. Measurable dynamics

Throughout this section we assume that G is a discrete group acting on a probability measure space (X,µ) preserving
the measure µ. The basic examples are:

(1) The group G acting by shifts on X = {1, . . . , k}G with µ =
∏
g∈G ν, where ν is some probability measure on

{1, . . . , k}.
(2) Given θ ∈ R, let Tθ : T→ T denote the rotation by angle θ.

Then there is a dichotomy

multiplicative structure and additive structure

(weak mixing) (compactness)

Compactness can be relaxed to get a certain Rokhlin-type property, and this weakening can in fact coexist with weak
mixing. Whenever this is true for the Bernoulli action of G on

∏
g∈GG, the group is said to be amenable.

Definition 2.1. The Koogman representation of the measurable system G y (X,µ) is the unitary representation
π : G→ U(L2(X,µ)) given by

(πg(f)) (x) = f(g−1 · x)

for all g ∈ G, all f ∈ L2(X,µ) and all x ∈ X.

Examples 2.2. Some examples of Koogman representations.

(1) For G acting on {1, . . . , k}G, the Koogman representation is the left regular representation λ with multiplicity
equal to |G| (which may be infinity), direct sum with one copy of the trivial representation. Notice that one
cannot recover k from the Koogman representation.

(2) For Tθ : T → T, the Hilbert space L2(T) has a complete set of eigenvectors ζ 7→ ζn, with eigenvalues e2πinθ, for
n ∈ Z.

Definition 2.3. We say that the action G y (X,µ) is ergodic if µ(A) = 0 or µ(A) = 1 for any G-invariant measurable
subset of X.



3

Proposition 2.4. Let G act on (X,µ). Then the following are equivalent:

(1) The action is ergodic.
(2) For every pair of subsets A and B of X with positive measure, there exists g ∈ G such that µ(g ·A ∩B) > 0.
(3) There are no non-trivial G-invariant vectors in L2(X,µ). (The trivial ones are the constant functions.)

Definition 2.5. The action Gy (X,µ) is said to be essentially free if there exists a G-invariant measurable set X0 ⊆ X
with µ(X0) = 1 and such that the restriction of G to X0 is free in the ordinary sense.

In the following theorem, we do not assume that the action is either ergodic nor essentially free. The result follows
follows using infiniteness of G together with µ(X) <∞.

Theorem 2.6. (Poincaré recurrence) If G is infinite and A is a subset of X with positive measure, then for almost every
x ∈ A the set

{g ∈ G : g · x ∈ A}
is infinite.

Question 2.7. The above result raises some natural questions.

(1) How frequently and with what degree of overlap does recurrence occur asymptotically across orbits of sets? The
answer to this question leads to asymptotic properties: weak mixing and entropy (involving the multiplicative
structure).

(2) Is recurrence part of a more complete picture of the dynamics at a certain scale? The answer to this question
leads to the notions of amenability and socificty.

Given a unitary representation π : G → U(H), we denote by π : G → U(H) the conjugate representation of π on the
Hilbert space H conjugate of H.

Weak mixing, defined below, is arguably the most important notion in measurable dynamics.

Definition 2.8. Let π : G→ U(H) be a representation.

(1) We say that π is ergodic if there are no non-zero G-invariant vectors in H.
(2) We say that π is weak mixing if π ⊗ π is ergodic.
(3) We say that π is mixing if 〈π(g)ξ, ζ〉 → 0 as g →∞ for all ξ and ζ in H.

Denote the set of all Hilbert-Schmidt operators on H by

HS(H) = {T ∈ B(H) : Tr(T ∗T ) <∞}.

Remark 2.9. The representation π ⊗ π is unitarily equivalent to conjugation g 7→ π(g)Tπ(g)∗ by π on HS(H).

Remark 2.10. Mixing implies weak mixing, which in turn implies ergodicity.

Denote the C∗-subalgebra of `∞(G) consisting of all weakly almost periodic functions on G by

WAP(G) = {f ∈ `∞(G) : the G− orbit of f has compact closure in the weak operator topology in `∞(G)} ⊆ `∞(G).

Definition 2.11. Let S be a subset of G.

(1) We say that S is syndetic if there exist n ∈ N and group elements g1, . . . , gn in G such that
⋃n
j=1 gjS = G.

(2) We say that S is thickly syndetic if for all n ∈ N and all group elements g1, . . . , gn in G, the set
⋂n
j=1 gjS is

syndetic.

For example, 2Z is syndetic in Z since 2Z ∪ (2Z + 1) = Z. (The same is true for nZ for any n ∈ Z.) On the other
hand, it is not thickly syndetic since 2Z ∩ (2Z + 1) = ∅.

Definition 2.12. A vector ξ ∈ H is said to be compact if the norm closure of its G-orbit in H is compact.

Theorem 2.13. Let π : G→ U(H) be a representation. The following are equivalent

(1) The representation π is weak mixing.
(2) If m denotes the unique G-invariant state (mean) on WAP(G), then m (|fξ,ζ |) = 0 for all ξ and ζ in H. (When

G is amenable, the von Neumann algebra `∞(G) has many G-invariant states, and they all restrict to the unique
G-invariant state on WAP(G).)

(3) For every finite subset Ω of H and for every ε > 0, the set

{g ∈ G : |〈π(g)ξ, ζ〉| < ε for all ξ, ζ ∈ Ω}
is thickly syndetic.

(4) There exists a sequence (sn)n∈N in G such that

lim
n→∞

〈π(sn)ξ, ζ〉 = 0

for all ξ and ζ in H.
(5) There does not exist a non-zero compact vector ξ in H.
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(6) The representation π has no finite dimensional subrepresentations.

These statements translate to statements about measurable dynamics via the Koogman representation. For example,
(4) becomes asymptotic independece: the sequence (sn)n∈N satisfies

lim
n→∞

µ(Sn ·A ∩B) = µ(A)µ(B)

for all subsets A and B of X.

Definition 2.14. A representation π : G→ U(H) is said to be compact if every vector in H is compact.

Proposition 2.15. Every representation π : G → U(H) can be decomposed as a direct sum π ∼= πwm ⊕ πcpt of a weak
mixing representation πwm and a compact representation πcpt.

Corollary 2.16. A probability measure preserving action Gy (X,µ) is either weak mixing or has a nontrivial compact
factor.

This yields a structure theorem for ergodic actions.

Theorem 2.17. (Furstenberg-Zimmer) If Gy (X,µ) is ergodic, then there is a countable ordinal α and extensions

X // Yα // · · · // Yn // Yn−1 // · // Y0 = ∗

such that X → Yα has a relative version of weak mixing, and such that the extensions Yn → Yn−1 have a relative version
of compactness.

3. Amenability

Having no non-trivial finite dimensional subrepresentations is rather weak: there are groups whose only finite dimen-
sional representations are sums of the trivial one. We are lead to the weaker notion of having almost invariant finite
dimensional subspaces.

Definition 3.1. Let F ⊆ G be a finite subset and let δ > 0. We say that a finite dimensional subspace V ⊆ H is almost
invariant with respect to (F, δ) if the orthogonal projection of H onto V satisfies

‖π(g)Pπ(g)∗ − P‖2 ≤ δ‖P‖2,

where ‖ · ‖2 denotes the Hilbert-Schmidt norm on B(H). (Note that the right-hand sice is ∞ whenever V is infinite
dimensional.)

The representation π is said to have almost invariant finite dimensional subspaces if for every pair (F, δ) as above,
there exists a finite dimensional subspace V of H which is almost invariant with respect to (F, δ).

As we will se below, this notion is very closely related to amenability of G, which we proceed to define now.

Definition 3.2. A discrete group G is said to be amenable is there exists a G-invariant positive lineal functional σ on
`I(G), this is, such that σ(g · f) = σ(f) for all g ∈ G and all f ∈ `I(G), where g · f(h) = f(g−1h) for h ∈ G.

Examples 3.3. Finite groups, the integers Z, abelian groups and compact groups are examples of amenable groups.

Theorem 3.4. Let G be a discrete group. The following are equivalent:

(1) The group G is amenable.
(2) There exist a G-invariant additive measure µ on G with µ(G) = 1.
(3) The group G has a Følner sequence (Fn)n∈N, this is, each Fn is finite and

lim
n→∞

|gFn 4 Fn|
|Fn|

= 0

for all g ∈ G.

The following result relates the notion of having almost invariant finite dimensional subspaces to amenability and
property (T) of the group.

Theorem 3.5. Let G be a discrete group.

(1) Every weak mixing representation of G has almost invariant finite dimensional subspaces if and only if G is
amenable.

(2) No weak mixing representation of G has almost invariant finite dimensional subspaces if and only if G is property
(T).

Remark 3.6. Finite groups are both amenable and property (T), since they have no weak mixing representations.
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4. Entropy for amenable group actions and the surjunctivity conjecture

Definition 4.1. Let G be an amenable discrete group acting on a space X. Choose a Følner sequence (Fn)n∈N for G.
Let ρ be a continuous dynamically generating pseudometric on X. Define the topological entropy of Gy X by

htop(G,X) = sup
ε>0

lim sup
n→∞

[
1

|Fn|
log

(
max

E is (n,ε)-separated
|E|

)]
.

As in the case of integer actions, the definition of entropy does not depend on the pseudometric ρ. It also does not
depend on the choice of the Følner sequence (Fn)n∈N for G.

A combinatorial argument similar to the one used to compute the entropy in the case of integer actions shows the
following.

Example 4.2. Let G act on X = {1, . . . , k}G. Then htop(G,X) = log(k).

We return to the surjunctivity conjecture.

Theorem 4.3. Let G be a discrete amenable group. Then G is surjunctive.

Proof. Let k ∈ N. Consider first the case G = Z.
Let f : {1, . . . , k}Z → {1, . . . , k}Z be an equivariant embedding. It follows that the image system as the same entropy,

since this quantity is invariant under conjugation. We show that g is onto by showing that any proper subsystem of
{1, . . . , k}G must have strictly smaller entropy.

Let X ⊆ {1, . . . , k}Z be a proper closed Z-invariant set. Let T : X → X be the restricted system. Since X is proper,
there exist a positive integer N ∈ N and a string of length N that is excluded from among the elements of X. Given
n ∈ N, that we think of as being much bigger than N , we may write the interval [0, n− 1] as the disjoint union

[0, N − 1) ∪ [N − 1, 2N − 1) ∪ · · · ∪ [
⌊ n
N

⌋
(N − 1)− 1,

⌊ n
N

⌋
N − 1) ∪ [

⌊ n
N

⌋
N − 1), n− 1].

For ε ∈ (0, 1), a combinatorial argument then yields the estimate

max
E is (n,ε)-separated

|E| ≤ (kN − 1)b
n
N ckn−Nb

n
N c.

Hence
1

n
log

(
max

E is (n,ε)-separated
|E|

)
< log(k)

and so is its lim sup as n→∞. This implies that htop(T ) < log(k), and thus surjunctivity of Z follows by the argument

above.
Now suppose that G is amenable and let Gy X be a proper subshift. It follows that there is an excluded string over

a finite subset K of G. Using amenability, for all δ > 0 one can find a finite subset F of G such that

|gF 4 F |
|F |

≤ δ

for all g in K. Equivalently: there exists a non-empty finite subset F of G such that∣∣∣∣∣∣
⋂
g∈K

gF

∣∣∣∣∣∣ ≥ (1− δ)|F |.

If s ∈
⋂
g∈K gF , then g−1s ∈ F for all g ∈ K, and hence (assuming that K = K−1, which we may) it follows that

Ks ⊆ F . Set F0 =
⋂
g ∈ KgF and note that tK ⊆ F for all t ∈ F0. Take a maximal invariant subset E ⊆ F0 such that

sK ∩ tK = ∅ for all s and t in E distinct. (This can fail for at most |K ·K−1| pairs (s, t).) Hence

|E| ≥ |F0|
|K ·K−1|

≥ |F0|
|K|2

≥
(1− δ)|F|
|K|2

.

This is a lower bound for the number of tiles and it is proportionally independent of |F |. With an argument similar to
the one used in the case of G = Z, one shows that the entropy of the system Gy X is strictly smallar than log(k). This
shows that G is surjunctive. �

5. Sofic groups

The proof of Theorem 4.3 does not use the full strength of amenability, and it can therefore be pushed beyond the
amenable case. This is the motivation for the definition of sofic groups, in which Følner sets are replaced by approximately
equivariant maps from abstract finite G-sets into X.

Given d ∈ N, denote by Sd the group of symmetries of the set {1, . . . , d}.

Definition 5.1. A discrete group G is said to be sofic if there are a sequence of positive integers (dn)n∈N and maps
σn : G→ Sdn such that
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(1) the sequence (σn)n∈N is an asymptotic group homomorphism, this is,

lim
n→∞

1

dn
|{v ∈ {1, . . . , dn} : σn(s)σn(t)v = σn(st)v for all s, t ∈ G}| = 1.

(2) the sequence (σn)n∈N is asymptotically free, this is,

lim
n→∞

1

dn
|{v ∈ {1, . . . , dn} : σn(s)v 6= σn(t)v whenever s, t ∈ G, s 6= t}| = 1.

Philosophically, when working with sofic groups, one replaces averaging over a Følner sets Fn with averaging over the
sets {1, . . . , dn}. In some sense, soficity is a local property: it is determined by the behavior of the product in G on finite
subsets.

The following question remains open.

Question 5.2. Is there a non-sofic group?

Examples 5.3. The following are examples of sofic groups.

(1) Amenable groups; use Følner sets as {1, . . . , dn}.
(2) Residually finite groups (and in particular free groups, which are not amenable except for Z); use finite quotients

as {1, . . . , dn}. The first condition in the definition of sofic group will hold exactly at every finite stage.
(3) Gromov’s example of a non-exact group (if correct!), is likely to be sofic. The relationship between soficity and

exactness is unclear.

We turn to the definition of entropy for sofic group actions. As in the case of amenable groups, entropy is crucial in
showing that sofic groups are surjunctive.

Definition 5.4. Let G be a sofic group acting on a space X. Let ρ be a continuous dynamically generating pseudometric
on X. For d ∈ N, define on the set of all maps {1, . . . , d} → X the 2-pseudometric

ρ2(ϕ,ψ) =

[
1

d

d∑
v=1

ρ(ϕ(d), ψ(d))2

]1/2
.

Let F be a finite subset of G and let δ > 0. Given a map σ : G → Sd, denote by Map(ρ, F, δ, σ) the set of all maps
ϕ : {1, . . . , d} → X such that ρ2(ϕ ◦ σg, g · ϕ) < δ for all g ∈ F . Choose a sofic approximation (σn : G→ Sdn)n∈N of G.
Define the topological entropy of the system (G,X) by

htop(G,X) = sup
ε>0

inf
F,δ>0

lim sup
n→∞

[
1

|dn|
log

(
max

E is (n,ε)-separated in Map(ρ,F,δ,σn)
|E|

)]
.

The definition does not depend on the choice of ρ or on the choice of the sofic approximation (σn : G→ Sdn)n∈N of G.

Remark 5.5. The term supε>0 tells us how well we can distinguish maps {1, . . . , d} → X, and the term infF,δ>0 tells
us how well these maps model the dynamics.

We now turn to the computation of the entropy of the shift G y {1, . . . , k}G. Again, consider the continuous
dynamically generating pseudometric ρ on {1, . . . , k}G given by

ρ ((ag)g∈G, (bg)g∈G) =

{
0, if ae = be;
1, if ae 6= be.

Choose a sofic approximation (σn : G→ Sdn)n∈N of G. Let F be a finite subset of G and let δ > 0. For each w ∈ {0, 1}dn ,

choose a map ϕw : {1, . . . , dn} → {1, . . . , k}G such that for all g ∈ F and all v ∈ {1, . . . , dn}, we have

ϕw(v)g−1 = w(σ(g)v).

The map ϕw will automatically be equivariant on the set F . The choice of ϕw is possible because we are looking at the
full subshift and hence there is complete freedom in the choice of the strings. The outcome of the calculation is again
log(2) (and log(k) in general).

For a proper subsystem, one uses an argument similar to the one used in the amenable case, replacing the Følner sets
Fn by the abstract finite set {1, . . . , dn}, to conclude that the entropy is strictly smaller than log(k). This shows that

Theorem 5.6. Let G be a discrete sofic group. Then G is surjunctive.

Beyond the surjunctivity problem, the main examples of applications of entropy for sofic groups are to algebraic actions

Gy ẐG
ZGf .


